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The restrictions of self-consistency are investigated for two sets of interacting particles—vector and
scalar (or pseudoscalar)—with unequal masses. Self-consistency is studied within a field-theoretic framework
and within a bootstrap framework. It is assumed that solutions exist when the particles of a given set have
equal masses and the coupling constants are proportional to the structure constants of SU;. The unequal-
mass case is studied by perturbing the equal-mass solutions and retaining only first-order terms in the mass
and coupling-constant shifts. It is found that fully self-consistent solutions do not exist in either case, but it
it is seen how such solutions can come about in the field-theoretic case. In the bootstrap analysis it is very
difficult to understand how self-consistent solutions develop unless hidden identities are satisfied.

I. INTRODUCTION

ECENTLY, considerable interest has surrounded
two theoretical approaches to an understanding
of elementary particle masses and their coupling con-
stants, viz., “bootstrap” calculations! and ‘‘super-
multiplet” structures.? Both have experienced some
success in the sense that little else has been particularly
successful at all. The bootstrap calculations have
attempted to exploit in terms of self-consistency the
very restrictive constraint of crossing symmetry in an
approximate way. This is usually done within the
context of N/D with two-particle unitarity. The group-
theoretical approach attempts to gather particles into
supermultiplets where, for example, the particles are
the generators of some Lie group and the coupling
constants are proportional to the structure constants
of the group. Certainly, the most favored group at the
present time is SUs.

Within the past year, several interesting questions
have developed as combinations of these approaches
have been considered ; e.g., can a bootstrap calculation
yield a particular symmetry as a self-consistent solu-
tion; if so, is it a unique solution, etc.? Generally
speaking, all such analyses® assume equal masses every-
where and proceed by the standard techniques, but
some effort has been devoted to the unequal mass case.*
The case of nondegenerate, supermultiplets, i.e., un-
equal masses, within a self-consistent calculation (with
the usual approximations) is difficult to handle primarily
because of its complexity. However, it raises several
interesting questions. For example, consider a super-
multiplet of particles interacting among themselves to

* Work supported in part by the U. S. Air Force Office of
Scientific Research and Development Command. .

1 See for example, the review article by F. Zachariasen in Strong
Interactions and High Energy Physics, Scottish Universities Summer
School, 1963 (Oliver and Boyd, Edinburgh and London, 1964).

2 M. Gell-Mann, California Institute of Technology Synchrotron
Lab. Report CTSL-20, 1961 (unpublished) ; Phys. Rev. 125, 1067
(1962) ; Y. Ne’eman, Nucl. Phys. 26, 222 (1961).

3R. E. Cutkosky, Phys. Rev. 131, 1888 (1963); R. H. Capps,
Phys. Rev. Letters 10,312 (1963) ; Hong-Mo Chan, P. C.DeCelles,
and J. E. Paton, Phys. Rev. Letters 11, 521 (1963).

sR. H. Capps, Phys. Rev. 132, 2749 (1963); R. E. Cutkosky
and P. Tarjanne, Phys. Rev. 132, 1354 (1963).

produce another multiplet, say, a set of scalar or
pseudoscalar mesons bootstrapping a set of vector
mesons. Some of the questions of interest are the
following: (1) Do nondegenerate solutions exist? (2) If
solutions exist, can one choose the scalar masses
arbitrarily? (3) If one considers the scalar masses to
satisfy some specific relation among themselves, i.e., a
mass formula, must a similar mass formula hold for the
vector masses? (4) Are the solutions unique? If one
takes the viewpoint that all masses and coupling con-
stants are determined by the requirements of self-
consistency, then one should be able to answer these
questions, among others. The crucial point of course is
how in fact does the imposition of self-consistency yield
such answers. In this paper, we will attempt to explicate
the mechanism by which the self-consistency manifests
itself.

We will study the specific example of two sets of
interacting particles—vector particles and scalar (or
pseudoscalar) particles. The paper is divided into two
investigations. The first is a field-theoretic analysis
(Sec. II) and the second is a bootstrap analysis (Sec.
IIT). Our basic procedure will be the following: We
assume in each case that an equal mass solution exists
in which the coupling constants are proportional to the
structure constants of some Lie group. In fact, we will
consider eight particles in each set of particles and take
the group to be SUs, since this arrangement has the
most impressive experimental credentials. Of course,
our analysis need not be confined to SU; and the self-
consistency problem for other groups can be studied
with the same techniques.

The solutions are perturbed, i.e., the symmetry is
broken, and we examine the consequences of the self-
consistency requirement to first order in the mass and
coupling constant shifts. Within each of the two
contexts of field-theoretic and bootstrap self-
consistencies and within our very limited approxima-
tions, we attempt to answer as many of the interesting
questions as we can. In Sec. IV we give a summary of
our conclusions.
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II. FIELD-THEORETIC SELF-CONSISTENCY

Here, as in Sec. III, we will take as the basis of our
model a system consisting of two sets of interacting
particles:

(a) A set of eight vector particles 7, s, - - - of masses
My, M, - -+ represented by the real fields 4,, 4,, - - -

(b) A set of eight scalar or pseudoscalar particles
a, b, - - - of masses pa, us, - - - represented by the fields

Pay Poy * -

Further, we will consider these two sets to interact via
a derivative-type coupling of the form
Li=%3" gav ($a0ubr— Ppp0upa) A *.
a,b,r

Divergence difficulties will be dealt with simply by
introducing momentum-space cutoffs (or by a modifica-
tion to the vector propagator) wherever it is required
(see Sec. IID). [It might be thought that it would be
simpler to make the set (a) scalar particles and the set
(b) pseudoscalar, so as to avoid any spin complications.
But then there would be no possibility of trilinear
SU-symmetric coupling in which both sets of particles
are octets. ]

In the context of Lagrangian field theory, it has been
suggested® that the requirement for a particle to be
composite is that its wave function and vertex renor-
malization constants both vanish. We shall consider
these two conditions in the lowest nontrivial order of
perturbation theory first for the set (a), then for the
set (b), and finally for both sets simultaneously. This
is what we mean when we speak of field-theoretic self-
consistency. When we consider both sets simultaneously
we will usually speak of this as full self-consistency.

At each stage we shall assume that these conditions
are satisfied, and thus that a self-consistent solution
exists, when all the masses of set (a) and set (b) are
equal, say to m and uo, respectively, and the coupling
constants g,s" are proportional to the structure con-
stants of SU;. We will call this the “symmetric solu-
tion.” We do not assume that this is a unique solution,
but only that this 4s a solution. The object of our
analysis will be to examine, in a linear approximation,
the possibility of the existence of solutions in which the
masses within the sets (a) and (b) differ slightly from
equality.

A. Lowest Order, Self-Consistency Equations

For a scalar particle 4 considered as a composite of
the particles B and C with coupling constant G, the
lowest order, self-consistency equations are

G? [ pac(S”)

=2 / Shckiuksn &)
) uprme?  (S'—M4%)?
G3 [ p8c(S)TE(S")

G=— / asZE2ER (g
7 J (MprMo) S'—M 4

5 A. Salam, Nuovo Cimento 25, 224 (1962).
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where M 4, Mg, M ¢ are the masses of 4, B, C, respec-
tively, ppc(S) is the phase-space factor for particles B
and C in an S state, and T'5(S) is the Born approxima-
tion to S-wave (BC) scattering with A4 exchange. For
the moment we shall ignore spin complications, and in
succeeding sections we will make the appropriate
modifications where necessary. The right-hand side of
Eq. (1) may be looked on as a dispersion relation for
the derivative of the self-energy of 4 evaluated on the
mass shell, and the right-hand side of Eq. (2) may be
looked on as a dispersion relation for the (4BC) vertex
function evaluated on the mass shell.

