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CONCLUSION

Results of the two analyses are consistent with each
other and with previous experiments of Baglin et al. '
and Lind et al. '

A value of iC~/Cvi =0.94 predicted by Sakurai, r

' C. Baglin, V. Brisson, A. Rousset, J. Six, H. H. Bingham et al. ,
CERN Physics Report 64-12, April 1964 (unpublished).

' V. G. Lind, T. O. Binford, M. L. Good, and D. Stern, Phys.
Rev. 135, B1483 (1964).' J. J. Sakurai, Phys. Rev. Letters 12, 79 (1964).

who assumed a Ap-decay branching ratio of 0.82)&10 ',
is just compatible with our results. However, the value

i C~/Cv i
= 0 72 given by Cabbibo' is not in good agree-

ment with our result from P~ which favors a predomi-
nately axial-vector interaction.
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It has long been known that an important mode of energy loss for cosmic-ray electrons is inverse Compton
scattering with photons of starlight. Previous calculations of (d 8/dt)„due to this process have involved non-
systematic approximations involving the form of the Klein-Nishina formula and the angular distribution of
the radiation as seen in the electron's rest frame. The present paper considers an electron of arbitrary energy
in an isotropic thermal radiation 6eld of temperature T. A formally correct expression for (d 8/dt), is ob-
tained as an asymptotic expansion in the quantity gkT/(m, c')' considered as a small parameter. The often
quoted result (d 8/dt), „cc8 is seen to be the zero-order term in this expansion. It is also seen that the energy-
loss rate changes sign at an energy 8=) k T as would be expected from thermodynamics. A derivation of the
zero-order term is given from classical radiation theory, and from this it is seen that this term also describes
the energy-loss rate due to synchrotron radiation as well as from inverse Compton scattering.

I. INTRODUCTION

'HE scattering of energetic electrons by low-energy
photons, called "inverse" Compton scattering,

has been of astrophysical interest for many years. It
was first investigated by Feenberg and Primakoff' as a
process by which cosmic-ray electrons (and protons)
would lose energy during their passage through the
galaxy. Later Donahue' applied the general method of
Feenberg and Primakoff to the case of electrons trapped
in orbits about the sun.

The result of these two papers that the mean energy
loss of an energetic electron of energy h is proportional
to both the photon energy density and to 8' was applied
by Hayakawa and Kobayashi' and by Hayakawa and
Okuda4 to the problem of the equilibrium of cosmic-ray
electrons in the galaxy. More recently, Felten and
Morrison' have considered this process as a possible

*National Academy of Sciences—National Research Council,
Resident Research Associate.' E. Feenberg and H. Primakoff, Phys. Rev. 73, 449 (1948).' T. M. Donahue, Phys. Rev. 84, 972 (1951).' S. Hayakawa and S. Kobayashi, J. Geomagnet. Geoelec. 5,
83 (1953).

~ S. Hayakawa and H. Okuda, Progr. Theoret. Phys. (Kyoto)
28, 517 (1962).' J. E. Felten and P. Morrison, Phys. Rev. Letters 10, 453
(1963).

source of galactic x rays ' and gamma rays, ' " and
Shklovsky" has proposed it as a source of x rays in
solar Rares.

In the calculations of Feenberg and Primakoff and
of Donahue the relevant cross-section formula is the
Klein-Nishina formula o.(e',x') for the scattering of a
photon of energy e' by a stationary electron through an
angle p'. In essence the scattering probability is ex-
pressed in the electron's rest frame and then trans-
formed to the laboratory frame to determine the mean
energy transferred from the electron to the photon. In
the previous calculations the full Klein-Nishina formula
was not used but rather the asymptotic forms for
e'((m. c' (Thompson scattering) and for e'))m.c'. In
Feenberg and Primako6 the two forms are used in the
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FIG. 1. Angles involved in the
scattering process viewed from the
electron center-of-mass system.

Since e'(a', 8)dQ'(8')da' is a number density, it trans-
forrns under the Lorentz transformation like an energy
a' so that I'(a', 8)dQ(8')da'/a' is an invariant.

