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Recently, the authors proposed an on-the-mass-shell, S-matrix method for computing the e6ects of small
perturbations on the masses and coupling constants of strongly interacting particles. In the present paper,
the method is generalized to the multichannel case. The use of group-theoretical techniques in reducing the
complexity of the method is described in detail.

I. INTRODUCTION

ECKNTI Y, the authors proposed an on-the-mass-
shell, S-matrix method' for computing the effects

of small perturbations on the masses and coupling con-
stants of strongly interacting particles. In this method,
particles appear as poles in scattering amplitudes, and
weak, electromagnetic, or strong perturbations cause
changes in the positions and residues of the poles.
Computation of these changes yields the mass and
coupling shifts, respectively. The dispersion integrals
in the method converge rapidly, and a detailed calcula-
tion of the neutron-proton electromagnetic mass dif-
ference yielded a result' in good agreement with
experiment.

In the present paper, we extend and amplify the
method preparatory to applying it to a wide range of
further problems. Then in the following paper, the
method is used to investigate electromagnetic and
strong SU(3) symmetry violations in the masses of the
J= ~+ octet and the J=—,'+ decuplet. Some results of the
latter calculation, together with a unified discussion of
octet enhancement in strong, electromagnetic, and weak
violations of SU(3) symmetry, have also been given in
a recent letter. ' 4

The first generalization contained in the present paper
is the matrix formalism for obtaining mass and coupling
shifts in a multichannel problem. The formalism for the
nondegenerate case is presented in Sec. II, and the case
of initially degenerate channels is treated in Sec. III.

In our second generalization we discuss how to ex-

ploit the fact that, in small violations of a symmetry
such as SU(2) or SU(3) invariance, the ratios of many
terms follow from group theory independently of the
detailed dynamics. This subject is illustrated in Sec.
IV by a study of electromagnetic violations of isotopic
spin invariance in the p meson bootstrap. Section U con-
tains a more general description of the use of group
theoretical techniques in reducing the complexity of our
matrix formalism.
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The paper has been written in such a way that the
reader can study the group theoretical techniques of
Secs. IV and V without h,aving previously studied in de-
tail the dispersion relations in Secs. II and III.

T= e'e sinrt/p,

where g is the phase shift and p
' is a factor which re-

moves the kinematic singularities. We assume that T
is an analytic function of the energy variable s with the
usual left and right cuts, and that the unperturbed T is
known. The first-order eGect of a perturbation is

8T= (8rt/p)e" (~p /p)(—e' sinrt/p). (2)

Recalling that the denominator function D for the un-
perturbed problem has the phase e '& along the right
cut, one finds that the discontinuity across the right
cut in the function J(s) =D'8T(s) is simply

Im J(s)= Im(D't'tT) = —Im((bp/p)D1V)= ¹8p (3)

where we have set T=ED ' and used ImD= —pE and
Imp=0 along the right cut. Since D has no left cut, we
have

ImJ=D' Im8T

along the left-hand singularities and a simple applica-

ceedings of the International Conference on High Energy Physics
at Dubna, 1964 (unpublished).

5 Note that for purposes of making the extension to the many-
channel case, we have inverted the Ig.eaning of p from our previous
papers (Refs. 1 and 2),
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II. PERTURBATION FORMULA FOR THE
MANY-CHANNEL ND ' METHOD

In this section we wish to develop some perturbation
techniques based on th, e partial wave dispersion rela-
tions for the scattering amplitude connecting several
two-particle channels. Our goal is to derive explicit
formulas for the 6rst-order changes in the amplitude,
and in particular, changes in the position and residue
of bound state poles, in terms of the changes in the left
cut and kinematics of the problem.

I.et us begin by brieRy reviewing our treatment of the
one-channel case. ' The partial wave scattering ampli-
tude T for this case can be written in the form'
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tion of Cauchy's theorem yields

E'bp 1 D' Im8T
J(s)=— ds'+ — — — ds',

7l g $ —s Jl g s —$

hT(s) =J(s)D-'(s),

In the present paper we wish to generalize Eqs.
(5)—(8) to the case of rs two-body channels where the

5
partial-wave amplitude T is a symmetric e-by-e
matrix. To this end, we note that along the right cut
ImT '= —

y, where y is a ma, trix which is completely
determined by the kinematics of the problem; hence,

where the integrals L and R run over the left and right
cuts. Now let us suppose that the unperturbed problem
has a bound state pole at s=s~ so that T R/(s —s~~)

and
R bshe 6R

(s—sg) s—sg

near s= s~. Since D' has a double zero at s= s~, J has no
additional singularities and (5) is still valid. Multi-
plying both sides of (5) by (s—s&)' Lnote that (s s&)D '—
is well behaved near s=s~j yields

Imb(T ') = —ImT 'BTT '= —by (9)

or

Nr ' Im(DrbTD)N-~= by

Im(DrbTD) = NrbyN.

(10)

along the right cut. For the same reasons as in the one-
channel case, however, T 'BTT ' is not the best func-
tion to consider. Instead we assume that the unper-
turbed amplitude has been obtained in the form'
T= ND '= D~'Nr (Nr is the transpose of N) and using
the fact that N has no right cut, we write Eq. (9) as

and

s—Sg
Rbs~ ——J(s~) lirn

I ~ 8B D(s)

d s—s~)2
BR=—J(s)—

ds D(s) ) 1
J(s) =—

Dr(s') ImbT(s')D(s')
ds

s —s

J/s NDI—2fs 5 (7) Thus the e-channel generalization of the one-channel
function J is the matrix function J(s) = Dr(s)BT(s)D(s),
and proceeding in the same way as before, we find'

where J(s) is given by (5).
In the procedure described above, we multiplied bT

by D' in order to remove the unitarity part of the right-
hand cut and the double pole that will appear if there is
a shift in the mass of the bound state. Alternatively, we
might have tried multiplying BT by (T ')', which would
also remove the unitarity part of the right cut and the
double pole. This alternative procedure, however, has
several drawbacks:

(i) Any zeros which T may have produce new double
poles in (T ')'BT=N D'BT which are not present in
D'BT.

(ii) The function N 'D'BT has a more complicated
left cut than D'bT.

(iii) The dispersion relation for N 'D'BT is likely to
have worse convergence at large s than does the rela-
tion for D2)T.