Equation (1) may be “proved”® by using the identity

1=§ [(Ploa(x)|0)]2, 3)

where ¢4 is the (unrenormalized) 4 particle field, |0) is
the physical vacuum, and the | P) are a complete set of
physical states. Each term in the sum is the probability
that the bare particle is contained in the state | P). The
one-particle states contribute a term in the sum propor-
tional to the wave-function renormalization constant
for particle 4 which we take to vanish. If we include
in addition only two-particle states, then we have

1= PZP [(P12P:C| ¢4 ()] 0) 2. )

Equation (4) yields Eq. (1) using (02— M 42)¢pa=ja
and taking the matrix element of the current in lowest
order to be G.

To generalize Eq. (1) we consider 4 replaced by a
set of particles of the same spin and parity, and simi-
larly B and C. Since we can always choose the particles
within each set so that the bare particles are orthogonal,
Eq. (3) is replaced by

dii=2 (0

¢.4i(%) | P)(P|4;(x)| 0)

and instead of Eq. (1) we obtain

1 ppy(S”)
8i=2 Giﬂijﬁr/ as'— . , (5)
B ) prmy? (8= ME)(S'—MP)

where 8 and vy label particles in the B and C multiplets.

To ‘“derive” Eq. (2) one notes that the vertex re-
normalization constant, to lowest order, is Z,=1—1L,
where L is essentially the Feynman expression for the
vertex diagram. If one requires Z,=0, one obtains
Eq. (2). This may also be obtained by assuming an
unsubtracted dispersion relation for the vertex function
with the scattering amplitude replaced by the Born
approximation and the vertex function evaluated on
the mass shell. The modification required when 4, B, C

¢ For example, see W. Thirring, Principles of Quantum Eleciro-
dynamics (Academic Press Inc., New York, 1958).
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are replaced by particle sets is

1 e pae(SNT(S)
Gigy=2_ GigsGjy Glise / aS'———-——, (6)
joe T J Ms+Mo? S'—M2

where T’z is now the S-wave Born approximation for
Bg+ B, — B+ B, with the exchange of 4;.

In the succeeding sections we will consider Egs. (5)
and (6) as implementing the requirement of composite-
ness with the modifications appropriate to the cases
when the sets B and C are identical or when one of the
sets has spin one rather than zero.

B. Self-Consistency of Vector Particles

Let us first consider the self-consistency of the set of
vector particles. In terms of the notation introduced at
the beginning of this section, the equations correspond-
ing to Egs. (5) and (6) are

6Tt=z gabrgabt[(d,b; 77t) (7)
ab

8at' =2 8as’gpd’8edJ (64,55 ab,1), ®)
cds

where the functions 7(a,b; 7,t) and J(c,d,s; a,b,r) corre-
spond to the Feynman diagrams given in Figs. 1 and 2,
respectively, without coupling constants. These func-
tions of course depend on the particle masses and this
is indicated by the index of the particle in question.
Now the demand that the vector particles be in fact
composite particles [i.e., Egs. (7) and (8)] cannot be
satisfied for arbitrary masses and coupling constants,
at least not within the approximations used to obtain
Egs. (7) and (8). Thus, within the present context of an
attempt to obtain a self-consistent solution for the
vector set (a), we may regard Egs. (7) and (8) as
equations from which we can determine the masses of
set (a) and the coupling constants g.;" as functions of
the masses of the scalar set (b) (and any cutoff param-
eters necessary). Our basic assumption regarding these
equations is the following: When all the scalar masses
are set equal, to uo say, these equations possess a
solution in which all the vector masses are equal, to m,
say, and the coupling constants g.s" are proportional to

g Hy
M~
Fic. 2. Vertex function __Mr -~ ms
diagram. \‘\\\
Hy <L
_______ ,,Lb
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the structure constants of SUj,
gabrzGCabr, (9)

where it is possible to choose the Cgp, antisymmetric in
all three indices and normalized so that

Z gabrgubs=2(;267‘s- (10)
ab

From the Jacobi identity for the Cgu3 we can write

2 (Bac’god"— gad’ge") =2 gab'ged’, (11)

and using the antisymmetry, we have

2 ac’god’8ed =% 2 (8a’gvd*— Lad*goe’)ged"

cds cds

=% Z gabs Z gcdsgcdr
s cd

so that, by use of Eq. (10), we have

2 Gac'gvd’led =Ggur (12)
cds

The antisymmetry property and Egs. (10), (11), and
(12) constitute all the group properties we shall use in
the ensuing discussion.

When ue=pe=p.=pa=uno and m,=m,=m,=mq let
I(ab;rt)=1Io and J(cd,s;abr)=J, then Eqs. (7)
and (8) reduce to

I=1/2¢, (13)

Jo=1/G2. (14)

These equations may now be solved to obtain G? and
mo/po (perhaps as functions of cutoff parameters). The
content of our assumption is that Eqs. (13) and (14) in
fact have at least one solution, the symmetric solution.

Given the existence of the symmetric solution, we
now consider the possibility that solutions exist when
the scalar masses, the input, are not equal, and ask, if
solutions exist, what are the values of the vector masses
and the coupling constants, the output. We in fact
consider this possibility when the scalar masses differ
only slightly from equality

ﬂzz = ﬂ02+8'i

and we shall work only to first order in é;. If solutions
exist in the unequal mass case, then the results of the
self-consistency requirement will yield

mi=mi+As,
and
gabr= GCabr“I"'Yabr’_" gabr (0)+'Yabr .

Since g4 represents the coupling of two scalar (or
pseudoscalar) particles to a vector particle, it must be
antisymmetric in the indices ¢ and &. If follows that
7Yat" has this property; however, unlike g.+"(0), it may
not be antisymmetric under the interchange @<« »
orb«>r.
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We assume that A, and 45" are small, and that we
need only consider first-order terms in A and v as well
as 0. These are certainly strong assumptions and
certainly are not satisfied in the real world, but we
believe that such an analysis may lead to some under-
standing of the restrictions imposed in the real world
by self-consistency.

We now expand Egs. (7) and (8) about the sym-
metric solution and obtain

2 gav 8ad’[ (8at8a)1* 4 (A t-Ae) ]
ab
+[ Z [gabr'yabt+7abrgab‘:|=0, (15)
ab

Yar'=J 2, (Yac'gvd’ged+ Lac* Vv ged + Las' Eoa™Y ed”)

cds

+Z gacsgbdsgcdr[ (6c+ 6d)]“+ Asjm]

cds

1
+}gabr[ bat00)T AT n], (16)

where all functions are evaluated at the symmetric
solution, and we have dropped this explicit indication.
Here we have defined

a a
(IM: IM)=(~_— )I(d,b;l’,f},

)
udd Im,?

(17)
a 9 a 0
(]") ]m Jm; Jm)=<~——~,——, ,—)](c,d,s; a,b,r) )
oul uld dm dm,?

all derivatives being evaluated at the symmetric
solution.

