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In this paper the neutrino is described by a particular four-component theory built from two two-
component theories. This procedure, which eliminates the arbitrariness that exists in the usual four-compo-
nent theory, is shown to be useful in formulating a neutrino theory of photons. A photon is then composed of
a neutrino and antineutrino which have the appropriate helicities. The photon 6eld is constructed by describ-
ing the annihilation and creation of photons in terms of neutrino and antineutrino processes. The electric and
magnetic 6elds so formed are shown to satisfy Maxwell's equations. The operations of space inversion and
charge conjugation are de6ned in terms of the neutrino operators in such a way that the electric and magnetic
6elds transform in the usual manner under these symmetry operations. The photon operators do not satisfy
Bose commutation relations, since additional terms arise. Because of these additional terms, the electric and
magnetic 6elds do not satisfy the usual commutation relations either. However, Planck's radiation law still
follows. Although the consequences of the non-Bose commutation relations have not been explored, some
experimental implications of the theory are discussed.

I. INTRODUCTION

''N 1928, the composite nature of the photon was
inferred by Jordan' on the basis of a statistical

argument. In 1932, de Broglie' put forth the idea that
a photon is composed of a neutrino and an antineutrino.
de Broglie's idea gives a good account of the creation
and annihilation of photons and makes plausible the
great difference in physical characteristics exhibited by
a spin 1, mass 0 photon and a spin ~, mass 0 neutrino.
A neutrino-antineutrino pair is formed when a photon
is emitted. The neutrino and antineutrino, being anti-
particles, annihilate when a photon is absorbed. In
terms of the hole theory, when a photon is emitted a
neutrino makes a transition from the negative energy
states. Then the neutrino and antineutrino (or hole)
travel together until the photon is absorbed, at which
time the neutrino makes a transition back into the
hole.

According to de Broglie's original idea the photon is
composed of a neutrino and antineutrino bound together
in some way. This interaction as it was developed by de
Broglie led to the result that the neutrinos had equal
momentum so that if the state of the photon were
known, the state of its components could be deter-
mined. This meant that it would be impossible for two
photons to be in the same state, because of the under-
lying Fermi-Dirac statistics of the components. There-
fore, the photons themselves would have to obey
Fermi-Dirac statistics. This type of reasoning led
Jordan to suggest' that it is not the interaction between
the neutrinos and antineutrinos that binds them
together into photons, but instead it is the manner in
which they interact with other particles that leads to
the simpli6ed description of light in terms of photons.
To account for the emission of a photon of momentum

y he proposed, for instance, that an atom would simul-
taneously emit a neutrino with momentum k and an
antineutrino of momentum y —k in exactly the same
direction. Actually, the neutrino and antineutrino are
not emitted into a state in which the momentum of
each is definite, but into a superposition of such states
with definite weights and phases (see Secs. III and. IV).

Jordan' also postulated that the absorption of a
photon of momentum y could be simulated by a
Raman effect of neutrinos or antineutrinos (i.e., one
neutrino or antineutrino with momentum y+k is
absorbed while another of the same energy state,
opposite spin, and momentum k is emitted) as well as
the simultaneous absorption of neutrino-antineutrino
pairs. Work on this theory by Jordan, Kronig, and
others continued until 1938. It was brought to a halt
when Pryce' discovered. that these theories (which
employ the old four-component neutrino theory) are
not invariant under a spatial rotation of the coordinate
system.

In describing the neutrino, we shall take both Weyl
equations (each set of which describes a two-component
neutrino) and assume that two neutrinos and two anti-
neutrinos exist. The neutrino with spin parallel to its
momentum will be designated v~, and the neutrino with
spin artti parallel, vs. A photon would then be composed
of the pair (vrv2) or (v2vr), resulting in a spin of +1 or
—1 along the direction of propagation.

In P decay, experimental results have shown that
only v2 and v2 appear. In the decays sr+ —+tt++(neu-
trino or antineutrino), experiment' indicates that a
diGerent type of neutrino occurs. This would pre-
sumably be vi or vr. (This will be discussed. further in
Sec. VI.)

By using this particular four-component theory
formed from two two-component neutrino theories and

*Work done under the auspices of the U. S. Atomic Energy
Commission.

' P. Jordan, Ergeb. Exakt. Naturw. 7, 158 (1928).' L. de Broglie, Compt. Rend. 195, 536, 862 (1932); Une novelle
conception de lc llmiere (Hermann et Cie. , Paris, 1934).' P. Jordan, Z. Physik 93, 464 (1935).

4 M. H. L. Pryce, Proc. Roy. Soc. (London) A165, 247 (1938).
This paper contains a good list of references to prior work.

~ G. Danby, J-M. Gaillard, K. Goulianos, L. M. Lederman,
N. Mistry, M. Schwartz, and J. Steinberger, Phys. Rev. Letters
9, 36 (1962).
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omitting Jordan's Raman-effect hypothesis, one can
form a theory which is invariant under a spatial
rotation of the coordinate system. The construction of
the photon field from the neutrino Geld is similar to
the formulation used by Kronig' in 1936 with the two
modifications noted above. Kronig's theory is not
invariant under spatial rotations as is discussed by
Pryce. Invariance of the present theory under a spatial
rotation of the coordinate system is proven in Appendix
B of this paper. However, the photon operators in the
present theory do not obey Bose-Einstein commutation
relations, as additional terms arise. The results of
these new commutation relations are not investigated
in this paper.