Ke may then set

e'(a', 8)dQ'(8')da'= (a'/a)e(a, 8)dQ(8)d a (2)

and obtain

two regions e'&m. c' and e')m, c', respectively, as an
approximation to the correct formula. Donahue, on
the other hand, uses the two formula in the regions
e'(m, e2/4 and e') 4m, c2 respectively and connects the
two regions of his results with an "eyeball" curve. Both
authors assume that the electron is energetic enough
so that in its rest frame all of the incident radiation
has 0'=0 where x —0' is the angle between the photon
momentum in the electron rest frame and the original
direction of the electron momentum. This assumption
obviously limits the validity of the results to high-

energy electrons.
The primary problem with these approximations is

that they are nonsystematic; they do not suggest how
to apply a higher order correction. In the present
calculation the mean rate of energy loss —(dB/dt) of
an electron in an isotropic radiation field in thermal
equilibrium is determined. The only approximation
used for a wide range of b is a systematic one in that
the result is obtained as a true asymptotic expansion in
powers of a small parameter i—= NT/(nz, c')' where 8
is the electron energy and T is the temperature charac-
teristic of the radiation field. When 8 gets so large that

1 the expansion is no longer useful and the result
must be obtained by methods which are less systematic
but which are, nevertheless, quite accurate. Ke will

also discover an interesting relationship between inverse
Compton scattering, as described by the zero-order
term of the expansion, and synchrotron radiation.

II. FORMULATION OF THE PROBLEM

Consider an electron of energy y (we shall express
the electron energy b =Yacc', the photon energy
e=ame', and kT= Omc' in terms of the dimensionless
parameters y, a, and O~) moving in a region of space in
which the photon density e(a,8) is given as a function
of energy 0. and angle 8 where w —0 is the angle between
the photon and electron velocity vectors. Letting a
prime indicate quantities expressed in the electron's
rest frame, we may write for the number of Compton
collisions per unit time

d.V Q
=-c dQ(8) da m—(a,8)o'(a').

d$ PA

If we denote the lab frame energy of the scattered
photon by cx&, the energy transfer in the scattering
process is. (a&—a) and the mean energy loss of the
electron is given by

Q
= e dQ (8) da—e (a,8)

dt av p(x

X &Q'(y') '( ',y')( —), (4)

a 'r (1—P COS8y )
ay=ay p(1—P COS8y )=

1+a' (1—cosx')

[p = (v' —1)'I'/7 =~/ej,
we have

p(j —P cos8g )
0!y—A=0!

1+a'(1—cosy') a'

(6)

(7)

Consulting I'ig. 1, we obtain the following formula
from spherical trigonometry:

cos8q' ——cos8' cosy'+sin8' sing' cosp. (8)

Since the cross-section formula cannot depend on @,
we may choose y' and P as our coordinate angles for
dQ'(y', y) and immediately integrate over @. This has
the effect of multiplying Eq. (4) by 2~ and replacing
cos8~' with (cos8q')„, where

(co$8y )~~= cos8 cosy ~ (9)

The Klein-Nishina cross-section formula is

where 0.'(a', y') is the differential Klein-Nishina formula
for scattering a photon of energy n' through an angle
p'. We have the usual angle-energy relationship for
Compton scattering

'= '/[1+ '(1—cosy')j (5)

Employing the well-known Doppler shift formula

X da' n'(a', 8')0'(a'—), (1)
0

where o'(a') is the Klein-Nishina total cross section.

r02 (1+cos'x')
0'(a', x') =—

2 [1+a'(1—cosy') j'
a'2(1 cosy' )'—

(1+cos'y') [1+a'(1—cosy')]

(ro ——e' mc').

(10)
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in substitutions:Making the following su
~ '

arithm» d.e6nedthe Kulerian d logThe tunction Li&(s is t e
by

cos8'= 1—(a/yn'), 1—cosy =
dQ'(g', y) = 2~df,
10 in Eq. (4), we obtainand inserting Eq. (10) in q.

Liz(s) =— Bs ol

=z.raze dn(8) d~ e (~,8—

( 'f)'2 (fz 2f+2) — ~~ z

(f'—2f+2) (1+ 'f-(1+n'f)' — a

h ~/~' ~)f~'

(1+ 'f)

this expressione variables in
d8 1 t db

It shou
are not indepen en

hift formulathe Doppler s i

n'=Yn(1+P cos8) .

Liz(s) = Q —for
~
s( (1.

n=l Q

and
( ) = 1+1/2"+1/3"+

i (4)= z.4/90.