To solve Egs. (15) and (16) we proceed as follows:
Let us suppose we have found solutions to the equations,
i.e., the A’s and v’s, for different sets of &’s, say two
different sets. We may think of these as 8-dimensional
mass vectors, 8 and % Then, since the equations are
linear, the solution corresponding to the mass vector
(¥8'+4-y8?), where x and y are arbitrary constants, is
obtained simply by superposition. Thus, to find the
solution corresponding to an arbitrary mass vector §,
it is sufficient to know the solutions corresponding to
eight linearly independent vectors, 8!, - - -, 8%. We take
these vectors to be the solution of the equations

€
Z gabrgabt5a=—‘arart 3 (] 8)
ab 21

and we shall refer to them as the “eigenvectors” and
to e as the corresponding eigenvalue. Using the known
structure constants for SU,;, Eq. (18) can be solved
explicitly, and the eigenvalues are

}nondegenerate,

e= —2}fivefold degenerate.

AND J. E.
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If the basis of the 8-dimensional mass space is identified
with the physical particles as

;}charged ’s

3 neutral =

ﬁ} charged K’s
?}neutral K’s
8 1,

then the masses of the bracketed pairs of particles must
be equal by charge conjugation. The eigenvectors which
satisfy this symmetry are

e=2 1 3 -3 -3
1] 1 0) 1 (=1
1 1 0 -1
1 |1 0 3 1
1 | —% 1 |-2 0
| =3 |{=1] [|-3 0
1 (=3 |-1] |-32 0
)=t Lo Lo o

which are in fact orthogonal. It is seen that for e=2 the
masses are not split and that for e=3 or one of the
e= —% eigenvectors, the masses are split within isospin
multiplets. It can be shown that Eq. (18) is solved by
any of the Clebsch-Gordan coefficients in the decom-
position of 8®8 which happen to be diagonal in the
coordinate systems used. For the solutions, e is the
corresponding recoupling coefficient, or crossing-matrix
element. In fact, e=2, 1, —% are, respectively, the
crossing matrix elements for the exchange of an octet
(antisymmetrically coupled) in the singlet, octet
(symmetrically coupled), and twenty-seven dimen-
sional representations.

Equations (15) and (16) are now solved for a given
eigenvector, &, by assuming that the A’s and +’s are
proportional to the &’s and then determining the
constants. In particular, the ansatz is

G
Al=— ; (e4N)oi=K 87, (19)
('Yabr)izgabr[‘(baai—l_abi)ki"}'&r?‘ki/]) (20)

where ¢; is the eigenvalue corresponding to §¢ and \;,
ks and k; are to be determined. The observant reader
may have noticed that in fact the set of equations given
in Egs. (15) and (16) overdetermine the solutions. In
particular, Eq. (16) gives just the correct number of
equations to determine the v.y, but Eq. (15) over-
determines the remaining eight unknowns. The ansatz
given in Eq. (20) eliminates the difficulty immediately,
since it may be easily checked, by use of this equation
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with Egs. (10) and (18), that Eq. (15) is identically
satisfied when 774 This leaves eight equations.
Substitution of Egs. (19) and (20), into Egs. (15) and
(16) with repeated application of Eqs. (7), (8), (10),
(12), and (18) yields

Ju v gm
+ I: k —"—_‘<€1,+)\1)]= (21)
J 2ln J
I, I
——— (&)
2 J
Jr 11k Jgm
+5i[2ki+—_ki/+— — —(erl-)\i):l: (22)
J 221, J
N IE
k{=———¢ik;. (23)
21
These equations give
20
Nj=——
I
e
) (1+ei/Z)f“-i—%ef[]”———~(]m+]m):|
X- - ) (24)
€; 21m_%(‘]m+]m)
NIl I gm
ki=— ———— —(e&it+)\; )+‘—“ (25)
2¢; I 2e;2[m J erJ
1 10 Jm u
= —(&t+N)——— (26)
221, J €;
Thus, given an arbitrary scalar mass vector,

3= : X5¢, we determine a vector mass vector A as
the same linear combination, A=) ; X;A? and a set of
coupling constant shifts ya'=3.; Xi(ye")? which
satisfy the self-consistency demand. It is important to
emphasize at this point that self-consistency does not
impose a restriction on the mass or coupling constant
shifts—solutions exist for arbitrary splitting.

It is of interest however to examine some special
cases. First, one would certainly think that the basic
equations, Egs. (7) and (8), should be scale invariant
in the sense that, if a set of scalar masses, u1, -+, us
yields a solution m;, - - -, ms, with certain coupling con-
stants, then the set, aui, -, aus, will also yield a
solution am,, ---, ams, with the same coupling con-
stants, where « is any positive constant. The integrals
represented by I and J require cutoffs, and whether or
not the equations in fact are scale invariant depends on
how these cutoffs are introduced. If the cutoffs are
introduced such that scale invariance is present, then
the following identities are satisfied

14/ Im=—md/ud,
(JE+T 0/ (T T m) = —F(m*/ue?) .

27
(28)
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Using these equations, Eq. (24) reduces to
2—e)(1+¢€) 21, J
Ni=— . . (29)
2¢; I“ 20— (Jm4T )

Now if all the scalar masses are equally shifted then $
is in fact proportional to the eigenvector corresponding
to e=2. In this case, A=0 and also ¥’= —2k. It follows
at once that

Ag=— (Iﬂ/lm)cz (moz/lloz)c ’
«=C, or
m?/ut= (m@+A4)/ (u*+40) = me/ud

where C is a constant, &

and
Yar'=0,
as one would expect.

As another case, consider that & is given by any
combination of the e=2 and e=1 eigenvectors; then
the scalar masses would obey the Gell-Mann-Okubo
mass formula, and it follows from Eq. (19) that the
vector masses will also obey such a relation. In general,
if & is given by the sum of the e=2 eigenvector and any
one of the other eigenvectors, a specific mass formula
is satisfied by the scalar and vector masses. However,
at this point these eigenvectors have been introduced
as a mathematical device by which we solve the
equations.

C. Self-Consistency of Scalar Particles

Here we wish to consider the self-consistency of the
set of scalar particles in the sense defined in Sec. ITA.
The conditions that the scalar particles be self-
consistent are, in analogy to Egs. (7) and (8),

8as=2 gac8e’I(c,r; a)b), (30)
gab:z gacsgbdsngrj(C;d7s; 07617) . (31)
cds

Equations (30) and (31) correspond to Figs. 3 and 2,
respectlvely In fact, J=7J and Eqgs. (8) and (31) are
identical since this is the condition for the vanishing
of the scalar-scalar-vector renormalization constant.

In complete analogy to Sec. IIB, we now regard
Egs. (30) and (31) as equations to determine the
coupling constants and one set of masses in terms of
the other set of masses. Again we assume the existence
of a symmetric solution with u,=ue, mi=mo and, as
in Eq. (9), ga"=GCatr. If we define I, and J, as the
values of I and J for the symmetric solution, then the

o
F16. 3. Scalar self- _____"ft_l___ 7 T _.-..#..b__...-.
energy diagram. U
my
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existence of such a solution implies
I=1/2G, (32)
Jo=1/G2. (33)

With the same approximations as those in Sec. IIB
with respect to first-order terms, etc., the linear equa-
tions for the deviations from the symmetric solution are

Z gacrgbcr[5a7p+ 6CT“+ Arjm]
F+IY (ga o +Vag) =0 (34)

together with Eq. (16). In Eq. (34) we have defined,

_ _ a a d \_ 3
(11"7 7#7 IM) = ( y “—“>I(C,7’; (l,b) ) (33)
om,2 dul du.d

where the derivatives are evaluated at the symmetric
solution.