II. TWO-COMPONENT NEUTRINO PLANE-WAVE
SOLUTIONS

pl+ jp2 ei(p x pt—)

P2 2P4

Now we want to enlarge the matrices to a four-com-
ponent formalism. We define

(r 0 (0 1) (t tp 0
n—= , y4=—P—= I

0 —tr E1 Oi (0 tp

.( o ~l t' —'
2P—~=—21

— I, Vp—=Vn2V2V4=—
I(-~ 0) &0 1i

where 1 represents a 2X2 unit matrix.
The p's are Hermitian and obey the relation

Starting with the two-component theory of Lee and
Yang, v we shall obtain the plane-wave solutions for
both neutrinos. The Weyl equation can be written,
with h= c= 1, as

Httt„= 28&[ „/Bt

Vttvx+717tt 2ottx ~

The neutrino wave function becomes

(10)

iet(p x—pt1

ku, i
so with this substitution in (1) we have

(2)

With H=+(tp p) (where al, o.2, and o.2 are the usual
2X2 Pauli spin matrices), Eq. (1) gives rise to:

(a) pl, the particle (positive energy state) with spin
parallel to its momentum.

(b) Pl, the antiparticle (hole in the negative energy
states} with spin anti parallel to its momentum.

With H= —(4r p), Eq. (1) gives rise to:

(a) p2, the pa, rticle (positive energy state) with spin

arri parallel to its momentum.

(b) 12, the antiparticle (hole in the negative energy
states) with spin parallel to its momentum.

We now obta, in the plane-wave solution of Eq. (1),
with H=+(r. p.

If we take 6= —e y, we get

tt 0 y

42 „ti
(12)

Here, we deviate from Lee and Yang' in interpretation.
They said that the wave functions of both (11) and

(12) are possible, and experiment should determine
which exists. In order to make a composite photon with
two-component neutrinos we must take both. Although
we now have both neutrinos with spins parallel and
antiparallel to their momentum vector, this result
$Eqs. (11) and (12)$ is Not the same result that we

would have obtained by starting with a four-component
theory. The wave functions C,& and 4», of course,
satisfy the four-component Dirac equation, but they
are not determined uniquely by it. From Eq. (8) we

obtain the plane-wave solutions

where

so

(tp p+ip4)y„=0,

P =2~=2
I P I

=2P =2(P '+P '+P ')"',
P1+ZP2

(pl &p2)N2+ (pp+pp4)»= 0, (4)

(Pl+ZP2)241+ ( P2+ZP4)12=0. (5)

The condition for these equations to have a nontrivial
solution is

C,„,= P, 2P, ''—e*-(,Ptt

(13)
Pl +P2 +P8 +P4.

We obtain for the positive energy solution

Pl+ZP2
Ny= 1 ) R2=

P2 ZP4

6 R. de L. Kronig, Physiea 3, 1120 (1936).
~ T. D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957).

(6)

e2 =z (pl &p2) et(p'x pt)

Pp P4
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The spinors I and e are defined by

If they are normalized in the sense that

C"i~4'.i =4"etc"2= &

(i.e., utu= vtv= 1), we get

The quantities al(k), cl(k), a2(k), and c2(k) are the
annihilation operators for vl, vl, v2, and P2, respectively,
and do not depend upon x and t. Note that:

d3kal(k)ue'(~'* 2') annihilates vl, (18)

Pl+ZP2
(P4+3P3) '"

P3 P4
2

(Pkclt(k)ue '("'* 3'& creates vl, (19)

(Pka2(k) ve'("'* 3') annihilates v2 ) (20)

(15)
(Pkc2t(k)ve '("'* 24) creates P2 (21)

(P4+2P3) '"

2 4

(Pi—3P2)

p3 Zp4

III. CONSTRUCTION OF PHOTON FIELD FROM
NEUTRINO FIELD

The general neutrino field )P is a superposition of the
solutions in Eq. (14):

The spin operator is

S=(r y/p= (1/p4) (V2V3pl+V3Vip2+VlV2p3) .

Operating on I and e, we obtain

SN =I, Sv = —v.

Therefore, u is the solution with spin parallel to the
direction of propagation, and e is the solution with spin
antiparallel to the direction of propagation, as claimed
above.

Following Jordan' and Kronig, 3 we shall assume that
the neutrino and antineutrino are emitted in exactly
the same direction. This hypothesis will be discussed
further in Sec. VII. For simplicity, we shall try not to
invent any new interaction between neutrino-anti-
neutrino pairs and other particles, but instead, assume
that once their direction is determined they are ejected
by means of the same interaction mechanism as that
of weak interaction processes. For example, the emission
of a neutrino-antineutrino pair would be similar to a
weak interaction decay. Processes such as the absorp-
tion and emission of photons by an electron would then
be represented by the interaction Hamiltonian,

H;„t——const&& L Q,20; t)P.) (&„-2tO,„t))t „l)
+ (0'e Oint('4) Q'fl Oint''e2)]

+Hermitian conjugate, (22)

or we can introduce Ii;„t by

d k/3a (kl) e"u2 3x')+clt'(k)ue '("

+a (k)Vet(k 2—kt)+C t(k)Ve—4(k x—kt)] (17)

Ant= constX (4" Oint)Pe)F(nt

Substituting Eqs. (18)—(21), we obtain

(23)

~int= constX
00 p

d p 'dk((&nv nk) {c2(k)—vte'(" *"'&0;„tal'(y k)ue'((2 k—&'* (e ")'&

+cl(k)ute'( '* 3')0;nta2(y —k)ve'&(2 &'* (4 ")'&}+H.c. , (24)
where nv=y/p and n4 ——k/k.