III. EVALU 0UATION 0OF THE INTEGRAL

density isr that the photon enwill now consider t a en
1 mell by te adescribed reasonab y w

formula
(~)

3!i (4)o" p( /o) —1

nn a =" r " density and f(p)
is the Riemann zeta unc io

n 0 represents
'

lize to the case where e(u,
&ic radiation Geld, i.e., n

dQ(8 =2z- co= 2 d(cos8) =2z.dn'/(Pyu,

and obtain

be writtenExpression (13) may now be

—(dy/dt). ,=~rp'c(e).V (y),

(15/~')

Q~42( 2 1)l/z

(16)

e(n)= 27lfp C

PQ2 2dt

ya (1+P)
Idn'Ln" (y —n) —n n

a(1—P)

(f'—f'+ f)
~'f)' (1+~'f)'-

1
X

0

fi(s)dz

exp (s/y0~) —1

(15/z.4) 1

02m(v' —1)'"-v' o

f, (z)ds

exp (zy/0) —1

sfz(s) dz

exp (s/y 0)—1

zfg(z)ds
)

exp (zy/0') —1

' ma be done by a straight-
re eated application o aor rd d repea

integra a1 tables. After some i

n (n)= z
' d~ ~(~,v),=—7lfp C

PQdt av
(13)

~ ~ v) =rifi(~v) fi(~/v)3—
~Lfz(~V) fz(~/V) j, —

=y+ (y' —1)'~' a,ndwhere y=y(1+p) =y — '~' d

wa ased variables in such a w yhave transformed vari
make the argumen s

ntegration.

h ical situatio
p

c
'

e hether there is som
of the p ys'within t e

e now ask w e e
us to

h considered. We

E . (17)evaluate t e
' E .

e a second-e and fz have a secoTo this en we

that the power expansions

s ln(1+2z) —(22s'/3 j24s'
'—2+2 Li (—2s),+18s+4)(1+2s)

z
—— 31 6+5/s+3/2s') ln(1+2s

' 3 28s' 103s/3+17+3/s)
'—2+Lip (—2s) .X(1+2s) '— 4—

(14)

(15)

fi= Q A„s",
n=1

f g g sn
n=l

inte rais areonl for (s~(-z' and our in ge convergent only for s

(MacDonald

are

nd Assocza en
'

t d Functions a
Ltd London 1958)
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and Company, Ltd. , on
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TABLE I. Expansion coe%cients for fi and fs . a correct asymptotic expansion of the integrals in the
sense that

0
1
2
3
4
5
6
7
8
9

10

0.0
0.0
0.0
0.88888827X 10'

—0 27999992X10'
0.78400015X10'

—0 20520631X10'
0.51156461X10'

—0.12304761X10'
0.28815807X10'

—0.66115232X10'

0.0
0.0
0.13333320X10'

—0 28444412 X10'
0 69999923X10'

—0 16784715X10'
0.39161810X10'

—0.89469178X10'
0.20112988X103

-0.44645477 X103
0.98096851X10'

and

F(e)=g C e"+EN(e)
n=1

g„(e)=0(e&+1)

Noting from Table I that

Ap ——Ag ——A2 ——Bp——Bg——0,
we may, after some rearrangement of terms, write for
&(v)

over the range 0)s& 00. However, we notice that the
term Lexp(ks) —1j ' is a function that peaks at 1/h
and drops oG as exp( —ks) for values of s significantly
greater than 1/k. Therefore, if 0~V&(21, only the portion
of fi and f2 for s(21 will contribute significantly to the
integral. Since ~0=k T/mes=10 ' for T=6000'K, we

may consider vO' as a small parameter of order t (since
v)1, 0/v(vO). The expansion coefficients A„and
8„for fi and f2 respectively are obtained in a straight-
forward manner from the known expansions of
1n(1+2z), (1+2s) ', and Lis( —2s). These coefficients
for e up to ten are given in Table I.

If we now insert the series form of fr and f2 into the
integrals in Eq. (17) and ignore the fact that they are
not convergent for )s~) —,

' we will obtain a formal series
for E(v) which we hope will not be in error by very
much. Mak. ing use of the formula

n S
C-(v)= 2 . (1—v ')" ""=

&=OCl4I

vm 1/vo

2ve—1(v2 1)1/2

We see that for vO'«1 (in our case v«10') this
series gives an excellent approximation provided you
do not sum beyond m= 1/2vO.

The zero-order term in this series is

Lv'A ~ (v) &C (—v)3' t (4) (15/ ') =A (4v' 1) 2&— —
=4A2(v' —1)

since 282 ——323.
Inserting this approximation to X(v) in expression

(16), we have to zero-order

''(v) = (15/") 2 Ev'A~pc-+2(v)
m=p

—8„, +C2„+(2V)]~ ~~~~'~ ™~4~(VO)", (20)
where

we have

=elf (x+1)e"+'
exp(x/e) —1

fi(s)ds
=Q A m!f(n+1)e"+'

exp(s/e) —1

sos(s)ds
=Q B„(e +1)!t(++2)e"+'

exp(s/e) —1

(19)

—(d8/dk), „=3.555mrpscp(p™~2 (21)

where p is the photon energy density in conventional
units. Ke see that for electrons of sufliciently low
energy such that pc~8, the energy-loss rate is pro-
portional to p' rather than P.