One might also have tried simply multiplying bT by
(s—s~)', which would remove the double pole and would
be free of the first two difhculties we encountered with
(T ')'BT.However, the dispersion relation for (s s~)'BT—
very likely diverges, whereas the function D(s) re-
sponsible for a bound state is likely to grow no faster
than powers of lns at large s, which makes D'bT much
more convergent. In addition, the right cut of (s s~)'BT—
contains "unitarity terms, " whereas the use of D'8T
provides a calculation of shifts in the dominant "uni-
tarity terms" (i.e., bound states or resonances) from an
input which includes kinematic shifts on the right cut
and shifts in "force terms" on the left cut but no
"unitarity terms. "

Nr(s') by(s') N(s')
ds', (12)

s —s

Again, let us assume that the unperturbed problem has
a bound-state pole at s=s~ so that T R/(s —s~) near
s=s~, where R is the residue matrix which in terms of
the couplings f; of the bound state to the various chan-
nels i= 1 e is R;;= f;f,.The chan—ge in the amplitude
will then behave like

hT bshe+
(s $~) s—s~

(13)

BR=(d/ds)r(s s~)D '(s)r—-

where J is given in terms of the left and right cuts of BT

by (12). In order to simplify our future formulas, it is

J. Bjorken, Phys. Rev. Letters 4, 473 (1960).
~ If some channels are not included in T, an inelasticity term

must be added to the right cut, as in Ref. 1.

where BR is the change in the residue matrix; BR; =
f;bf, +bf f,—From (12), i.t follows that

Rbs~ ——L lim (s—s~)D '(s)~j
8 ~8+

)&J(s~)L lim (s—s~)D '(s)$, (14)8~8+
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Fn. 1. Deformation of the
contour to 6nd the shifts in posi-
tion and coupIings of a resonance.

Qs,

specific problems where Eqs. (21)—(23) could be applied
are:

(i) Suppose we take channel one to be the J=-2'+,
I=~, I3———,

' ~.V state, channel two to be the J=—,'+,
I= ~, I3———,', xÃ state and take the e' electromagnetic
corrections to the mlV interaction as our perturbation.
The proton appears as a bound state in channel one and
8s~ will be the proton electromagnetic mass shift and the
8f's will be electromagnetic corrections to th, e 2rS
couplings; in fact, Eq. (21) is essentially that which was
used to calculate the proton-neutron mass difference. '

(ii) Take the J= 12+, I= 2, 2riV State fOr Channel One

and the J=—', , I= ~, mE state for channel two and let
the perturbation be the weak nonparity conserving part
of the xX interaction. Again, the nucleon appears as a
bound state in channel one, but this time there is no
first-order mass shift bs~ because the perturbation does
not connect channel one to itself. Here, the interesting
quantity is hf2 which is the parity-violating part of the
wX coupling.

(iii) Again let us take channel one to be the J= 2+,
I= ~, xS state but now let channel two be the J=-,'+,
yÃ state. In the unperturbed problem, we neglect all
electromagnetic interactions and take the hrst-order
(in e) electromagnetic intera, ctions as our perturbation.
Here, there is no scattering in channel two in the un-
perturbed problem (in fact, there is no scattering in
channel two to first order in the perturbation either) so
we can take D2 to be a consta, nt (note that a constant
D2 will cancel out of our formula, s). As in example (ii),
the perturbation does not connect channel one to itself
and the interesting quantity is 5f2, which, apart from
kinematic factors, is the nucleon magnetic moment. ' '
One will note, however, that our first-order equations
are homogeneous so we can calculate ratios like (nucleon
magnetic moment)/(pion charge) but not the absolute
scale of electromagnetic interactions. Finally, we note
that parameters associated with leptonic decays, e.g. ,
weak magnetic moments and induced pseudoscalar
terms, could be treated in a manner similar to the
ordinary magnetic moment.

The preceding examples were simple because the
different channels decoupled in the unperturbed prob-
lem. Generally speaking, this will happen only when
some conservation law Le.g. , parity in example (ii)]
prevents the channels from mixing, and there are many
cases where this simplification is not present. For

"'R. Dashen, Phys. Letters 11, 89 (1964).

and in the particular case where the different channels
are decoupled before the perturbation is applied, AD
is diagonal and

bsii ———f '(LD(se)) 11'Cii. (25)

Now the point of this example is that if the unper-
turbed channels decouple, 6s& depends only on C» for
any so, but in the general case the particular combina-
tion of the C;, that contributes to Ss~ will depend on so.
This is, of course, in agreement with Schrodinger equa-
tion theory, in which the 6rst-order change in energy of
a bound state is

(26)

where P; is the wave function (P; J'
~ P;~ 'dr= 1) and

V;; is the perturbing potential. Here, if the channels de-
couple in the unperturbed problem, then P;(r) =0 for
i/1 and 6E depends only on V»,.but in general, 5E will
depend on a different combination of the V;; for each
value of r in the integral.

III. DEGENERATE PERTURBATIONS:
THE MASS MATRIX

In the previous section we dealt only with problems
in which there is a single bound state at a given energy.
Our future applications of the formalism will be mostly
concerned. with violations of SU(2) and SU(3) sym-
metries, where one has to deal with problems in which
the unperturbed solution has several degenerate poles.

To see what we should expect in this situation, let us
review the analogous problem in Schrodinger equation
theory. Suppose we start with a Hamiltonian which has
two bound states $1 and $2 with energies Ei and E2 and
then add a perturbing potential V. The 6rst-order
changes in the energies and wave functions are bE~= V»,
(+2 V22 ~4'1 V12A/(+1 +2)+ ' ' ' and ~$2 V21$1/
(E2—Ei)+ . , where

V,,= P,*V/;dr .

Now if E2=E&, the 6rst-order corrections to the wave

example, the octet amplitudes for baryon-pseudoscalar-
meson scattering in SU(3), with 88 and 8~ mixing,
present a true two-channel problem. The basic difkr-
ence between the above examples where one can make
an energy-independent diagonalization of the unper-
turbed amplitude, and intrinsically more complicated
problems where one cannot, is illustrated in the follow-
ing simple example. Consider a situation where by=0
and Im5T=2rC5(s —sp). Let us also suppose that the
unperturbed problem has a bound state which couples
only to channel one, i.e., f& f81&

——Then. from (16), we
have

bSii — f —2+—(I'D(Ss)),.1(AD(Ss)),1C,, , (24)
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functions are large and lowest order perturbation theory
cannot be expected to give good results. However, if E~~

is exactly equal to E&, one can choose for the unper-
turbed wave functions any two linear combinations
pi' and p2' of the original p's. In particular, one can
choose Pi' and P2' so that V, 2 ——V2 i ——0, which makes
the first-order correction to the wave function 6nite.
The first-order energy changes are then U» and U& 2,
which are, of course, just the eigenvalues of U.j. since
V j is diagonal in the 1', 2' representation.

Now in our dispersion theoretic approach, the analog
of g is Sf' so we would expect our equations for 8f2 to
blow up when the unperturbed problem has two bound
states at the same energy. That this is, in fact, the case
can be seen from Eq. (23) for 8f2 which contains a fac-
tor D2 '(s22) that becomes large if there is a bound state
in channel two with a ma, ss close to ss. In the next
paragraph we will show how this difficulty can be
avoided by diagonalizing the mass perturbation, just as
one does in the Schrodinger theory.

To see how the present formalism works when
there are degenerate poles in the unperturbed problem,
let us consider an e-channel problem, where the un-

perturbed solution contains e degenerate bound-state
poles all at s= s22 and all with the same residue f', i.e.,
T,, f28;,/(s—ski) nea—r s=sii Since th.e poles are de-
generate, we have some freedom in who, t we choose for
our unperturbed states or "particles. " More precisely,
given any set of numbers e; (n,i =I - 22) which satisfy

e, e, =8;; and P, e, e,~=8 2, we can define "par-
ticle" or pole a to be the pole —f2e; e, /(s st) whose—

coupling to channel i is fe;; summing the 22 poles in T,
we recover

f2e &e cK
f.