Since the neutrino and antineutrino are assumed to be emitted in the same direction, k and y —k differ from y
by only a multiplicative constant. Therefore, there is no need to attach an index such as k to u and v, which are
normalized Lsee Eq. (15)) so as to depend only upon direction. From Eq. (24) we see that F;„tessentially describes
the four-photon processes (i.e., absorption and emission of right- and left-handed photons).

The possible choices for 0;„tare

Os=&4 Ov V4Vt) e OF 3V4(V&V)e Vt)V))) ) 0+=$V4VieV3 e OP V4V3 ~ (25)

The only coupling for which F;„tdoes not vanish identically is OF. Substituting OF of (25) in (24) results in

00 P

F;„,=F„l(x,t) = d'p dxktI(n„—nt) {Ltc2(k)al(y—k)vtv4(v„vl —v) v„)u4' 0 0
+tc (k)a2(y —k)u'V4(V, Vl —Vn.)vie'"'* ""}+Hc. (26)
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It has been pointed out"' that a six-vector results from any two solutions m and y of Dirac s equation by forming
the products

~tv4(v. vt v~vN)r ~

Therefore, we see that F„i,as dined by Eq. (26) has the correct transformation properties. There are some simi-
larities between Eq. (26) and Kronig s equations LEqs. (36)-(38) in Ref. 6), with his A and C corresponding to
u and e. The normalization factor (492m) ' is chosen so that the conunutation relations, Eqs. (A18)-(A23) in
Appendix A, will have the correct numerical factor. Equation (26) can be written in the form

F„g(x,t) = d'p p"t2(y)~'v4(v. v~ v~v.—)N+n(y)N'v4(v, vx vxv.—)~)c"o'*-""

—Le(y) 'v (v.v —v v.) +~'(P) 'v (v.v —v v,) ) '"'* ""}, (2&)

where $(y) and rt(p) are

c2(k)ai(y —k)5(n„—np)d'k, (28)

The vectors E and H are real, as 8,"=2,and II,t =H„
and they satisfy Maxwell's equations, but new commu-
tation relations, as is shown in Appendix A. It is also
shown in Sec. V that E, and H, transform under the
parity and charge conjugation operations in the usual
wav.

n(y) = ci(k)ao(y —k)b(n„—ng)d'k. (29)

From Eqs. (27)-(29), it appears that P(p) and rt(p)
should be interpreted as absorption operators for right-
and left-handed photons, respectively. In Sec. IV,
((p) and g(y) will be shown to obey commuta, tion
relations similar to Hose-Einstein commutation relations
with some additional terms.

We define E and H by

From (30),

r

H2
ZEJ

II3
0

—Hg
F2

—82
+1
0

iE3

—iEg
ZE2 ~

—F3
0

(30)

(31)

Using Eqs. (27) and (10), one 6nds the components of
E are

Hg ——F23, H2= —P~3, and II3——F~2. (33)

Using Eqs. (27) and (10), and the identities of Eq.
(A2) of Appendix A,

II,(x,t) = do p

E,(x,t) =
2

&p"(LE(y)"v.~+~(y)~'v')'"'*

pt(y)N—tv,o+gt(p)otv, u)e 'to *&'&}. '(32)

From (30),

IV. COMMUTATION RELATIONS FOR
PHOTON OPERATORS

The neutrino operators obey the Fermi-Dirac commu-
tation relations:

Lag(kn), ait (k'n'))+
= Lao (kn), ao'(k'n'))+ = (ci(kn), cit(k'n'))+
= Lco(kn), cot(k'n'))+= 5(k—k')5(n —n') (35)

while all other combinations anticommute.
The operators $(p) and g(p) of Eqs. (28) and (29)

will be shown to obey the commutation relations:

L&(p),&(a))-=o

Lk(y), P(tl))-= ~(y—a) L1—~»(p)),

Ln(y), n(q))-= o,

Ln(y), ~'(a))-= ~(y —q) L1—~»(p)),

L&(y),n(e))-= o,

Lk(y),~'(tl))-=o,

(36)

(37)

(38)

(39)

(4o)

(41)
where

u

nn (P) =— La,' (k)ai (k)+cmt (k)co (k))dk

Since all neutrino operators anticommute for diferent
n, all photon operators will commute for diQerent n
as this just involves an even number of interchanges of
the neutrino operators. Therefore we need consider
only the absorption operators for the same n, and Eqs.
(28) and (29) reduce to

&& "p(B( )y' v —~(y) 'v ) "'*'"
+At(p)gtv, o 5"(p)otv,—g)e "o *&'&}. (3'4)

I S. S. Schweber. , H. A. Bethe., and F. de Hohann, Nesons
end Iiields (Row, Peterson, agd Corgpany, gvagston, I]ligojs,.
$95$), Pol. 1., pp. 39—-3(),.

p

p(p) =— co(k)ai(p —k)dk,
o

ci (k)ao(p —k)dk.