To solve these equations we again look for solutions
in which the sets of masses are eigenvectors in the sense
of Eq. (18) and, corresponding to Egs. (19) and (20),
we make the ansatz

(vao)'= ga'[Ei(8a'+85)+k18,7], (36)
€; T“+T
Aai= - P #5ai; (37)
ei+n: I™

where E,, k! , and 7; are constants to be determined.
Substituting these into Eqs. (16) and (34) we obtain,

- i'—2T : T“"l‘f _fet+2
=t LT ‘ k,~< > (38)

€5 2?0 Ei+7],‘ 270 €]
. JE €; T"—FT# Jm
Ei[Zki—k/-i——-i- —— “:]
Jo e+ni 2 Jo
o TnI*+T
ol o, (39)
e+ni Jo I™
r o Iv+I,Tm T,
&l ki — ‘ = . T]‘I’TI‘:O; (40)
L e+ 20 Jod Jo
from which we find,
ei+2r _ 3e+2 _ . 2,
JrE+ jnjl_[p"*‘*ln:l
€ 2e; L ei(eit+2) €;
= ~ ~ bl (41)
€+ 17 et+2_ a2 M
L+ )1 )50)
2 €i2 Im
z € N4 T"‘i‘fy €—2 Tu
' 2(6,—'*2) 6i+17i To 2(€z+2) jO
LT, & 1 DL
% ‘ ‘;f_ ‘ ~ £ PR (42)
et+2To 2(e+2) etn: Im To
5 T o In4I,Jm
Bim—ty ’ (43)

Jo etni 2In To
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As before, the solution for an arbitrary & can be
obtained as a linear combination of eigensolutions from
Eqgs. (36) and (37). Further, there are no restrictions
placed on § by the self-consistency requirements; any
given d leads to a A and a set of vqs" which satisfy the
self-consistency equations.

Again, if scale invariance is present, then the identity

(T#4+1,)/Tn= — (m/ue®) (44)

is satisfied as well as Eq. (28), and it can be verified
that the e=2 eigenvector results only in a change of
scale in the symmetric solution.

D. Full Self-Consistency

We now wish to address ourselves to the following
question. Is it possible that masses and coupling con-
stants exist which satisfy both self-consistency require-
ments, i.e., can self-consistency for both the scalar and
vector set be obtained simultaneously? Within our
present framework, i.e., approximation, this means that
we must attempt to satisfy Egs. (7), (8), and (30)
simultaneously. In order to do this, we must make the
additional assumption that a simultaneous symmetric
solution exists. Even if the separate symmetric solutions
exist it is not obvious that a simultaneous symmetric
solution also exists. We must certainly construct our
approximation so that scale invariance is present, and
thus we have two unknowns, 70?/uc? and G?, and three
equations. On the other hand, we have no criteria for
determining the cutoff parameters. At most, we could
have three cutoff parameters and at a minimum only
one. We will take the point of view that the cutoff
parameter (or parameters) is chosen so that a simul-
taneous symmetric solution exists. It is certainly true
that this solution is probably not unique, but since we
wish to examine the existence of solutions with unequal
masses given some equal-mass solution, we will not
concern ourselves with this important question here.

Once we have assumed the existence of a simultaneous
symmetric solution, the question of full self-consistency
within the linear approximation reduces to an examina-
tion of simultaneous solutions of Eqgs. (15), (16), and
(34). We have seen that the most general scalar mass-
splitting vector may be written

=) X&' (45)

Then the corresponding mass-splitting vector for the
vector particles is

A=) XAY (46)

where to satisfy Egs. (15) and (16) A‘ is given by
Eq. (19) and to satisfy Egs. (16) and (34) A’ is given
by Eq. (37). Thus for full self-consistency with § given
by Eq. (45), it is certainly necessary that

€; j“-{'-f‘, I+
——= (e;+Ae)—,
e+ns I™ 21,

(47)
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for all ¢ with X;520. In the case of scale invariance this

reduces to
€

=3(etN). (48)

€T N0

Since A\; and 7; depend only on e; and the constants
1,, 1,7, etc.,, Eq. (48) represents a separate condition
for each of the eigenvalues ¢;. However, since we regard
1,, I,, J,, etc., as known constants fixed by the sym-
metric solution, it follows that in general we should not
expect Eq. (48) to be satisfied for any of the allowed
values of €(2, 1,3, —2). Actually, when scale invari-
ance is present we must have Eq. (48) satisfied for
e=2, and this is in fact true [put 7,=\;=0in Eq. (48)].
We have not yet exhausted all the conditions which
must be satisfied for full self-consistency. We still have
to investigate the condition that the coupling constant
shifts arrived at in Secs. IIB and IIC are the same. The
coupling constants corresponding to e; are the same if

ki=F;, (49)
ki=Pk{. (50)

However, it may be verified that Egs. (49) and (50) are
in fact a consequence of Eq. (47). The reason for this
rests on the fact that in our approximation the condition
for the vanishing of the vertex renormalization constant
is the same for scalar and vector self-consistency, i.e.,
the self-consistency of the scalar particles introduces
only one new set of conditions, Eq. (30). Thus, full
self-consistency is obtained, in addition to the trivial
solution e=2, if Eq. (48) above is satisfied for one of
the allowed eigenvalues, e;.

At this point, then, within our approximations, we
can conclude two things: First, in general, the require-
ments of self-consistency are more restrictive on non-
degenerate solutions infinitesimally close to the sym-
metric solution than they are on the symmetric solution
itself. Secondly, strictly speaking, there will in general
be no solution infinitesimally close to the symmetric
solution.

However, conclusions of this sort must be strongly
tempered by a consideration of the approximations
involved. There are at least two points of view here.
One could argue that we would certainly not expect to
obtain a solution which gave the correct magnitudes for
the splitting of the vector set given some scalar mass
splitting. On the other hand, given a set of ratios for
the scalar mass splitting, we might hope to obtain a
fully self-consistent set of ratios for the vector set,
although the magnitudes given by Egs. (19) and (37)

might differ considerably. This is in fact easy to -

accomplish by choosing & as a sum of the e=2 eigen-
vector and any one of the other eigenvectors. Since it
is rather natural to believe that an arbitrary & will not
lead to self-consistent solutions, one can argue on the
basis of this analysis (so that at least mass ratios are
self-consistent) that only those &s which are an arbi-
trary sum of just two of the 3/(e=2 and one other of
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e=1, 1 or —2) will yield self-consistent solutions. It
then follows immediately that one or another of certain
mass relations must be satisfied. For instance, if 3 is a
sum of contributions from the e=2 and e=1 eigen-
vectors, both sets of masses will satisfy the Gell-Mann-
Okubo mass formula. The eigenvectors introduced in
Sec. IIB as simply mathematical devices now take on
a physical significance—they represent the only mass
ratios which will yield self-consistent solutions. Nothing
can be said about which of the four possible mass
formulas is the self-consistent one, nor about the
magnitude of the shifts.

A second viewpoint is to reinterpret Eq. (48) by
considering e as a continuous variable and determining
a value for ¢; Eq. (48) is in fact a quartic equation in e.
We know that e=2 is a solution and we look for others.
The best situation, of course, occurs when there is only
one real root in addition to e=2, and it is close to e=1,
% or —Z. One then “concludes” that a better calculation
might have yielded a root even closer to the eigenvalue
in question and that the exact analysis might yield the
eigenvalue. In this case, the approximate solution yields
definite vector mass shifts and coupling-constant shifts
for a given set of scalar mass shifts. Further, the shifted
scalar masses (the vectors as well) must satisfy a
specific mass formula which one argues is the only
self-consistent solution.