2$. ,

T;—
s spy s—sg

Choosing a set of poles defined by a particular set of e;
is analogous to choosing a particular set of unperturbed
wave functions in the Schrodinger theory. Now after
the perturbation has been turned on, the amplitude will

have I bound state poles like f, f; /(s sj2 ), n= I n-,
where ss is the position of the nth pole a,nd f, is the
coupling of particle n to channel i. If the perturbation is
to be small, f; must be of the form f, = fe; +Sf;",
where 8f; is small and the e; are some, as yet unspeci-
fied, set of couplings for the unperturbed problem. Then
the first-order charge in the amplitude will behave like

8T;;-(f2/(S —S~)2)P. e;™e,"8S22~

+(f/(S —S22))g e; bf +Sf, e, (27)

near s=s~, which looks like the nondegenerate case of
the previous section with bs& replaced by the real sym-
metric matrix (Rsvp);, =p e, e, bs22 . Evidently, (bs~);,
is given by

(28)

in the notation of the previous section. Since the bs~

and e;, o.= 1 . .n, are just the eigenvalues and eigen-
vectors of (Ss&);,; they are completely determined by
Eq. (28). Once e; has been determined by diagonalizing

(8s&&);,, then 8f;, as can be easily verified, is equal to

8f = —. f ' g (4 'J(S22)4+-'CL J'(S22)CL);,e;~. (29)

Note that the t'if's are now perfectly finite quantities.
Thus we have a situation completely analogous to that
in Schrodinger theory; if there are degenerate bound
states, one has to diagonalize a matrix whose eigenvalues
turn out to be the mass shifts and whose eigenvectors
determine, apart from the small corrections 8f;, the
couplings (wave functions) of the "physical" particles.

In the previous paragraph we saw how the concept of
a mass shift matrix Gs& arises naturally out of a study
of perturbations on a set of degenerate poles. Evidently,
it is not the particular mass shifts 6s~, but the matrix
Gs& which is the fundamental object. For one thing,
Gs~ contains more information; remember Gs~ also de-
termines th,e couplings e, . Also, as we will see in the
next section, if one is studying the violations of a sym-
metry group such as SU(2) or SU(3), the group-
theoretic properties of the problem become apparent
only when one works with the matrix Gs&. In many cases
involving degenerate poles, the perturbation obeys some
conservation law which determines the representation
in which Ss~ is diagonal and if one uses this representa-
tion from the beginning, the problem can be worked out
without explicit reference to a mass matrix. One such
problem is example (i) of the previous section. There, the
unperturbed J=—,'+, T= 2, m.E scattering amplitude had
two degenerate poles which were taken to correspond to
the two isospin states of the nucleon. Since the electro-
magnetic perturbation conserves T3, our choice of
states implicitly ensured a diagonal mass shift matrix,
leaving us free to concentrate on the I3——~ state.

IV. THE USE OF GROUP THEORY TO SIMPLIFY THE
PERTURBATION FORMALISM; AN EXAMPLE

In Secs. II and III, we have presented a formalism
for making dynamical calculations of the eRect of small
perturbations on masses and couplings. Most of the
perturbations one wants to study in practice involve
violations of symmetries such as SU(2) or SU(3) in-
variance. In such cases, as Glashow" and Cutkosky and
Tarjanne"" have pointed out, the ratios of many
terms in the mass shift and coupling shift matrices can
be obtained from group theory alone, thus permitting a
simplification of the dynamical equations. The simplifi-
cations are of two types: first, many terms vanish on
account of group theoretical considerations, and sec-
ondly, the ratios of many of the nonvanishing terms are
fixed.

To get a qualitative picture of why such simplifica—

S. Glashow, Phys. Rev. 130, 2132 (1963)."R.Cutkosky and P. Tarjanne, Phys. Rev. 132, 1355 (1963).
'3 R. Cutkosky and P. Tarjanne, Phys. Rev. 1M, B1292 (1964).
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tions are possible, consider mx scattering. Although we

have not used the concept of a potential in Secs. II and
III, it is helpful for the moment to think of p exchange as
providing a potential for the mw system. Electromag-
netic shifts in the p masses modify the range of the p
exchange potential, which in turn will modify the mass
of any bound state or resonance, such as the p, appear-
ing in the xw channel. Now electromagnetic shifts in the

p masses transform like 1 or T3' in isotopic spin space
LT2 is absent because m(p+) =m(p )]; In terms of ir-

reducible representations, they transform like a linear
combination of (T=O, T2 ——0) and (T=2, T2 ——0) states.
If we restrict ourselves to lowest order effects, the shift
in exchanged mass transforming like T=O can only
lead to potential shifts transforming like T=O and
thence to shifts in the resonant p mass transforming
like T=O. Similarly, T=2, T3——0 shifts in exchanged
mass cause only T=2, T3 ——0 shifts in the resonant
mass. We can express this mathematically by

direct p g g~ exch p+. . .

d'.
~2rtT=2, T = ~2 tipTt2=2, T 0 + ' ' '

~

In order to make a dynamical calculation" of bmo and

bm2, Ao must be calculated dynamically, but the ratio
A2/3 ii follows from group theory alone. This is because
the dispersion integrals representing the effect of
bm '"'"on bm "', and bm2'"'" on bm2 " are just the same
except for crossing coeKcients giving quantities such as
the ratio of p+ to p exchange in the T= 1, T3——1 direct
channel, etc. Once this point is recognized, the crossing
coefficients can be calculated without further reference
to the detailed dispersion relation (or to the potential
concept which we introduced as an intermediate step
in the above reasoning).

Techniques for calculating those factors that de-

pend only on group theory have been developed by
Glashow" and by Cutkosky and Tarjanne. "" In the
present section, we take the particular case of perturba-
tions on the p bootstrap, classify the various terms that
appear, and show, following Glashow, Cutkosky and
Tarjanne, how one actually uses group theory to greatly
reduce the number of dispersion integrals that have to
be evaluated.

Specifically, we consider the e' electromagnetic cor-
rections to p meson masses and couplings. Only the
quantities obtainable by group theory will be calculated.
We begin by assuming that there exists an SU(2) sym-
rnetric bootstrap model of the p meson as a resonance in
the ~m system. For simplicity, we suppose that all in-

elastic channels can be neglected and that the left cut is
completely dominated by p exchange.

Now the singularities which will appear in our dis-

persion integrals for the p mass and coupling shifts can
be divided into three general classes, each of which has

"'To simplify the typography we use bm instead. of bm'. Ac-
tually it makes no difference if bm is small as in electromagnetic
corrections.

a rather di.fferent status in a bootstrap theory of the p
meson; we list the classes as follows:

(i) First, the dispersion integrals will include changes
in the p exchange cut created by shifts in the p masses
and couplings. Since these are the same shifts we are
calculating, we treat them self-consistently.