(42)
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However, using the fact that all four operators anti-
commute, it can be quickly shown that

I c2(k)a, (p —k), c,(k')u, (q —k')j =0 (45)

and (36) is proven. Equations (38), (40), and (41) are
proven in the same manner.

Proof of (37) for n~= n, is as follows:

(Pq)'"k(p), V(q) 7-
p q

dk'I c,(k)a, (p-k),
0 0

Xest(q —k')c2t(k') j . (46)
Using (35) we obtain,

Lcp(k)a&(p —k), ap(q —k')cd(k') j
=b(p —q) 5 (k —k') —a&" (q—k') a& (p —k)b (k —k')

—
cmt (k') c2(k)b(q —p+k —k') .

Substituting (47) in (46) results in

B(p),~'(q)7-
1 p

(Pq)'" o

b(p —q)dk

inf(p, q)

(pq)'" 0

p

ag'(q —k)a, (p —k)dk

cmt (q p+ k) c2 (k)dk, —(48)
(Pq)"' Su~(o.~a)

' C. L. Cowan, Jr., P. Reines, F.B.Harrison, H. W. Kruse, and
A. D. McGuire, Science 124, 103 (1956).' P. Jordan, Z. Physik 99, 109 (1936)."M. Born and N. S. Nagendra Nath, Proc. Indian Acad. Sci.
AB, 318 (1936)."K.M. Case, Phys. Rev. 106, 1316 i1957l.

These are similar to the one-dimensional operator
defined by Jordan Lace Eq. (19) in Ref. 3$. However,
he let the limits of integration go from —~ to +~
and interpreted these extra terms as a Raman eGect
of neutrinos or antineutrinos (i.e., to simulate the
absorption of a photon of energy p, one neutrino or
antineutrino with energy k+ p is absorbed while
another of the same energy state, opposite spin, and.
energy k is emitted). Nowadays, this Raman effect
of neutrinos or antineutrinos is experimentally ruled
out as it would easily have been observed in the inverse
P-decay experiments. ' ' For a one-dimensional model
in which spin is neglected, '"" or for a spin-zero
particle, ' one can obtain the Bose-Einstein commu-
tation relations with the Raman-eGect terms providing a
cancellation of some unwanted terms. However, if spin
is included the cancellation does not occur for a spin-one
particle. 4

Proof of (36) for n„=n, is as follows:

—(Pq)'"Lk(P), ~(q) 3-
p

dk dk'Lc2(k)a, (p —k), c.(k')ag(q —k')] . (44)

where inf(a, b) = smaller of a and b and sup(a, b) = larger
of a and b I.n previous calculations with the inclusion
of the Raman effect, the last two integrals of (48) can
be cancelled out" for a one-dimensional model in vrhich

spin is neglected.
The expectation value for the last two integrals of

(48) is zero for PQq since for any state

I c)=~~'(~)~i'(~) ~i'(s) I o),
i11f(p, q)

g,~(q—k)og(p —k)dk 4)=0 (49)
(Pq)'" o

if p/q. Therefore, (48) becomes

L~(p),F(q)j-
1 p

=b(p —q) 1—— La,t(k)ag(k)+cpt(k)cg(k)fdk

$6 $-1/t 2

~(p)= Z "(k) (p-k),
Qp K 1/2

where 7/c= p, kc= k, and Ak = c.
Equation (50) now becomes

Lr(p), d(q) j-
1 mvm

=5(p—q) 1——p Lag'(k)ag(k)+c2'(k)c2(k)j
p r-i/2

(51)

(52)

The sum in Eq. (52) is the number of vq plus the number
of f 2, which equals twice the number of photons. For
a state with a few photons and. P»e, the last term of
Eq. (52) can be neglected and Eq. (52) reduces to the
Bose-Einstein commutation relation.

It can be seen from Eq. (51) that only one photon
can be in the state with momentum @=1, two photons
in the state with p=2, three photons in the state with
@=3,etc. Although it is usually stated that in order to
obtain Planck's law the number of photons allowed
in any state must be unlimited, the above conditions
(the momentum of the photons in the cells which

(50)

Equation (39) is proven in an identical manner.
If we assume that the neutrino momenta can only

take on discrete values which are multiples of some
fundamental momentum, i.e.,

k = e/2, 3c/2, 5c/2,

where, for convenience, we enumerate k with the help
of half-integers and the photon momenta take on the
values

p= tp 26( 3t)'
we can replace the integral of Eq. (42) by a sum,
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74~(—y) =~(p)»d 74s(—y) =N(y)

contain j photons is jhv/c) will lead to Planck s radia- where we have used the fact that
tion law as was shown by Bose."

V. PARITY AND CHARGE CONJUGATION
OPERATORS

In this section we consider the transformation of the
electric and magnetic fields under the parity P and
charge conjugation C operations. It will be shown that
E, and B, transform in the usual way. We define the
parity operator such that

o

&&8(n,—ns)d'h

tt.t (—y+ k)crt (—k)8 (n„—nt, )dsk.

which can be seen from (3), (11), and (12).
First, we consider the transformation of $(y) and

st(y) of Eqs. (28) and (29).
—z

PE"(y)P '=

(53)Par'(k)P-'= e *as"(—k),

P.st(k)P-i=.„ea,t(—k),

Pert(k)P-'= e„cs'(—k),

Pcs'(k)P-'= e,ci'(—k) .