A somewhat more pessimistic situation would be if
there were no roots in e even close to the allowed
eigenvalues other than e=2, for instance if the only
other real root were e=50. In this case, one"can only
say either that the approximation is so badfthat one
can conclude nothing about specific solutions or that
the approximation is reasonably good and broken SU;
multiplets do not lead to self-consistent solutions. This,
of course, hinges on the validity of the approximations,
and at this point it is well to emphasize that there are
really several crucial approximations here, viz., two-
particle states, Born approximation, and the linear
approximation for the perturbed solutions. Actually,
as is well known, the first two approximations have met
with at least some success. But of course the essential
point is that virtually nothing is known about the
effects of second- and higher order terms in the mass
shifts.

III. BOOTSTRAP SELF-CONSISTENCY

We now wish to carry out an analysis in parallel to the
discussion of Sec. IT with exactly the same physical
system. However, the self-consistency equations that
we now use are those of the “bootstrap.” The analysis
of the bootstrap equations can be carried through using
the same ansatz as in Sec. II, however, new features do
arise to alter our conclusions.

A. Scalar-Scalar Scattering

Here we wish to examine the self-consistency require-
ments arising from a bootstrap calculation of a set of
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vector mesons in the two-particle scattering of a set of
scalar particles. Let T (43)(cay (S) be the P-wave scatter-
ing amplitude for the process

a+bo c+d, 1)

where @, b, ¢, d label members of the scalar set of
particles and S is the square of the center-of-mass
energy. The brackets are placed around (abd), (cd) to
emphasize that a state is labeled by a pair of letters,
irrespective of the order. The set of amplitudes consti-
tutes a matrix in a space labeled by the states (ab).
Since two identical bosons of spin 0 cannot be in a P
state, ¢ and b must be different. Since the sets consist of
eight particles, the space has 8 X7/2=28 dimensions.
As usual we write the matrix equation

T=ND"! (2)

and restrict ourselves to the determinantal approxima-
tion, where N is the matrix of the P-wave projections
of the scattering amplitudes in Born approximation,
T8 apycay (S), corresponding to Fig. 4. Of course, in
N (S) there is a summation over all the exchanged vector
particles, labeled by ¢ in Fig. 4. We may write the Born
amplitude for a given exchange, ¢, as

T (ab) ey (S,8) = gac'gra'f (c,d,t; a,b,S), 3)

where f is a known function and depends on the particle
masses which we again simply labeled by their indices.
Therefore we have

N avyeay(S) =22 gac'gua'f(c,dst; a,b,S). (4)
t

The matrix D is then given by
D (aby(cay (S) =0 uv) ey
_Z [gactgbd‘a ((l,b,t; C>d)S)
t
—'gadtgbcta(a)b:t'; d)C7S)] ’ (5)

S—S P(cd) (S/)f(C,d,l' 3 a‘)b>S,)
bt 6d,8) = / as' . (©)
T (8'—8)(S"—Sq)

with

where p¢.a)(S’) is the two-particle phase-space appro-
priate to the masses ua? ps?, and So is the value of S at
which D is normalized to the unit matrix.

As before, we begin by a consideration of the equal-
mass case and look for the symmetric solution. The
coupling constants are taken as proportional to the
structure constants of SU; and Egs. (10), (11), and (12)
of Sec. IT are still valid. In this case, it can be shown’
that the matrices N and D are both diagonalized by
an orthogonal matrix Os" whose columns are the

"Hong-Mo Chan, P. C. DeCelles, and J. E. Paton, Nuovo
Cimento 33, 70 (1964).
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I'16. 4. Born approxima-
m, tion diagram for scalar-
scalar scattering.

_._......____.F,d

(normalized) eigenvectors ¥ (qs)" of the matrix

V(ab) (cd)=z(Cactcbdt'—clldtcbct) ) (7)
t

where the ¢’s are the structure constants of SU; Thus
eight of the ¥ (43" are the ¢(up)”, and it can be shown that
the remaining 20(28-8) eigenvectors correspond to the
eigenvalue zero.

We denote by fo(S) and «(S) the functions f and «
when scalar and vector sets have the same masses, uo
and m,, respectively, and when the g’s are proportional
to the SUj structure constants. The requirement that
the vector-meson poles occur at S=m¢® is, in the
diagonalized form, easily seen to yield

1=G% (mOZ) . (8)

Further, the requirement that the residue of the pole is
correctly given by crossing symmetry leads to

fo= =G/ (m?), )

where ay’ (m?) is the derivative of ao(S) evaluated at
S=m®. We have here chosen a particular normalization
of the T(ub)(cay, which are the P-wave scattering
amplitudes with kinematical factors removed, so that
they are finite and nonzero at threshold. As before, we
now assume that Egs. (8) and (9) yield at least one
solution for G? and m®. At this point in the discussion,
the subtraction point Sy is considered to be a param-
eter determined by other means, e.g., so that the
discontinuity across the left-hand cut is correctly given
at one point. We will adopt a different viewpoint later.

Let us turn now to the question of other solutions
infinitesimally close to the symmetric solution. The
situation is not quite as transparent as it was in Sec. II.
In principle, it should be possible to write down
equations relating masses and coupling constants in the
general mass case and then expand these equations to
first order. These would yield a set of linear first-order
equations for the vector mass shifts, A, and the coupling
constant shifts, v, in terms of the scalar mass shifts,
3. Again, since the equations would be linear, we could
start by looking for solutions in which & was an eigen-
vector, and the most general solution could be expressed
in terms of these.

In practice, however, this program is difficult to
carry through, and we instead expand N(S) and D(S)
to first order in the §’s, making the same ansatz which
was successful in Sec. IT [Eqgs. (19) and (20)]. If one
uses this ansatz and transforms N and D with the
matrix O introduced in the discussion preceding
Eq. (7), then it is possible to extract, correct to first
order, the pole and residue conditions corresponding
to Egs. (8) and (9) in the equal-mass case.
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Let us define,

d
(@*(S) Wy (S) o (S» = (@9 oust amﬂ)a (6,(1,1’ 5 d,b,S) |uit=po®, mpi=mo®, (10)
an=aqo (M) = a—s‘fI (@,6,7 5 6,8,8) |ui*=po?, mp’=mo? (11)
(Ot M;amam) = (Ol" (m02) pLam <m02) a (m02)) 3 (1 2)
g < a l¢]
y7 m = —_— : 2, 2 2 2

PNy =y = 08 micns, 13)

a
fm=a‘§f(5;d;"; @,0,5) | ui*=po®, my'=mq? (14)
(f“af#;fm) = (f“ (m02)7fll (m02)7fm (m02)) ) (15)

a
(¥ 5 Qum s Q@™ s Com,m) = 6_3(‘“ (8); au(S);am(S); o’ (S»lmf *=po?, mri=mo?. (16)

To first order, one obtains an expansion of D,
D (v cay (S) =8 av) ey — 2 (8ac"gbd"— Gad"gbc o (S)
— 2 [(Yadgbd 8oV bd = Yad §b"— Lad™Y be" o (S)