(ii) The pion mass shifts will give rise to both right-
hand singularities (through the term 1P5p) and left-
hand singularities (the tr masses affect the position of
the p exchange cut) in our dispersion integrals. In a com-

plete calculation we would, of course, also be calculating
the pion mass shifts self-consistently, but here we shaH

take the pion masses as given.
(iii) Finally, there will be cuts due to intermediate

states which contain photons, e.g. , the y and 2r+y ex-

change cuts. The discontinuities across these cuts are
given by the squares of the amplitudes of order e for
processes like sr~ —+ m.y and are therefore independent of
the order e' shifts in the strong interaction parameters;
thus we can take the discontinuity across the ~y cuts,
for example, as a completely predetermined quantity in
our calculation. Singularities of this type will be called
"driving terms. " Of course, in practical calculations,
other terms which are not strictly speaking driving
terms will be treated as though they were, in the sense
that they are taken as given and not calculated self-

consistently, e.g. , the x masses in the present example.

The above separation of singularities into driving
terms and singularities to be treated self-consistently
would be a general feature of any calculation of the e'

corrections to strong interactions. Note that the require-
ments of self-consistency may have an important effect
on the nature of the solution, but the scale of electro-
magnetic corrections will always be determined by the
driving terms.

To calculate the changes in the p masses and cou-

plings, we must study all the J=1, xm scattering
amplitudes. Since Bose statistics requires the pions to
be in an I=1 state, we have three channels which we

label i =+1,0, —1 according to the third component of
isospin. In the absence of electromagnetic corrections,
the scattering is the same in all three channels.

Now charge conservation tells us that, even when

electromagnetic effects are included, the channels do not
mix, but the group theoretic properties of the problem
will become more transparent if we temporarily put
aside this fact and use the multichannel degenerate per-
turbation theory outlined in the previous section. Thus
we take the p mass shifts to be a matrix bm;, ,i,j=—1,
0, 1, which will, of course, turn out to be diagonal with
6m ~ ~

——6m, , 8m~& ——5m,+, and 8m00=8m, o. In the
same spirit, we take the pion mass shifts to be a matrix
bp;;, i,j=—1, 0, 1.

Finally, it is best to characterize the pox coupling
shifts by dimensionless quantities which are independent
of the scale of mass. Thus, taking the dimensions of the
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residue matrix R,, of the p pole to be (mass)", we define
8y;;= 5(R;;/(p)n) where jk is the average pion mass, in-
cluding the perturbation bp. '4 Again, by;, will turn out
to be diagonal with byii, for example, related to the
shift in the residue of the p+ pole in the I3——1 xw

amplitude.
Now let us suppose that we have worked out all the

singularities listed above and performed the dispersion
integrals for bm;, and bp;;. Clearly, we will have rela-
tions like ~ll ' &-i—l ' 1/~2 &ll ' e—l—l ' 1/V6&

e002 o= 2/g6 (32)

ble tensors" in isospin space. To this end, we introduce
the nine matrices e@', e, ' n(jv= —1 1) and e, ' "
(22= —2 . 2), Where e@j n tra, nSfOrmS under I-Spin rO-

tations like the mth component of an object with total
isospin I and we assume that the e,,'s are normalized
such that P,, e,,j ne, ,

r' "'= orr 8„„.Specifically, e,jo is
equal to 5,,/V3 and e,,' ' and e,j' ' are diagonal matrices
whose nonzero elements are

~7'j= g Aijkl"~7, kl+A jj,kl'
kl

bmg, )

bm;; b~kl bpkl
mm +A. . mn

(31)

The remaining e's may be obtained by rotations in
isospin space.

The matrices e;,' and e;,' are invariant under charge
conjugation, but charge conjugation changes the sign
of e;,' ". Therefore, none of the matrices bm, ;, bp, ;,,
by;, , or the D;,'s can have a component along e;
and we can write

&jlkl&
+Ae, kl j" — ~+D'F,

j j

where the A's are numbers which depend only on the
strong interactions, the D's are the driving terms de-
fined in (iii) and we have introduced the unperturbed p
and x masses, m and p, to make the A's dimensionless.

The quantities which are most amenable to a group
theoretical analysis, and which we shall study in the re-
mainder of this paper, are the A coefficients in Eq.
(31)." Because (i) the strong interactions conserve
isospin, and (ii) bootstrap equations do not determine a
unit of mass, it will turn out that we can relate all the
A,, kl, A,;,kl», .(i,j,k,l= —1 1) to four num-
bers which can be obta, ined by simple SU(2) symmetric
calculations.

Our first step is to note that A;; I,~, for example,
must be invariant under simultaneous isospin rotations
of the four indices i, j, k, /." Physica, lly, this follows
from the fact that A;;,» depends only on the strong
interactions which do not pick out any particular direc-
tion in isospin space. Thus, A;, ,~~ has no direction
associated with it and must be a scalar. Later, we will
show how one can derive explicit formulas for quanti-
ties like A;;, A,~, which do, in fact, turn out to be
invariant.

The easiest way to exploit the invariance of A
is to expand bm;;, bp;, , by;;, and the D; s in irreduci-

&mj 5moejj +pn 8m2, net'" (33)

mme 0 —4 mm~ 0
V

k,l

Q A . . „m g, n Amme, n j2——
Icl

(34)

Then, substituting (33) and similar expansions for
8jk;;, 8p... and the D,,'s into (31), and identifying the
coefficients of e,,' and e;,' " on both sides of the equa-
tions, we obtain

m/ omA '" 0(8mo/m)+A 0 "(8jko/jk)

+A 0"'~go+Do",

~yo=A0"5yo+Ao' (~mo!m)

+A 0'"(40/jk)+Do',

5m2, n/m='A 2" (om2, n/m)+A 2 (~jl2, n/jk)

+A2"&8y2, n+D2, n" j2= —2, 2,
by2 „——A2»by2 „+A2&"(8m2, /m)

+A2»(jjjk2„/jk) jD2, & n= —2, 2.

(35)

Thus by simply using the fact that the strong interac-
tions conserve isospin, we have reduced the matrix equa-

and similar expressions for bp;;, by;, , and the D@'s.
Note that charge conservation actually implies that
only bop and bmg, p can be nonzero. Now the reason for
writing Qg, j in the form (33) is as follows. Since A ~, kl

is invariant under isospin rotations, we must have'~

"The dimensionless coupling is de6ned in this way so that by
will vanish for a perturbation on the masses that amounts to
changing the over-all scale of mass. This definition will lead to
simpli6cations in future formulas.

"Some readers, on the basis of past experience with electro-
magnetic corrections, may have been surprised that some terms
follow from group theory alone. Now, in any theory of electro-
magnetism, one has driving terms, and we have to use dynamics
to calculate them. But the self-consistent terms are less familiar,
and it is the A factors connecting the serif-goy. sjgtent tyrants vghich
&ioiplify owing to group theory,

"See, for example, A. K. Edmonds, Angular SIomentum in
Quantum Mechanics (Princeton University Press, Princeton, New
Jersey, 1957).