Let k~ —k:
(54) P

Pp(p)P'= -as'( —y —k)cr'(k)~(n. +»)d'&
V'p o(55)

thus
(59)Pe(p)~ =~ (-y)(56)

Similarly,
P.t(p)P- = e(-p) (60)With these definitions, P(x, t) of Eq. (17) transforms

such that
Pf(x,t)P '= e„74$( x,t), —

We now consider how E, and H, of Eqs. (32) and
(57) (34) transform.

PE, (x,t)P-'=
2(2s.)i&s

d'p p'"(LP&(y)P '&'(p)v ~(p)+Pe(p)P '~'(p)v. e(p)]e'"'* ""
—P%'(P)P '~'(P)7" (P)+Pe'(P)P "'(P)V.N(y) je '"' '")

d'P P'"{t~(—p)" (p)7.~(p)+k( —p)«'(p)v, s(y) je'"'*-""
2(2s)'t' —L~'(—P)N'(P)7" (P)+ e(—P)"(P)7.~(y)3e-'"'*-'"j .

Let p —+ —p and insert y4'= 1,

PE, (x,t)P '=
2 (2s.)'t'

Using Eq. (58),

d'p p"(L~(y)"(—1)7 7 7 ~(—P)+$(y)N'( —P)7 7.7 ~(—P)le*' '* '"
—Ln'(p) '(—y)v v.v (—y)+ &'(p)" (—p)7 v.v (—p)je " '* "").

PE, (x,t)P '=
2(2or)'"

d'P P'"(t:~(p)~'(p)7'(p)+~(p)" (p)V.N(p))e"-'*-""
—Ln'(p)s'(p)7. ~(p)+e(p)~'(p)7" (p))c " '* "")

Thus,
PE, (x,t)P-'= —E,(—x, t) .

With these de6nitions it (x,t) of Eq. (17) transforms
(61) such that

In a similar manner one obtains

PH, (x,t)P-'=H, (—x, t).
We de6ne the charge conjugation operator such that

Cit (x,t)C—' = e,vs' t (x,t)

where we have used the fact that

7»(p) = s*(p); 7»(p) =~*(p).

(67)

Cai(k)C —'= e,cs(k),

Cas(k)c-'= e,ci(k),

Cc,(k)C-'= e.'as(k),
Ccs(k)C-'= e.*ai(k) . (66) V p o

«s(k)c 'Car (y—k)c-'8 (n,—ni) dstt

(63) Now, we consider the transformation of $(p) and
g(p) of Eqs. (28) and (29).

64

S. N. Bose, Z. Physiir 26, 178 (1924); 27, 384 (1924); or see
R. B. Lindsay, Imtrodgctioe to Physical Statistics (John bailey lit

Sons, Inc. , New York, 1941), pp. 224—226.
ai(k) cs (p-k)b (n„—ns) dsh
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Thus,

Similarly,

cs(p —k)at (k)b (n„—ns) d'k

cs (k)a, (y —k)3 (n,—ns) d'k.

c~(p)c-'= —~(p).

Crt (y)C-'= —q (p),

c~'(p) c-'= —p(p),

c&'(p)c—'= —&'(p).

(69)

(7O)

(71)

(72)

occurred, for then
p"~ e++v+P (77)

teak eh+a (78)

should occur readily. This decay mode (78) has not
been observed" experimentally. Experiments with high-
energy neutrinos could shed some light on the neutrinos
involved in ti decay. According to (76) the neutrinos
from p+-decay should participate in the reactions

degeneracy and by others" to give selection rules which
forbid several unobserved transitions. Indeed, now with
the results of Danby et al. , this appears'~ to be the
most logical decay sequence. It would be unsatisfactory
in terms of a neutrino theory of photons if

With the use of Eqs. (69)—(72) and (32) and (34), one
quickly obtains:

vi+ p ~ rt+ ti

vs+@~ p+e—. (79)

CE, (x,t)c '= —E—, (x,t),

CH, (x,t)c—'= —H,.(x,t) .

(73)

(74)

Therefore, only positive muons and negative electrons
should be observed as the final products from the decay
of positive muons.

Similarly,

7l+ ~ p++ Pi,
7l.
——+ ii +Vi ~

(75)

This means that the p+ is the particle and p, the anti-
particle. It then follows that in muon decay

y+ ~ e++ii+is,
ill ~ e +Pl+ P2.

(76)

These decay modes are consistent with polarization
experiments and with a Michel parameter p= ~, as the
neutrinos have diferent spin orientation. Similar decay
schemes with p+ as the particle have been suggested

by Schwinger" to remove the p,—e quantum number

'4 A. I.Alikhanov, Yu. V. Galaktionov, Yu. V. Gorodkov, G. P.
Kliseev, and V. A. Lyubimov, Zh. Kksperim. i Teor. Fiz. BS, 1918
(1960) LEnglish transl. : Soviet Phys. —JETP 11, 1380 (1960)g;
G. Backenstoss, B. D. Hyams, G. Knop, P. C. Marin, and U.
Stierlin, Phys. Rev. Letters 6, 415 (1961);M. Bardon, P. Franzini,
and J. Lee, ibid. 7, 23 (1961)."J. Schwinger, Ann. Phys. 2, 407 (1957). v& and vm are reversed,
as v~ was thought to be the neutrino connected with electrons at
that time.