- Z (8ac"8va"—gad'g0e")[@*(S) (But-81) +u(S) (Be-8a)+am(S)A, ] (17)

and N () cay can be obtained by changing the sign of the right-hand side of Eq. (17), omitting the unit matrix and
replacing f by a wherever it occurs. We now transform N and D by the orthogonal matrix O to give the matrices

N'=07NO, D'=07DO, (18)

where N’ and D’ are matrices labeled by a single index [in contrast to the labeling, e.g., (ab), of N and D],
running from 1 to 28, denoting the state (antisymmetric) which is being coupled to the decomposition 8@ 8= 148
+8'+410+10427. Only the 8, 10, and 10 states are allowed. Let us denote this index by ¢ or % when it lies in the
range of the octet states and x otherwise. Using as our ansatz Egs. (19) and (20) of Sec. II one obtains, after
extensive use of the Jacobi identity and the other relations,

D/tu(s) = 5tz¢‘_625tu{(10 (S)+eiati[zkiaﬂ(s)+01"(S)+ap(s)+%€i(6i_ 1)5t’[2k,'ao(5)+Kla’"(S) , (19)
N0 (S) =G0l fo(S)+ €8s [ 2ki fo(S)+ fH(S)+ fu(S) T+ ei(ei— 1)8:[ 2k fo(S)+ Kif(S) ]}, (20)
A\"W(S)=G()_E)Oab’gab”(fsai‘i'abi){f”(S)‘*'kffO(S)‘*‘%éi[Zk/fo(S)-l-Kif'"(S)]} ) (21)
‘-\",Lx(S)=G(Zb)gab“Oab“(éai+6bi){f“(S)+k¢fo(S)+%e,-[2k¢’fo(S)+K1-fm(S):|} . (22)

We do not write down all the matrix elements of D’
since we shall require only those between octet states.
We see that, to first order, the submatrices of N’ and
D’ between octet states are diagonal.

Consider now the condition for a pole in the trans-

formed amplitude
T'=N'D". (23)

The elements of T’ will have a pole at a particular value

of S if detD has a zero. The matrix D’ is of the form

, (A A
(5 &)
where A is diagonal (8X8), A and B are the zero
matrix, and C is the unit matrix, plus first order (and

therefore presumed small) corrections. In the sym-
metric case, A is truly diagonal with equal elements

(24)
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which vanish when S=m. To see where the poles
move, we need only examine the zeros of the diagonal
elements of A. This follows since the leading elements
of D' are its diagonal elements, and correct to first order
detD is just the product of these diagonal elements.
These zeros occur, by the self-consistency requirement,
when the energy is given by S=m¢4A,, which yields
the condition
Ki=[2kico— (1— ek aptar+a,]/
[F(A—e)am—(1/edan]. (25)
We now wish to determine the implications of self-
consistency for the residues of the poles at S=mg+A,.
The residues of the elements of T’ may be obtained by
expanding the matrix product N'Dy~! to first order
where

(D¢-u=_ lim [(S—m=A)(DDu]. (26)

1 0

COOK AND J.

E. PATON

Dy is of the form
M 0
0 0/’

where M is diagonal and 8X8, with elements given as

S—m@—A,
(S
D 'rr, S=mo 2+Ar

The residues of the elements of T can now be obtained
from those of T’ by transforming back with the
orthogonal matrix O. Self-consistency is then obtained
by equating the residues of T'(s5y(cay to the sum
>t (gar™+var") (ged™+ved") where the summation over
[#] is over all those values of » which have the same
shifted, vector-particle mass.
Thus for the residue of T ;1) (qy One obtains

5,
ResT av) ey = —52 2 Zav'ged! f—-l——t[ei(Zki fok fidfu)Fhei(ei—1) (2R fot- Kif™)+Kifm]
[t] Um

(77

1 (84°40p"— €:04°
— Z gabtgcdt‘_——_
G2 111 U

which for self-consistency must be equated to
2 gav'gea'+ 2 gav'gedt
[t [¢]

X [ki(8ai+05"+8.4-047)+2k/8:].  (28)
A casual inspection of these two expressions shows that
they are inconsistent. To see this, one notes that
expression (28) is symmetric under the interchange
(ab) <> (cd), as it should be since the matrix T should
be symmetric by time-reversal invariance. However,
Eq. (27) does not exhibit this property. This is a well-
known difficulty within the determinantal method when
one has unequal masses in a multichannel problem. This
disease can be cured in several ways all of which have
their advantages and disadvantages. However, in this
case they all yield the same result, viz., Eq. (27) is
modified by the substitutions

0a' 05" — 3 (8a*+85" 40074047,
Je= 3 (1)

The second substitution is in fact trivial since f,= f*,
but formally we will maintain the distinction.

We now equate the two expressions for the residues,
and if we are allowed to equate the coefficients of
(8a*+085"+8,74084%) and §;, we obtain two further condi-

(29)
(30)

)[fn+ kifotie(2k fotKif™) 1,

fOei K;
—5ti [a“,m“l’ay,m'—%Ki(l_Ei)am,m+‘_am,m:”

am2 €;

@27)

tions satisfied by the quantities &;, k;/, K, in particular,

iy "
ki— ek = f“+%6¢K¢f— (31)
0 0
fﬂ+ fu fm K1fm €;
—ekit (2+eki=e FeK— —
2fo oo fo am

K;
X[aﬂ,m—l—a“,m— %K{(l—éi)am,m“i“—am,mj . (32)

€;

In fact, one is justified in equating the coefficients for
all of the eigenvectors, 8%, except for that corresponding
to e=2, i.e., the case where all the masses remain
degenerate. In this case the equations allow a deter-
mination of the parameter K; and the combination
(2k;+ k) only. This is reasonable since it is only the
combination (2k;+k;") which enters into the definition
of the yqu".

Thus, just as in Sec. IIB, the problem is, in principle,
solved. By means of linear combinations of eigenvectors,
one can in principle determine A, and +," in terms of
the given d,.

One can again inquire into the consequences of scale
invariance. This gives the identities:

2(fe+ fuud+ (frt fu)me=— fo, (33)
(a+a,)/ (@ +an)=— (m?/2ud), (34)
Z(a",m-|—a,,,m)p02+ (am,m+am,m)m02: —0Om, (35)
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from which it is easy to show that there is a solution
with e=2 and the coupling constants and mass ratio
unchanged.

B. Scalar-Vector Scattering

In close analogy to the bootstrap of the vector
mesons, we bootstrap the scalar mesons by considering
scalar-vector scattering. As our model of scalar-vector
scattering we take a set of amplitudes of the form

Z Arar.bt(D_l) bt,cuy (36)
b,t

where, as before, N is a matrix of Born approximation
amplitudes. The first of each pair of indices refers to a
scalar particle, the second to a vector particle.

These Born amplitudes correspond to the diagrams
which involve the scalar-scalar-vector couplings only,
i.e., the diagram given in Fig. 5. With this assumption
we can write

Na'r,bl(S) =Z guctgbcrh(a’)y)c; b,t,S) ) (37}

Dar,bt(5)=6ar.bt—'z gactgbcrﬂ(a,ryci b,t,S) . (38)

In the equal-mass case N and D can be diagonalized
by the 64X 64 matrix Q whose columns are the set of
Clebsch-Gordan coefficients for the coupling of 8®8 to
any of the 64 states of the various irreducible repre-
sentation of SU;. In contrast to the situation in Sec.
IIIA, both symmetrical and antisymmetrical couplings
are now allowed. As before, eight columns of Q will
consist of the g,3"/G. The others we denote by §.,%/G.