"To see why the e; s are "eigenvectors" of A~~, consider
A;;, ~& as a matrix which carries the nine-dimensional i, j space
to the nine-dimensional k, l space. Next, make a change of basis
from i,j to I, n, where the I, n basis vector is de6ned by e;; "and
write A as Ag „,I„.Now the "matrix" A™is invariant with
respect to SU(2) rotations so it commutes with all the isospin
operators in i, j space and must therefore be diagonal and inde-
pendent of n in the I,n representation; hence, A y „,g~

A~mmb~, ~b, or g. .A&& . .m™e,.I n A I'm, mek&I n
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tion (31) to one set of numerical equations which de-
termines the mass and coupling shifts that transform
like I=O and another, decoupled set which determines
the shifts which transform like I= 2. It is very important
to note that the equations for the I=2 shifts are in-
dependent of e so that the particular direction in isospin
space along which the 8p's and bm's point is entirely
determined by the nature of the driving terms and pion
mass shifts (in a complete calculation we would also
treat the pion mass shifts self-consistently so that only
the driving terms would define a direction in isospin
space). We know, of course, that only the 0 and 2,0
components of bp;; and the D@'s are nonvanishing.

We have not yet exhausted the implications of group
theory for the 3 matrix. Actually, as suggested at the
beginning of this section, it is possible to explicitly de-
termine the ijkl dependence of, say, 2;, , A,

.
~ &, and find

ratios like As""/Ao I' from group theory alone. To see
how this goes, let us examine the isospin dependence of
A;;,~~ &. A change in the mass of the pions a6ects the
singularities of a partial wave mm. scattering amplitude
in two ways. First, variation of the pion mass changes
the kinematics of the right-hand unitarity cut [i.e., the
second integral in Eq. (12)j.The effect on 5m, , of these
singularities is expressed graphically in Fig. 2(a),""
where the blobs represent arbitrary isospin-conserving
xw scattering processes and the wiggly lines are sche-
matic p mesons which we use to express the fact that we
are projecting out the J=1,I= 1, I3——i —+ I3——j part
of the mx amplitude. Variation of the pion mass also
changes the position of the left-hand cuts [i.e., the first

Qk

Smkg

gg

(0)

r J

kg

(b)

Fn. 3. Diagrams showing the change in the p mass due to a p
mass change in a cross channel. Diagram (h) represents the essen-
tial isospin properties of (a).

integral in Eq. (12)].This effect is represented in Figs.
2(b) and 2(c).

Now the point of all this is that, since the blobs con-
serve isospin, the ijkl dependence of the diagrams in
Figs. 2(a)—2(c) is the same as that of the simple "bubble
diagram" in Fig. 2(d). The latter diagram should, for
our purposes, be interpreted simply as the sum of prod-
ucts of Clebsch-Gordan coeKcients. That is, the iso-
spin properties of 3 & follow directly from the diagram
but the over-all normalization of A & must be deter-
mined from some dynamical scheme.

From the insight just gained into the isospin de-
pendence of A;, , ~, i &, we can find As &/Ao & in the fol-
lowing manner. Let us call the Clebsch-Gordan co-
efficient at the p'm'x~ vertex g"~, where g'&~ is normalized
such that P, i, g'&"g"&'"= 8;; . Then, according to Fig. 2,
we have

A, , „mg km'(Q gikggjlx) (36)

(b)

k
Sr r

kZ

(c)

where k & is a number independent of i, j, k, and l.
Notice here that: (i) Since the ps.s coupling P;,s g'&"

)(p'x'm. ~ is invariant under simultaneous isospin rota-
tions of p and x, g'&~ must be invariant under simul-
taneous rotations if i, j, and k. Hence, A;, I,&

& as given
by Eq. (36) is an invariant. (ii) The "diagonal" ele-
ments C;;,» I" of C &, which refer to the physical par-
ticles, are simply k"& P,(g"~)' or k"& times the prob-
ability that z~ appears in the p' wave function. Physi-
cally, this means that the relaHee effect on the p+, p,
and p masses of changing, say, the x' mass is given by
the probabilities that p+, p', and p contain a m', a
point which has previously been noted by Capps. "
Now to find A&"&/Ao & we need only remember that,
according to Eq. (34), e,io and e;io ' are eigenvectors of
A;;,I,~

I", which, using the fact that e; and e; ' are
diagonal, implies that

Ao "eoo'=Zs Aoo, ss "eos',

As""coos o= Zs Aoo, ss "cess o.
(37)

Fn. 2. Diagrams for the effect of "external" pion mass shifts on
the p mass. The dashed lines are pions and the wiggly lines denote
p mesons. Diagram (a) illustrates the e8ect of bp on the right-hand
(unitarity) cut and diagrams (h) and (c) represent kinematic
charges on the left cut. Diagram (d) represents the essential
isospin properties of (a)—(c).

Since the Aoo, » & k= —1. 1 are, as pointed out
above, k & times the probabilities that m

~ appears in the

"R. Capps, Phys. Rev. 134, 31396 (1964).
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wave function p'=(1/v2)Lm. +(1)ir (2)—or (1)ir+(2)j,
they must be given by App yy "=App, y y "=2k
and Aoo, oo &=0. Then, using eooo ——Boo/V3=1/K3 and
the values for eooo o given in Eq. (32), one finds Ao &

=4 & and A2 &= —-,'k so that

uzu/A my. i (38)

Next let us turn from the isospin structure of A & to
that of A . Graphically, the effect on bm;, of changing
the mass of an exchanged p is illustrated by Fig. 3(a).
Again the blobs conserve isospin so the isospin content
of Fig. 3(a) is the same as that of the bubble in Fig. 3(b).
Thus, A;;,p~ turns out to be proportional to a sum
over products of four Clebsch-Gordan coeKcients;
specifically,

like I=2. Aside from its intrinsic interest, this result
would lead to a considerable saving of labor in a practi-
cal calculation of the bm's and 8p's. Secondly, we
showed how the parameters appearing in the I=2
problem can be related to those in the I=O problem
and obtained, as our end result, Eq. (42). The value of
Eq. (42) lies, of course, in the fact that it is much easier
to calculate the Ap's dynamically than the A2's; the
Ao's can be obtained from a simple SU(2) symmetric
calculation. For example, the dispersion integral for
A p is simply

m, m

or t
ReD'(m ')j' R

mm Pmuz g gzzugIzzzgjzuglgu

SgZ'Q

(39)
D'(s')(d/dm, ')LImB(m, ',s')j

ds', (43)
s' —m '

P

According to the discussion of the last paragraph, how-
ever, we can find Ao /Ao from a knowledge of just
the three numbers App, I,I, , k= —1, 0, 1. To find these
numbers, consider the graph in Fig. 3(b) with i=j=0,
which is like placing a p' on each end. A neutral p
couples only to m+m so the intermediate pions are all
~+'s or ~ 's. Then the pions in the crossed channels are
again all m+'s or m 's. Since the only p meson exchange
which can come from two charged pions is p' exchange,
A pp, A, p must be zero unless k =0, and proceeding in the
same manner as before, we find A~ =App, pp and
A m~ A timor

p pp, pp

uzzu/A zuzu (40)

To find the remaining ratios of Ap to A2's, we need

only observe that 5p;; will appear in our graphs in
exactly the same way as bm;;, and one Ands

ym A my A yy A mm

Ap™ Ap & Ap» Ap™
mp

I
2 ~

A,»

(41)

Substituting these ratios into Eqs. (35) for Bm&, „and
8y2„, we 6nd

Bmo, /m =A o"' (Bmo,./m) ——,'Ao""(Byo,.!p)
+Ao"'Bvo, „+Do,„, (42)

&go,.=Ao"&vo, oAo'"(~I o, /~)—
+Ao&"(8mo, „/m)+Do, &.