VI. EXPERIMENTAL IMPLICATIONS

It was necessary to use neutrinos with both right-
handed and left-handed helicities to form the composite
photon from neutrinos. This means that if the theory
is correct, the four entities v~, v2, P~, and f ~ must exist in
nature. It has been determined experimentally that
the neutrinos connected with P decay are vs and Ps. If
the two neutrinos v& and Pj exist, they may appear in
some meson and hyperon decay modes. The experiment
of Danby et a/. ' indicates that the neutrinos occurring
in m

—p, decay are rot v2 or v2. Coupling that result'
with the results" of polarization experiments, we obtain
the pion decay modes

Ps+ P +n+ e—+,
pi+ tt ~ p+p —.

So the neutrinos from p decay produce only negative
muons and positrons.

VII. DISCUSSIONS

The general eGort on the neutrino theory of photons
(or light, as it was earlier called) stopped in 1938 when
Pryce showed' that those theories, based on Jordan' s
hypothesis' and using the old four-component neutrino
theory, were not invariant under a spatial rotation of
the coordinate system, and there have been only a few
papers" ' " since then. In this paper we have made
two modifications to the Jordan-Kronig mathematical
formalism: (1) The neutrino is described by a particular
four-component theory. (2) The neutrino Raman-effect
terms are omitted.

Concerning modification (1), as Pryce noted, 4 the
theories using the old four-component neutrino were
too arbitrary. Kronig, by his Eq. (17) (which is not
invariant under spatial rotations), attempted to elimi-

"E.J. Konopinski and H. M. Mahmoud, Phys. Rev. 92, 1045
(1953); K. Nishijima, ibid 10S, 907 (195.7); B. F. Touschek,
Nuovo Cimento 5, 754, 1281 (1957); Y. Katayama, Progr.
Theoret. Phys. (Kyoto) 17, 510 (1957); I. Kawakami, ibid. 19,
459 (1958); H. Umezawa and A. Visconti, Nucl. Phys. 4, 224
(1957);M. Konuma, ibid. 5, 504 (1958).

'7S. A. Bludman, Nuovo Cimento 27, 751 (1963); A. A.
Sokolov, Phys. Letters 3, 211 (1963).

~ D. Bartlett, S. Devons, and A. M. Sachs, Phys. Rev. Letters
8, 120 (1962); S. Frankel, J. Halpern, L. Holloway, W. Wales,
M. Yearian, O. Chamberlain, A. Lemonick, and F. M. Pipkin,
ibid S, 123 (1962). ."See L. de Broglie, Phys. Rev. 76, 862 (1949);J.Phys. Radium
12, 509 (1951).

~N. Rosen and P. Singer, Bull. Res. Counc. Israel 8I', 51
(1959).

» I.M. Barbour, A. Bietti, and B.F.Touschek, Nuovo Qi~egtg
28, 452 (1963).



W. A. PE RKI NS

nate this arbitrariness in such a manner that the usual
commutation relations would follow. He was unable to
d.o so because mtyv and vtyu are not completely deter-
mined by the four-component Dirac equation. With
this particular four-component theory for the neutrino,
one is uniquely led to Eq. (A6) of Appendix A, and
thereby commutation relations which differ from the
usual ones only in terms involving nl2(p) and n22(p).
The fact that the usual commutation relations are not
obtained is not due to et' and v~yu.

Modification (2) can be argued as necessary on
experimental grounds, as has been done earlier (see
Sec. IV). Indeed, the Raman-effect terms are only
useful in forming a spin-zero particle. Kronig's combina-
tion of neutrino creation and destruction operations
(Eqs. (37) and (38) of Ref. 6j would result in no spin
change upon emission and absorption of a photon
(Kronig's Eqs. (37) and (38) as well as his (17) are not
invariant under spatial rotations, but for diR'erent

reasons'. In Sec. IV, the commutation relations for the
photon operators were derived and additional terms
appeared in the Bose-Einstein commutation relations.
The consequences of these new commutation relations
have not been explored other than to note that Planck's
radiation law still follows. One of the important
problems of the future is to find. an experimental test
to differentiate between the conventional and composite
particle pictures of the photon and these commutation
relations may lead to such a check.

Another problem still confronting this theory is the
neutrino-antineutrino interaction question. de Broglie
originally envisioned some type of interaction bind. ing
the neutrino and antineutrino into the photon. Jordan
with his inclusion of a neutrino Raman e6'ect had to give

. up all id.eas of such an interaction. The present theory
comes closer to de Broglie's original idea and. such an
interaction seems desirable because: (1) If photons,
the "quanta" of the electromagnetic 6eld, are composite
particles, then the "quanta" of the nuclear force Geld
and gravitation force field should also be composite
particles. An interaction seems essential for the forma-
tion of a neutrino theory of pions in an analogous
manner to the photon theory. (2) A new ejection
mechanism (different from that in weak interactions)
would have to be postulated for the neutrino and. anti-
neutrino to be emitted in exactly the same direction
without an interaction, Whereas a neutrino-antineutrino
interaction could force these particles to be emitted in
exactly the same direction.