The existence of the symmetric solution is guaranteed
by assuming that

1=G"Bo(ud?), (39)
ho=—G*8¢ (ud®) (40)

have a solution, where 8¢(S) and %,(S) are the functions
B(S) and %(S), evaluated when all the scalar and vector
masses have the values ¢ and po, respectively; 8y is
the derivative of 8y. Equations (39) and (40) may be
established by diagonalizing N and D in the equal-
mass case by use of Q.

If we return to the case of nonequal mass, expanding
to first order in the mass shifts and using the ansatz of
Sec. IIC, Egs. (36) and (37), one can still transform N
and D by Q. The resulting matrices, N’ and D’ will,
as before, not be diagonal, but they will contain 8X8
diagonal submatrices. These 8 X8 diagonal submatrices

R —————m,

Fic. 5. Born approxima-
tion diagram for scalar- He
vector scattering.
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are

D' 1= 85— GBo(S)87— G705 (3€){BH(S)+Bu(S)
+2£8:(S) ei KL B™(S)+Bx(S)]

+2k80(S)+ (ei—1)8'(S)}, (41)
N’ 5= G*ho(S)875-+G? i85 (5 e) { *(S)+ R (S)
+2k:10(S) e+ K ™ (S)+hm(S)]
+2kho(S)+ (e— DI (S)},  (42)

where we have defined

d a9 9 9 3 \(B(arc;bit,S)
(a_u}’ ;1,2’ @’ En? amﬁ) [h(a,r,c; b,t,S)}
{ﬁ“(s),ﬁu(S),ﬁ’(S),B’”(S),Bm(S)}‘ 3)
1 (S), hu(S), B'(S), k™ (S), hm(S)

As before, we will need some additional elements of N’
to obtain the residue condition; the appropriate
elements are

1
jV’:DJ. (S) = Z garzgactgbcrgbtj

XALH(S)+Eiho(S) 10ai+[1u(S) +Eiho(S) 165
+ LR 5m(S)+hok ()16, A+ [K i (S)+ 1o (S)E 154
[ (S)+2ho(S)k 15,1} (44)

The discussion of the zeros of detD(S) is identical
to that of the last section, and instead of Eq. (24), one
obtains

7 {Bt-3e[BH 4Bt (ei—1)B'+ 2k Boei+ 2k /B0 ]}
=T 1_.(Rm ’
2€; (ﬁ +ﬁm) (45)

where 8, is the derivative of 3 with respect to .S and all
derivatives are evaluated at the mass values of the
symmetric solution.
In the same way as before, we can evaluate the
residue of T. It is
act bcp btj ‘rj
Res(N D),y 5= Y, coc 8800887

[1,bte ¥

X (h#+-Eho)so'+ (u+Fiho)ds!
+ (B 4ok )5,i4 (B shm+-hok )840
+ (W 42hok )8 i+ hothidii)  (46)

where

rij=—GHBut-0;Bs,,7H 8, () [ st Buat 2eikibs
+Ki(6m,s+.8m,s)+2kilﬁs+ (Ei— 1)68,]} . (47)

The symbols with two subscripts signify second

derivatives, evaluated at the symmetry masses. The
“free” sums in Eq. (46) can be done. Again, an examina-
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tion of the residues of T'4,,5: and T'pe,q- at the various
poles shows that they are not equal, so that T is not
symmetric. As before, one can symmetrize, and then
one obtains

Res(N DY),y 6.=>

11 7
X[+ hut-Fihot 5 6B o (Wt ) — ho— by
4 2hok i -2k ho) 41 (5,74-6.7)
X LR (k4 ho) 2k ot ei(hithy— B ()
A28 — 2ok +6hok:) J+0; ki3 ei(h+-hy
+ K (ko) — 20+ 2hok ! — 2hok) 1} .

gao’gr’

{hot3 (0a+067)

(48)

Thus, to first order in the &’, one obtains from Eq. (48),
after expanding 7;;,

ho (824085
RCS(N D- )ap Br= Z gap]gﬁr { Gzﬂ’+A1———2

I
+B¢—2—+Ci5j‘] , (49)

where the expressions for 4, B;, and C; are rather
cumbersome to write down, and we do not do so here.
Now, by self-consistency, Eq. (49) must be equal to

‘[Z] gap’gar’“i-z gamﬂ+z Yeap'gr
7

or

2 8ap’8ar T2 gan’ger’
71 51

X[ (0a*+05420;)ki4- (3,+8.9%/].  (50)

We see from Eq. (50) that the coefficients of §; and
2(8,+985) must be equal which implies, from Eq. (49),

A:=C;. (©))

Further, self-consistency requires
A;=2k;, (52)
B;=2F;. (53)

Thus, in contrast to the situation in Sec. IITA, we
now have four equations, Egs. (45), (51), (52), and (53)
to determine the three unknowns, &, &/, and K, for
a given ¢;. In general, it will be impossible to satisfy all
of these equations for the allowed values of e. Strictly
speaking, this does not prove that our self-consistency
problem has no solutions. It is certainly possible that
one of these relations is an unobserved identity, but the
origin of such an identity is not clear to us. Another
possibility is that, to obtain solutions to the self-
consistency problem, one requires a more general ansatz
for v,3” than that given by Eq. (36) of Sec. IT. The most

F. COOK AND J. E.
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general linear form may be written as
Yor' = garTRi(Bai+04) + R0 14+ Tar (5:),  (54)

where T',;7(8,) is an unknown linear function of the
8.’s, % a, b, or r. We have not explored such possibilities
in any depth, but it seems likely that each new constant
introduced into the v’s by Eq. (54) will lead to a new
constraint when the residue of (ND™)4, 6. is equated
to 211 (gap’tYao?) (ga+-+7v8-7). If this is the case, then
we shall still have one more equation than unknowns,
and the possibility of a solution is still improbable.

It is appropriate to summarize here why it is that
our conclusions in this section differ from those in
Sec. ITIA. In Sec. ITTA we found that a solution of the
scalar-scalar scattering bootstrap exists for any given
set of scalar masses infinitesimally close to the sym-
metric solution. We now find that within the present
method the existence of any nondegenerate solution to
the scalar-vector scattering bootstrap is unlikely. The
reason is the following: We have assumed, as is neces-
sary from general considerations, the antisymmetry of
the coupling constants g.;" under interchange of the
particle labels ¢ and &. This implies the equality of the
coefficients of 8, and 8, in the ansatz of Eq. (54) for
var". Now, the P-wave scalar-scalar scattering ampli-
tude T4p,0q has an antisymmetry property with respect
to the interchange of labels @ and b, and also ¢ and d,
and therefore so does its residue. Because of this, the
equality in Sec. IITA, of the coefficients of 8, and 85 in
Yav" did not lead to an extra constraint. Here it has led
to an extra constraint because the scalar particles occur
both internally and externally in scalar-vector scatter-
ing. No general property of the scalar-vector scattering
amplitude guarantees the required symmetry property
of its residue under the interchange of internal and
external particle labels.

C. Full Self-Consistency

As in Sec. II, we now wish to investigate the possi-
bility that the scalar and vector bootstraps are self-
consistent simultaneously. For this purpose we shall
simply ignore the difficulty encountered when we con-
sidered the scalar-vector scattering bootstrap. In other
words, we shall assume, unlikely as it is, that Eqgs. (43),
(51), (52), and (53) can indeed be solved for the ks,
2/, and K;. We shall encounter difficulties other than
those of the scalar-vector bootstrap above.