%e have now gone as far as is possible using group
theory alone. Let us review what progress has been
achieved. First, we found that the problem of calcu-
l.ating the electromagnetic corrections to the p masses
and pew couplings splits into two completely independ-
ent problems, one for the corrections which transform
like I=O and one for the corrections which transform.

where D is the denominator function for xw scattering
in the J=1,I= 1 state, R is the residue of the p pole
and B(m, ',s') is the p exchange amplitude. In general,
the effects of I=O shifts in exchanged masses and
couplings are readily computed in terms of integrals,
such as Eq. (43), over the left cut associated with the
exchange.

The effects of I=O shifts in "external" masses (i.e.,
the pions in the present example) are generally more
complicated because external mass shifts affect the en-
tire right and left cuts instead of only a single piece of
the left cut. One might hope that the over-all effect of
external mass shifts would be simple in view of the ex-
ample of low-energy nuclear physics where, for instance,

electromagnetic mass shifts in the neutron and proton
components of the dueteron simply shift the deuteron
mass by Bm„+8m, . Unfortunately, the situation is
more complicated in the relativistic case, as can
easily be seen by considering two particles, both of
mass M, which interact to produce a bound state with
mass 3f~=2M —E~ where E~ is the binding energy.
If we change M by 8iV, then M& will change by
BM&= 283/I —(BE&/BM) BcV. Now in low-energy physics,
one always has a situation where E&«M so 83f&=2',
but in relativistic problems BE&/B1II can easily be of
order unity.

Although external mass terms like A"'& and A» are
hard to evaluate directly, there is a general property of
bootstrap equations which we have not yet made use of
and which reduces the number of independent terms.
In fact, in the simple model we are presently considering,
this property actually enables us to eliminate A & and
A» from the equations, leaving only the more readily
evaluated terms associated with exchanges. The prop-
erty in question is the invariance of the SU(2) sym-
metric p bootstrap equations under the transformation
ye~)m, p, ~Xp, , and y~y, where X is any positive
number. In the present context, this implies that Eqs.
(35) for 5mo a,nd Byo must have a solution with
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gamp Bmp 6pp M
tntn +A mtt +A mM +. . .

m m p 3E
(43')mtt+A ntm 1 A ytt+A ym 0

Finally, substituting (41) and (43) into (35) and. per-
forming a few algebraic manipulations, we And

8m2, 6m2, ~ 8p, 2,„
mm +A mtt +. . .

Dp~=ap =0 and this solution must have the form sors, which yields
Smo/m= 6po/p, byo

——0, which can be the case only if" "

(46)

6mo/m=(8po/p)+(1 —Ao ") '(Ao& 5yo+Do ),
8m2n/m, = ——',(5p2, n/p)+(1 —Aom") '

X(Ao'™~y2,+%, ),
((1 A yy)(1 A mm) A myA ym) —1

X [(1—Ao"")Do'+Ao'™Doj
&y2, n = ((1—A o») (1—A o"")—A p"&A p&")—'

X [(1 A mtn) D y+.A ymD m]

(44)

8m@ bml, z

A .. „mm
m Iz m

These equations have a number of amusing properties:
(i) The dependence of &g and by on the pion mass dif-
ferences is completely determined. Should it turn out
that the driving terms D2, p and D2 p& are small com-
pared to 8p2, 0/p, we would have 8y2, 0=0 and &m2, 0

= —(m/2p) 5p2 p or m„+—m, '= (m/2p) (p +—p.'). (il)—
Suppose we set the pion mass shifts bp, and the driving
terms equal to zero and consider the possibility of a
nonzero solution for 6m~, „and 6y2 „.Since, without the
pion mass and driving terms, the equations for hap and
gamp are the same as those for 8y2 „and 8m2, „, it is not
possible to find such a "spontaneous" violation of
SV(2) in the p bootstrap unless the bootstrap equations
have more than one SU(2)-symmetric solution.

In the previous paragraphs, we showed how, using
only group theory and the scaling properties of boot-
strap equations, one can reduce th, e rather complicated
Eq. (31) and the remarkably simple set (44). Obviously,
it will be advantageous to use the same sort of procedure
in any problem involving violations of SU(2). How-
ever, the degree of simplification which can be achieved
by these general arguments alone, will not in general,
be as great as it was in this particular example. To see
why, let us consider what would happen if we tried to
improve our calculation of the p mass shifts by including
the mes channel as well as the mx channel. If we again
simplify the left cut in the scattering amplitude to just
p exchange and the driving terms, the equation for
8m;, becomes

mp

( 1p mtt+P mtt)/(p mtt+, p mtt)
tnp,

k

(a)

k e--'+ke- k '~ 'e

/

(b)

Note that since the co mass shift transforms like I=0, it
cannot appear in an equation for 8m2, . Now let us see
to what extent Eqs. (46) can be simplified. First, the
analog of Fq. (43) is Aomm+Aomn+(K3) —iA, ming=1 [the
factor (K3) ' enters here because we defined the I=O
m and p mass shifts as bm'e, ,'= 8m'ft, ,/K3$ which can be
used to eliminate only one of the external mass param-
eters Ap & or Ap ~, the other must be computed ex-
plicitly. Secondly, consider the determination of the
ratio Anm&/Aom&, which is now complicated by the fact
that x's appear as external particles in two different
channels. Proceeding graphically, one finds that the
analog of the single graph in Fig. 2(a) is the set of four
graphs shown in Fig. 4. Again using the fact that the
blobs conserve isospin, we observe that the isospin de-
pendence of Figs. 4(a) and 4(b) is the same as that of the
2m bubble in Fig. 4(e) and that the isospin dependence of
Figs. 4(c) and 4(d) is given by the isospin properties of
the ~co bubble in Fig. 4(f). Then, recalling that the ijkl
dependence of Fig. 4(e) is given by P, g'i'gt'"' and
noting that, since cv is an isosinglet, the ijkl dependence
of Fig. 4(f) is simply 8;&5&;, one can convince himself that

A„mtt , .P mtt(Q gikngjin)+P mttg. „g . (4P)

where k & and k& & are numbers independent of i, j,
k, and /. Application of the same group theory tech-
niques as before gives the relation

k-- 3+ke- e
i /

k ~ m 8/eke m nnn

i / i j

where we have suppressed the terms involving coupling
shifts and driving terms and 3f is the ~ mass (since id

is an isosinglet, there is no need to use a matrix for
8M). Again we expand 5m;t. , 5p,," . in irreducible ten-

(e)

FIG. 4. Some "external mass" diagrams analogous to those of
Fig. 2 for the p bootstrap including both the m.m. and mes channels.
The solid line is an co meson.
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But in this case, since the ratio k, I'/kb"& must be ob-
tained from some dynamical model, we no longer have
a purely group theoretic prediction for A2""/A o"". Of
course, if the xco channel has little effect on the p mass,
then k, &))kq"& and (48) reduces to the single-channel
result A2 I'/Ao &= ——,'.

k, and 1, we have PI ~ A;, , I ~
'e~~r "=Ar 'e;, r "and Eq.