We postulate an interaction model that is intuitively
d,escribed as follows: When a nucleus tries to emit the
neutrino and antineutrino in diferent directions, the
neutrino and antineutrino annihilate. The pair would,
be continually recreating and annihilating until they
are created, with parallel momentum and then they
would escape together. In terms of the hole theory,
neutrinos from the negative energy states are con-
tinually making transitions to positive energy states

and then back again until one of them can make that
transition back again to the negative energy state and
still leave the atom. The interaction is essentially an
energy interaction. Experiment would not exclude a
rare escape of neutrinos in diferent directions, and in
this model these cases would be the weak interaction
decays. It appears, therefore, that a solution of the
interaction problem should result in a relationship
between the coupling constant for weak interactions and
the coupling constant for electromagnetic interactions.

It is generally suspected that not all the "elementary
particles" are really elementary, but that some are
composite particles. The photon seems simple in com-
parison with the other "elementary particles. " How-
ever, by learning how to form the photon (perhaps the
simplest composite particle), we can develop a method
which by modification can be extended to other com-
posite particles. If the photon is a composite particle,
gravitons and pions must also be composite particles
and they should also be described by similar mathe-
matical formulations.

APPENDIX A: MAXWELL'S EQUATIONS AND
THE COMMUTATION RELATIONS FOR

THE PHOTON FIELD

In this Appendix we shall show that the electric
and magnetic fields of Eqs. (32) and (34) satisfy
Maxwell's equations for a charge-free, current-free
region and commutation relations which diGer from
the usual commutation relations first derived by
Jordan and Pauli. "

The spinors N and v satisfy the following id.entities
(A2)—(AS) and those obtained by taking the Hermitian
conjugate of both sides. These identities follow directly
from (9) and (15). Equations (A2)—(A5) can alter-
natively be obtained' from (10), (16), and the four-
component Dirac equation:

(71Pl+72P2+ Y3P3+74P4)N

(71Pl+72P2+73P3+ Y4P4) &
(A1)

N jt'4+g+3V= N pyv &

N +4+3+yv =Q +2V q

N +4+@'2V=N +3V j

(71P1+72P2+ Y3P3)2'

Nty V=O.

24 (73P2 72P3)u= N»P43~-
34~(72P3—73Pi)'V=N 72P42l,

N ( Y2Pl 71P2)V N 73P4V ~

33 P. Jordan and W. Pauli, Z. Physik 47, 151 (1928).

(A2)

(A3)

(A4)
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Or (A4) can be combined. and written as

s (7&Pu VI4PX)v= 2P4« "t4("tax V&714)v

Q Py'V=

P4(P4+3P3)

X [2(P4'+PP)+PiP2 —P3P4],

Direct differentiation of Eq. (32) yields

tP
axi 2V22r 3

Xp"(B(p)v'Vi«+n(p)s'V»]pie'"'* ""

I P2'V=

P4(P4+ZP3)

X [P4 +P2 +3(P1P2+P3P4)]

IPg=
P4(P4+2P3)

X[pip4+ p2p3+i(pip3 —p2p4)]; (A6)

+[5'(p)s'V. v+~'(p)v'V s]p &
*"'* "'} (A9)

with similar expressions for aE2//ax2 and aE3/ax3. With
the use of (A3), we immediately obtain

BEg BE2 BE3
+ +

gy BX2 BX3

S'y, v V'y S= (P42+P 2)
42 Similarly, one can show from (34) and (A3) that

s 'Y3v'v 72«= (PiP4+P2P3)&
42

v H=o. (A11)

S'V» V'V3«= (P2P4+P3Pi),
42

24 +2v "v ris= (p3p4+pip2) .
42

From (A7) and its Hermitian conjugate,

(A7) is

The x~ component of

v x E= —aH/at

BE3 BE2

BX2 BX3

(A12)

(A13)

2
Q PpV'V 'r,«+Q 'b'av'V 7p«= (hg, P4 +P„P~),

42

2
Q +3V'v 'r2« —s +2V'v +3«= pip4,

42

Equation (A13) is obtained directly by differentiating

(32) and substituting the first of (A4). The other two

components followed by use of the second and third
of (A4).

In a similar manner, using (A4) again, one obtains

2
Q r»' vt3« s't3v'v—7344= p2p4 ~

42
v 348= aE/at. (A14)

2
s r2V V~pi« —S r»'v +2«= P3P4,

42

with r, s=1, 2, 3.

(Ag) We next obtain the commutation relations for E and

H. Using (32) and the commutation relations for the
photon operators, (36)-(41), one easily obtains

[E,(x,t),E,.(x', t')]

0

d3p p(«t&;v vtz, s+s'&, v v'&;s)(exp(i[p (x—x') —p(t —t')]}—exp{—2[p. (x—x') —p(t —t')]})

4Pp p([42„(p)vty, s Qt~, ,v+43„. (p)«ty, v v'y, s] exp{i[p (x—x') —p(t —t')]}

[43,2(p)st—y,v vty;«+4324(p)vty, s sty;v] exp{—i[p (x—x') —p(t —t')]}). (A15)
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su]ts inUsing the first of (A7) and first of (AS) for s=s results in

CE, (x,t),E,(x', t')$ = —expf —i[y (x—x)—P t-t'))})'( 4'+P')(«P&i[p (x—«') —P(t—)3—

Sm-'
p

nip ' ' exp(i[p (x—x') —P(t —t')])'C~»(P)+~»(P) j(P"+P.) (exp i

—exp( —i[p (x—x') —P(t—t') j))

2% P

I
sin[p (x—x') —P(t—t'))d' 'I ——— — sin p.