The investigation proceeds in close analogy to that
of Sec. IID. We first assume that a fully self-consistent
symmetric solution exists, i.e., Egs. (8), (9), (38), and
(39) are sunultaneously satlsﬁed If we agam impose
scale invariance, we have two unknowns #¢/u¢ and G2
It is certainly possible that no pair of values will satisfy
all four equations. There are however, two parameters,
the two D function subtraction points. We will assume
that they can be chosen so that a fully self-consistent
symmetric solution exists. No doubt, such a solution is
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not unique, but hopefully one might be able to choose
the subtraction points so that some vestige of crossing
symmetry remains.

In any case, we are primarily interested here in the
situation with unequal masses. Full self-consistency
demands that the masses obtained in each bootstrap be
equal. This is the case if

K.=K;. (55)
Since all quantities are fixed in K; and K;, we would
conclude that in general there are no fully self-consistent
solutions other than the symmetric solution with e=2
(because of scale invariance). The discussion in Sec. IID
is also appropriate here. Various points of view can be
taken. It could be the case that Eq. (55) is approxi-
mately satisfied for one of the eigenvalues. This could
indicate that a given set of scalar and vector mass shifts
would yield a self-consistent solution. On the other
hand, one could again argue that the most that such a
result implies is that the scalar and vector masses both
obey a particular mass formula, with no possibility of
a discussion of magnitudes.

The above discussion has ignored the question of the
equality of the coupling constants as calculated in the
two self-consistency problems. This gives two further
equations

(56)
(7

to be satisfied for full self-consistency. Equations (56)
and (57) are not implied by Eq. (55). This is different
from the situation met with in the discussion of Sec. II.
We recall that if the “mass condition,” Sec. I, Eq. (48)
were satisfied, then so were the ‘“‘coupling-constant
conditions,” Sec. II, Egs. (49) and (50). Here the
problem would appear to be hopelessly overdetermined,
since we must have all three of Egs. (55), (56), and (57)
satisfied for the same value of e;.

We conclude that it is quite improbable that a fully
self-consistent solution with nondegenerate masses
exists within the present model. No doubt the simplest
and most convincing way to eliminate the present
difficulty would be to discover identities between the
equations, analogous to those of Sec. II. However, it is
likely that none exist within our approximations, and
we have not uncovered any.

The conclusion here differs from that of Sec. IID.
There it was also concluded that, in general, a fully
self-consistent solution with nondegenerate masses
would not exist. However, for such a solution to exist
only one additional constraint would have to be
satisfied, and it seemed possible that an improvement
in the self-consistency approximation or the inclusion
of higher order terms might yield a solution with non-
degenerate masses. We now find that in the bootstrap
analysis three separate additional constraints must be
satisfied by a solution with nondegenerate masses, so

B 1279

that the existence of such a solution is correspondingly
more unlikely. This difference between the results of the
field-theoretic and bootstrap analyses might come as a
surprise to some, because Rockmore® has shown that
the two analyses are equivalent within appropriate
approximations. However, since his analysis was made
for single-channel problems it does not apply here. It
is precisely the presence of several channels with
different particle masses which is the source of the
difficulty.

IV. SUMMARY

Broadly speaking, we have obtained two results. The
first concerns the possibility of limited self-consistency,
i.e., the self-consistency of one set of particles. In Sec. IT
we showed, in the field-theoretic analysis, that it is
possible to make either the vector or scalar set of
particles self-consistent for arbitrary values of the
masses of the scalar or vector sets, respectively. This is,
of course, always under the assumption that the corre-
sponding solution with exact SU; symmetry exists, and
involved working to first order only in the mass shifts.

In Sec. IIT we investigated the question of whether a
similar result is true in the bootstrap analysis. By
considering the bootstrap of vector particles in scalar-
scalar scattering, we did find that the same result is
true for self-consistent vector particles. We also
considered the bootstrap of scalar particles in scalar-
vector scattering. We found that self-consistency now
required more equations to be satisfied than there were
unknowns to be determined. The reason for this is that
the residue of the pole in (ND™1),,,5 (where @ and b
are scalar, and 7 and s are vector particle indices) does
not automatically contain the correct symmetry
property required of it if it is to be equated to a product
of scalar-scalar-vector coupling constants. Because of
this, it seems difficult to see how, in our approximations,
a nondegenerate solution can exist to the scalar boot-
strap problem. One would suspect that the same diffi-
culty will arise in any approximate bootstrap calculation
in which the extra constraint on the residue of
(ND1),,, 1 is not identically satisfied.

Throughout the analysis referred to above, it was
found that the solutions to the self-consistency problem
with specific sets of input masses were particularly
simple. For these input mass shifts (called eigenvectors),
the output mass shifts were proportional to the input
mass shifts, and the shifts in the coupling constants had
the simple form of Sec. II, Eq. (20). One such set of
mass shifts is such that the associated total masses obey
the Gell-Mann-Okubo formula. So we have the result
that if the input masses obey the Gell-Mann-Okubo
formula, so do the output masses.

Our second result concerns the possibility of full self-
consistency. We considered this problem within both
the field-theoretic and bootstrap contexts again

8 R. M. Rockmore, Phys. Rev. 132, 878 (1963).
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assuming the existence of a solution possessing exact
SU; symmetry. Our first point was that the require-
ments of full self-consistency are most easily satisfied
by sets of mass shifts proportional to an eigenvector.
Masses obeying the Gell-Mann-Okubo formula fall
into this class. Which particular eigenvector (if any) is
favored is, however, a matter of detailed calculation
and very probably is model-dependent.

Neither in the field-theoretic nor in the bootstrap
framework does a solution exist, strictly speaking, to
the full self-consistency problem with nondegenerate
masses—at least within our scheme. In the field-
theoretic analysis, however, because of certain identi-
ties, there was only one more equation than unknowns,
and it was plausible that a more accurate calculation
(including, for example, second-order terms) might yield
a solution forone particular eigenvector. Inthebootstrap
analysis, even laying aside the difficulty encountered in
the bootstrap of the scalar particles, it was difficult to
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see how a fully self-consistent solution could come
about. There were three more equations to be satisfied
than there were unknowns (plus a further equation to
enable the scalar bootstrap itself to have a solution).
None of these equations appeared, in our approximation
at least, to reduce to an identity.

It should be emphasized that even if a fully self-
consistent solution were to exist for some particular
eigenvector, there is no requirement which selects this
solution rather than the equal-mass, symmetry solution.
It is very difficult to understand how criteria could be
established which would in fact distinguish between the
two solutions. Since this situation will always occur
when one assumes the existence of a symmetric solution
which is then perturbed (keeping any order terms), it
may be that an understanding of how the self-
consistency develops cannot be obtained with this
assumption. This very well may be a fundamental
deficiency of the approach presented in this paper.
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The high-energy forward-scattering amplitude in Ag¢* theory is investigated by means of the Bethe-
Salpeter equation. The class of irreducible diagrams which have dilatational symmetry at high energies is
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A lower bound for #, is obtained from a simple diagram. Using the upper bound on 7, which results from
unitarity, an upper bound on the coupling constant is obtained : A < (34/8)x2.

I. INTRODUCTION

ECENTLY, several investigations have been made
into the high-energy dependence of scattering
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