(49) can be written in the form

8mr, „ /m= P Ar-'(bmr, „"/m")+Dr,„

+(terms involving coupling shifts). (50)

V. THE USE OF GROUP THEORY TO SIMPLIFY
THE PERTURBATION FORMALISM;

GENERAL PROPERTIES

In the previous section we illustrated, by means of a
specific example, some group theoretic methods which
will often be useful in studying violations of symmetry
groups. The present section will be devoted to a more
general discussion of these methods. Although the tech-
niques in question can be used to study violations of any
symmetry group, we shall continue to concentrate on
SU(2), with a few concluding remarks about SU(3).

I et us consider, then, the general problem of cal-
culating the e' electromagnetic corrections to masses
and couplings of the strongly interacting particles. As in
the example of the previous section, we assume a boot-
strap theory of strongly interacting particles, treating
stable and unstable particles on the same footing. Pre-
sumably, the strong interaction bootstrap equations
have an SU(2) symmetric solution, in which the iso-
spin multiplets of particles appear as degenerate sets of
poles in scattering amplitudes with the proper quantum
numbers. Adding electromagnetism to the strong inter-
actions then breaks the SU(2) symmetry and. causes
shifts in the positions and residues of these poles. In a
bootstrap theory, the mass shift matrix Qz;, for the
particles in multiplet n will depend on: (i) the mass
shifts 8m;,- of all the multiplets of strongly interacting
particles; (ii) the coupling shifts; (iii) a "driving term '

D;; which, as discussed in the previous section, is
associated with the explicit appearance of photons in
the dispersion relations. Thus we have

Bm;; /m =Q A;; ai-'(~mI«"/m")+D r'
k, l

+(terms involving coupling shifts). (49)

In the last section we saw that equations like (49) be-
came simpler when one expands the bm's, D's and
coupling shifts in terms of irreducible tensors in isospin
space; hence, we write

2E~ E

8m '= Q Q Bmre,
E=o n=—E

2E~ I
D. n —p p, D ae, .r e

E=o n=—E

and so forth, where as before, e;; " is the tensor with
total isospin I and third component of isospin e and I
is the isospin of multiplet o, . Again, since A;, , ~~

' is in-
variant under simultaneous isospin rotations of i, j,

In the example of the previous section, we were able
to set our coupling shifts equal to a matrix which had
the same group theoretic properties as a mass shift
matrix. The reader will recall that this was possible be-
cause in the coupling of a p to two x's, Bose statistics
requires that the two pions always be in an I= 1 state.
In general, the parametrization of coupling shifts is
more dificult. Consider, for example, the coupling con-
stant shifts bF;;~ for a vertex connecting one particle
with isospin one to two particles with isospin —,. Here,
the subscripts i, j, k run over the I3 values; i.e., i = —1,
0, 1 and j and k = ——,', —,'. Just as for the mass matrix, it
will be most convenient to expand bF;;I, in a set of ir-
reducible tensors in i, j, k space.

Now i, j, k space contains one independent irreduci-
ble tensor e,,~ ", e= —I. .I, for each time the rep-
resentation I appears in the reduction of the direct
product 1t32t3 —', into irreducible representations. Thus,
decomposing 1282 according to 18~~=18(00+1)
=OQ+1Q+1Q+2, we can write

where e;,~
"' t' is the I3=e component of an irreducible

tensor which transforms with total isospin I and P is an
index that distinguishes between the two I= 1 repre-
sentations that appear in the triple product 1|3~13-'„
e.g. , one can take P as the total isospin, 0 or 1, associ-
ated with the indices j and k.

Next we turn to the most general case: perturbations
on the coupling of three or more multiplets with isospinsI, I, I . Denoting the coupling shift by bI';, &...,i= —I . . I &= —I ' ~ I ' we can always ex-CL) a
pand bl in irreducible tensors according to

(52)

where I now runs over all the distinct values of total
isotopic spin which appear in the direct product
I gI I "g and P is again a pa.rameter which dis-
tinguishes between representations with the same total
isospin which occur in this particular direct product.
We can also use the index P to distinguish between the
different vertices (e.g., pn. m, p~~, etc.) at which the
coupling corrections appear; thus we list all charges in
couplings by 8yr, „~ where P now runs over all inde-
pendent corrections to the strong interaction couplings
which transform like (I,ri)

Just as happened with the mass shifts, a coupling
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+P Az s'gars, .s'+Dr . (53)
Pf

Similarly, the coupling shifts are given by equations like

+2 Azs'"(&mr, "/m")+Dr, s'. (54)

Equations (53) and (54) are completely general—
note that in setting up these equations we made no ref-
erence to approximations such as two-particle unitarity
or single-particle exchange. A few general properties of
(53) and (54) are worth noting: (i) the over-all problem
of determining the electromagnetic corrections to strong
interactions splits up into a set of completely inde-
pendent problems, one for each (I,e) type of SU(2)
violation. Once again, ratios between some of the non-
zero A coefficients are given by group theory. (ii) If we
parametrize all our couplings in terms of dimensionless
numbers, " the strong interaction, SU(2) symmetric
bootstrap equations must be invariant under the trans-
formation m —+ Xm, with no changes in the coupling
constants. In the present context, this implies that
Eqs. (53) and (54) for I=O have a solution with

Do ——Dos=81"ot'=0 and 8mo =em (2I +1)'s' [the fac-
tor (2I +1)' ' is required here because we have nor-
malized our tensors such that P;,(e,,s ")'=1; hence,
e,so= b;;(2I +1) '"7, which requires that

P A «'(2I, +1)'s'= (2I +1)'s2
a'

P Ao~"(2I +1)'"=0.
(55)

This is, of course, the generalization of Eq. (43) of the
previous section. (iii) If Eqs. (53) and (54) for ISO have
a nonzero solution with Dz, „=D~, ~=O, there would
be an instability in the strong interaction bootstrap
equations which couM lead to a "spontaneous" break-
down of SU(2). Apparently this situation does not occur
in nature, however, since SU(2) is conserved except for
small electromagnetic and weak corrections. " (iv)
Finally, we recall that since the electric current trans-
forms isotopically like a scalar plus the third component
of a vector, the e' driving terms actually contain only
(I,sz) = (0,0), (1,0), and (2,0) pieces.