Ke note further that expression 20 is negative for y
sufficiently close to 1. This means that a very low-

energy electron can, on the average, gain energy from
the radiation. field. Setting expression (20) to zero, we
have to first order

We may see at once that these series are not convergent,
since from the known circle of convergence of the series
for fi and f2 we have lim„„(A„/A- 1) =limo-„(&-/
B„-i)=2.

Therefore, since lim, f (s) =1, we have

A;4!f(4) (v' 1)= —L—4A4 —382+(v' —1)
&&(gA & Iv')3—4 f(5)(ve) (22)

Since Eq. (22) states that v' —1=0(e), we may neglect
the term in y' —i on the right-hand side and obtain

A.rs'f(v+1) e"+'
l

lim ~=2me.
A„-1(~—1) It (rt)e j

v' 1=1(3&—4A )/A —1I-1 (5)/f(4)lvo
=3veLt (5)/f (4))
=0.958(3vo') (23)

So for any finite e there is a value of v=1/2e beyond
which the terms of the series grow without limit. It is
fairly easy to see that this is the same series that would
be generated by repeated partial integrations of the
integrals in (19) since A„e!=d"fi/ds". Furthermore,
it is demonstrated in the Appendix that this is in fact

We see that this is a few percent below the equipar-
tition energy for a relativistic gas," v' —1=3v. A
similar calculation for the energy loss of a test particle

'4R. C. Tolman, The Prtlctp/es of Stattsttca/ Mech'/cs (Oxford
University Press, London, 1938), p. 97.
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in a Maxwellian, hard-sphere gas gives (d8/Ct)=0 for
=0.981(3kT/2) which is in qualitative agreement with
Eq. (23).

For y&0' ' the asymptotic series (20) is no longer
useful. In this region we must resort to less systematic
but nevertheless quite accurate methods of approxi-
mation. First of all, note that if yO~&1 then y/0~))1.
This means that the second and fourth integrals in
expression (17) may be completely ignored. We may,
in fact, rewrite expression (17), noting that y=2y, as

fr(s)ds
&(v)=(15/~') (4v') '

exp(s/2yO~) —1

—(gv') ' sfs(s)dz

o exp(s/2yO) —1'
(24)

From expressions (14) and (15) we also see that both

fi and fs tend to s ln(as) for s large, where a=2e "".
In fact, for z& s'= 7.75X 10' this approximation is good
to within one part in 104. We may, therefore, perform
the integrations indicated in expression (24) in two
parts; from zero to z' we evaluate the integrals numeri-
callyandfroms'to ~ weusesln(as) for f, and fsand
obtain analytic expressions.

Carrying out this procedure we obtain the following,
rather opaque expression, where F=20'p:

and Ei(s) is the exponential integral de6ned by

—Ei(s) =
ae e—t

8

C+ln(s'/I') inn
= f(2) ln(20'/s)+const.

m2 n e2

We then have

A (y) ~ (15/n. 40') Lg(2) Iny+const]

as p becomes very large.

(26)

The values of this expression may be calculated
quite easily on a computer; however, it is instructive
to consider the situation when y (hence F) becomes
very large. A brief examination shows that every term
in the expression tends towards zero with the exception
of the first series PL—Ei(—Ns'/F)/e']. From the
known properties of Ei(—x) we have

Ei(—x) =C+inx+ f(x),
where C=0.577215665 is Euler's constant and
f(o)=0 and [f(x) ~~(C+ln(x) (

as x-+ ".
Therefore Pf(rn)/es converges uniformly for all

finite x and converges to zero for x equal to zero. We
are then left with

fr(s)ds
X{')=(6O/~4) 7s r-4

exp(s/I') —1 numerical

—I'-'z' ln(as') ln(1 —e
—*/P)

+I"—'Lln(as')+1] Li, (e
—'ir)

—Ei(—es'/I')—
+~ '2

m2

1 " sfs(z)dz
I"—42, exp(z/r) —I)

IV. RESULTS AND CONCLUSIONS

In Fig. 2 we present curves of X(y)= (dB/dt)—
X(~re'cp) ' as a function of p= 8/m, c' for a range of T
from 5000 to 10 000'K. The necessary computation
was done on an IBM 7094. For values of 2yO'& 10 ' the
asymptotic series 20 was used including the seventh-
order term. For values of 2yO&10 ' expression (25)
was evaluated.