I atilt' ax. ax, ')

4'' p

Cy ( —")—P(t—t')l. (A16)&'P P 'C (P)+ (P)i ——,—

rth of (A7) and the first of {AS), q.E . A15) becomes—,' —2 1by the use of the fourt oFors=1, s = an

~ ooz
CE, (x,t),E2(x', t')] = d' 'I sill[p (x—x') —p(t —t')j

I
sin[y. (x—x') —P (t—t') )d'PP ' [ (»+ (»~II

)31 —
I

o [p ( —') —P(t—t')3 (A»Qyo 0!o] C

(A16) and the first term of (A1A17ther the erst term ofFollowing ~c iS h'ff ~' we can reduce furt er

[E,(x,t),E, (x', t')g

d'P P 'C~»(P)+~»(P)]

[E,(x,t),E2(x', t'))
Xsin[p (x—x') —p(t —t')j, (A1S

d'P P
' C~»(P)+~»(P)ll=4n '

Do(x—x', t t)+—8 8

8$y BS2

where

)ll —
I cosCp ' (x—x') —P (t—t')g, (A19A19

Do x,t)=(4~IxI) 'C~(lxl —t) —~(lxl+t)3. (A20)

o tainIn a semi ar'I manner one can ob

1[H, (x,t),P; x, —,, ~ x t, ),II, ( ', t') $ = [E,(x,t),E;(x,t )j

d'P P 'Co»(P) —~»(P)] cos[ps x—x') —P (t—t') g,
—'t'

~ ~at at' ax, ax, 'i
an Inc. , ew, , d ed. . 384-385.an Inc. , New York, 1955), 2nd ed., pp.nics |,'McGraw-Hill Book Company, Inc. , ew, , d ed."L. I. Schi8, QuanAcm 3fechanics Mc raw-

(A21)

(A22)
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LBI(x,t),H2(x', t')) =4irt' Do(x—x', t—t')
BS3 8$'

(8 8
d'p p-' [nn(p)+n21(p))l —»nLp (x—x') —p(t —t'))

E8Ãi Bt

(8 8
+Ln12(P) —n2i(P)]l cosLp (x—x') —P (t—t')] . (A23)

(8$1 8x2

The cyclic permutation of the indices 1, 2, 3 gives
the other parts of Eqs. (A19) and (A23).

These commutation relations for the electromagnetic
field (A18)—(A23) differ from the usual commutation
relations in the terms involving ni2(p) and nii(p). It
should be noted that these commutation relations do
not satisfy space-like commutativity.

APPENDIX B: INVARIANCE OF E AND H UNDER
A ROTATION OF THE COORDINATE SYSTEM

Pryce4 in 1938 showed that with the Jordan-Kronig
theory (using the old four-component neutrino theory)
one could not construct an electromagnetic field which
is invariant under a rotation of the coordinate system.
For that reason it is important to prove that this
formulation with a particular four-component neutrino
theory is invariant under a rotation of the coordinate
system.

What we must prove is that E and H of Eqs. (32)
and (34) are invariant. E and H will be invariant under
the rotation if the four vectors $(p)etyu, It(p)u"yn,
)t(p)etyit, and Itt(p)etyv separately remain invariant.

First we shall examine how the neutrino operators
transform under a rotation of the coordinate system.
ai(k) and a2(k) transform as' "

In terms of the new (prime) coordinates,

pi= pi COS8—p2 S1118&

pg= pi S1118+p2 COS8,

pa= p8'. (83)

Substituting (85) in (A6) and then (A6) in (84) yields

as they must be for a particle in the spin states
m. = &1.

Next we shall determine the transformation proper-
ties of Ntyv and vtyv. Unlike the old four-component
neutrino theory, here I"yv and vtyN are given uniquely
by (A6) and its Hermitian conjugate. One failure of
the old theory can be traced to the arbitrariness of
these quantities.

For convenience, let w=u~yv. If we rotate about the
x3 axis by an angle 0, the components of w transform
so that

wi ~ wi' ——wi cos8+w2 sin8,

wi ~ w2 = wi sln8+wp cos8)
1

783 ~ 783 ='R3,

ai(k) —+ ai'(k) = e "~ai(k)
&

a, (k) —+ a2'(k) = e'"a2(k),

where s= ~~ is the spin of the neutrino.
The other operators then transform so that

(81)
w~ w'=e —"w.

By taking the Hermitian conjugate of w, one also
obtains the transformation properties of v~yN,

ai't(k) = e'"ait(k)

a,'t(k) = e—"a~I(k)
ci'(k) =e'"ci(k),
c2'(k) = e '"ci(k),

ci'I (k) = e—"cit(k),
cm't (k) = e'"c2t (k)

Ittyi —+ (Ntyv)'= e "Ntyv—
I'yN ~ (~'yi )'= e"etym (87)

Combining (83) and (87) results in

B(p)"v~)'= ((p)"v~,
L~(p)N'v~)'=n(p)~'v~,

L&'(p) 'v)'=V(p) 'v,
~'(p) &'v& ~ Ln'(p)~'v~)'= n'(p)~'yN.

(82)

We thus see from Eqs. (28), (29), (81), and (82)
that the photon operators transform so that

5'(p) =e ""k(p),
P(p) =e*'"&'(p),

n'(p) = e*"'n(p)

It' (P) =e-'"Y(P),

It then follows directly from Eq. (88) that E and I'I
will remain invariant under a rotation of the coordinate

(83) system.