"On the calculational side, estimates such as the one in Sec. IV
of the present paper also indicate that SU(2) does not undergo
spontaneous breakdown. This point has been particularly em-
phasized by E.Abers, F. Zachariasen, and C. Zemach, Phys. Rev.
132, 1831 (1963).

shift 57~,„|'can only affect a shift in coupling or mass of
the same I and e, and the effect of SF',~~ on gamy, „or
8I'&,„'must be independent of e. Thus, explicitly writ-
ing out the coupling terms, Eq. (49) must have the form

6ms, „ /m =P As-'(6mr, "/m")

Having discussed the general properties of electro-
magnetic corrections, let us return to the approxima-
tion of two-particle unitarity and the N/D method. In
the two-particle unitarity approximation, one can cal-
culate all the A's appearing in (53) and (54) with the
S/D perturbation techniques developed in Sec. I. (If
desired, one could also include some multiparticle chan-
nels in a phenomenological way. ) Furthermore, as we
saw in the last section, one can often use group theoreti-
cal methods to find relations between parameters like
Ao and A~, thus simplifying the calculations. We
conclude our discussion of electromagnetic corrections
with an example which illustrates both the possibili-
ties and limitations of the group theoretical methods for
6nding such ratios. Suppose that particle c is an I='1
bound state of two I=—', particles a and b and that c
exchange is the principal binding force. Let us parame-
trize the abc coupling shifts according to bye, „~where as
usual I and m give the isospin transformation properties
of the coupling shift and we choose P =0, 1 as the total
isospin of particles a and b. Since a mass shift bing, of
particle c will affect 671, l', we have a relation like

8mg,
8Fr,„s=Az~ +. (56)

where P=1 for I=0, 2 and P=O, 1 for I=1.
For the P = 1 coupling shifts has, ' the particles a and

b are always in an I=1 state, so just as in the case of
corrections to the pre couplings, bF~,„' has the same
group theoretical behavior as the mass matrix gamy, .
Thus by drawing diagrams similar to those shown in
Fig. 3, one can determine the ratios A z'/A 0' and A 2'/A 0'.
On the other hand, group theory alone cannot give any
relations between A& and Ao'. To see why this is so,
recall that in the perturbation formulas given in Eqs.
(21) to (23), 51'r,„' depends only on the denominator
function Dj for a, b scattering in the I= 1 state whereas
bI'q „'depends on both D& and the denominator function
Do for the I=0 state. Since group theory by itself does
not give a relation between D~ and Do, it cannot deter-
mine a ratio like Az'/A, '. Finally, let us suppose tha, t
particles u and b have isospin 1 instead of —,'. We can
still use the labels P, I, and sz, and write byr, „s=Az~
X6mr, n/'m+ but now we have P=1 for I=O,
/=0, 1, 2 for I= 1, P= 1, 2 for I= 2, and P=2 for I=3.
We leave it to the reader to convince himself that,
in this case, group theory can provide the ratios
Ao".A&'. A2' and A&".A2".A3' but cannot give any rela-
tions between the A's for different values of P.

In conclusion, we brieQy discuss the application of
these methods to violations of SU(3). To change Eqs.
(53) and (54) from SU(2) to SU(3) one need only:
(i) interpret the label I as the dimension of an SU(3)
representation and the label e as a component of rep-
resentation I. (ii) Let the indices n and P on Bmr,
and BF~,„~ run over all independent mass and coupling
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i, DAF

k e
k4

j,DtXF

(o)

i, 0+ELF

k ~f k4

j,D+XF

shifts which transform like (I,~z). In counting indices,
one must keep in mind that wherea, s in SU(2) the prod-
uct of two representations contains a given representa-
tion only once, in SU(3) a representation can occur
more than once in the decomposition of a product, e.g. ,
838 contains 8 twice.

The group theoretic techniques which we used to
simplify calculation of the A matrix in our SU(2) ex-
amples can, of course, be generalized to SU(3). In
most cases the generalization is perfectly straightfor-
ward, but in a few situations some additional complexi-
ties appear. Consider, for example, a problem where it is
assumed that the octet of baryons 8 is a bound state of
8 and the octet of pseudoscalar mesons II, and one
wants to determine the e8ect on the 8 masses of differ-
ent types of II mass splittings. As usual, we write

8m;, /m= Q Ao, s)(blas(/fz)+
kl

(57)

where 8m@ (i,j=1 8) is the B mass matrix and 8zz,,
(i,j=1 8) is the II mass matrix. We ask, to what ex-
tent we can use group theory to determine the ijkl de-
pendence of A;;,~~. First note that since the direct prod-
uct 888 contains two octets, Ss and S~ in the usual
symmetric-antisymmetric notation, the unperturbed

(b)

FzG. 5. Diagrams representing the e8ect of "external" psuedo-
scalar meson mass shifts on the mass of the J= 2+ baryon octet.
The dashed lines are pseudoscalar mesons and the solid, directed
lines represent baryons. As explained in the text, diagram (b) has
the same SU(3) structure as (a), provided that the D/F ratios for
BII scattering in the J=-,'+ octet states do not vary rapidly with
energy.

J=—,'+, IIB octet amplitudes in which the degenerate 8
poles appear form a coupled two-channel problem. Now
the reader will recall that in our SU(2) example, group
theory was sufhcient to determine the ijkl dependence
of A;; A, &

& as long as we kept only the mm channel, but
was no longer sufficient when we added the 7rco channels.
Thus, from our experience in SU(2), we suspect that
since there are two channels in the present SU(3) ex-

ample, group theory by itself will not provide us with
complete information on the ijkl dependence of A. To
see what happens, consider the graph in I'ig. 5(a) which
represents the effect on bm;, of changing the II masses in
the unitarity (right-hand) cut of the IIB scattering
amplitude.

In this graph, the external baryon lines labeled i,
D+XF and j, D+XF represent Clebsch-Gordan co-
efficients which couple 8 and II to the i and j com-
ponents of that combination of Ss and S~ which is ob-
served for the BBII couplings at the 8 pole. The blobs
preserve SU(3), which implies that the pairs (kx) and
(lx) are in octet states. But the blobs can mix 8s and
8~, so the F/D ratio of a pair such as (kx) need not be
the same as ), but will generally vary with energy in the
dispersion relations, and is not given by group theory
alone. Therefore, without some dynamical model for
the unperturbed BII scattering amplitudes [i.e., the
blobs in Fig. 5(a)j we can only partially determine the
ijkl dependence of 3;, l, ~. However, one suspects that if
we choose our representation for the two by two matrix,
which represents the unperturbed J=—',+, IIB octet
scattering amplitudes, such that the amplitude is
diagonal at the baryon pole, then the amplitude will be
roughly diagonal over a reasonable range of energies
around the pole. If this is the case, and if our dispersion
integrals are dominated by low-mass singularities, it is
clear that, for our purposes, the graph in Fig. 5(a) will
have the same ijkl dependence as the simple bubble in
Fig. 5(b), where (D+XF) a,gain indicates a IIBB
coupling with the F/D ratio X which appears at the B
pole. 9"e will take this point of view in the following

paper on SU(3) violations in the baryon octet and the
decuplet of ~+ resonances.