It is immediately seen that the approximation
—(d8/dt) ~ 8s is very good for 4&p&40OO. Below 4
the dependence on p' rather than 8' is manifest.
Between about 10' and 10' the curves achieve the form

—I's" ln(as') lnL1 —exp( —s'/I')]

+I'—'z'f2 1n(us')+ 1]LisLexp( —s'/I')]

+I'—'L2 ln(az')+3] Lis)exp( —s'/F)]
—Ei(—ns'/F)

+~-'2 2—
m3n=1

Li„(s)=
*Li„ i(s')

dz

Lis(s) is the trilogarithm where, in general,

(25)

1014

lpl3

1P12-

10
1plo-

10
108

laI~ 10
0

10

10

10
10

10
10-

I I I I I I I I

1p 1p2 10 10 10 'lp 10 10 10 10
El+C

en=1
Fio. 1. N(') versus ~ for values of O corresponding to

7=5000, 7000, and 10000 K.
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35Pc

38PC

ps

(y XE) +s(yXH)s —2' (EXH)
jv2

ps
(27)

If we now assume that any energy Qow is isotropic

I (g. (E x H)), =0j and that the fields are unpolarized

L((g x E)').~=-'P'E' ((g x H)')..=-'P'H'j we now have

(P).,= (8/3)srrp (csE /4s)s+r3. 555

7' p c)(E +B )/87r j(p/site)'. (28)

If we consider the situation that the only E fields
present are radiation 6elds, the radiation energy Aux

incident on the electron is just (8/3)srrps(cEs/4sr) so
that the loss of mechanical energy is just radiation out
minus radiation in, or

(d 8/dt), ~=—3.555 srr p'c/t (E'+H')/Ssr j(p/sstc)' (29)

where the energy density includes radiation used static
magnetic fields.

This is, of course, identical to Eq. (21) and we see
that the relative importance of inverse Compton
scattering compared to synchrotron radiation depends
only on the energy density of the radiation 6eld versus
the energy density of the magnetic fields. " We see,
therefore, that in the galaxy where the energy density
of both starlight and magnetic fields is of the order of
1 eV/cc, the two processes will be on a roughly equal
footing.

'SL. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publishing Company, Inc., Reading, Massa-
chusetts, 1951),p. 212.

'6 Note that the above arguments in no way imply that the
frequency spectrum of the radiation emitted by the particle will
be similar in the two cases; this depends on the frequency spectrum
of the thermal radiation in the first case and the structure of the
magnetic 6eld over distances of the order of ~mc'/eFI in the
second case,

of expression (26), namely, proportional to in' and
T '. The values of X(y) for y —+ 1 cannot be shown in
Fig. 2 due to the logarithmic scale; however, the zero-
and first-order terms of expression (20) give quite
accurate values in the region y

It is of interest to compare inverse Compton scat-
tering and synchrotron radiation as an energy-loss
mechanism for cosmic-ray electrons. To this end we
6rst note that for small values of yO' the inverse
Compton scattering process is a classical radiation
process; in this limit the Klein-Nishina cross section is
just the Thompson scattering cross section.

For an electron in arbitrary electromagnetic field the
instantaneous radiated power is given by'5

(E+yXH)' —(y E)'
which series converges uniformly in s for s&0. Since
the series does not converge for s=0 we must also
demand that f(z) go to zero at least as fast as z for
s —+0. Since the integral now has contributions only
in the region of uniform convergence, we may integrate
term by term. Integrating a particular term by parts
X times, we obtain

N ~ eq
m+1

f(z)e—nz/sdz P f(m) (0)I I
+.g

m=O

where
co f(N+i) (z)e ne/sdz—

(st/e) "+'

Due to the analyticity of f(z) on the positive real axis
and the limitation on its growth as z ~ po, f'~+" (z)
may be bounded by I

f'~+'& (z) I
(A/v+8/vz' so that

I Riv I
(A N (s/st) ~+'+8/sI'(q+1) (e/X) ~+'+'.

If we now sum over I, remembering that f(0)=0, we
have

N
I= Q S +E'/v,

where

f (sit+ 1)f(m) (0)em+i

R'iv
I
&A &f(X+2)e"+'

+~~I'(q+1)f (N+2+q). "+'+p.

This expansion, therefore, satis6es the de6nition'~ of
an asymptotic expansion of I as ~ ~ 0.

"A. Erdelyi, Asymptotic Escpalsiosts (Dover Publications, Inc. ,
New York, 1956), p. 11.

APPENDIX: GENERATION OF AN ASYMPTOTIC
EXPANSION BY REPEATED PARTIAL

INTEGRATIONS

Consider the integral

f(z)dz

p exp(z/e) —1

where f(z) is analytic on the positive real line including
zero, and it and all of its derivatives increase no faster
than a polynomial as s —+ ~ . We may expand
[exp (z/e) —1j as


