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A bootstrap model of the P (pseudoscalar) and V (vector) meson octets is considered, in which the P
and V are bound states or resonances in two-particle states of the type PV and PP, respectively. Unitary
symmetry is assumed. Several approximations are made in the many-channel, partial-wave dispersion
relations of the model, in order that simple self-consistency relations among the various P and V meson
mass ratios may be obtained. If it is required that the P octet not be degenerate or nearly degenerate, near
self-consistency can be obtained only if the pion mass is small compared to the X and q masses. It is argued
that the SU3 scheme of P, V, and baryon octets, and a jp =-,+ baryon decuplet, with mass splittings similar
to those observed experimentally, is unusually well suited to a nondegenerate solution of a bootstrap model,
because of the strong mutual coupling that exists among the lightest members of the various multiplets.

I. INTRODUCTION AND GENERAL PROCEDURE

EVKRAL theoretical works of the last two years
have shown that there is a strong possibility that

the SU3 symmetry of the strongly interacting particles
may be the result of the self-consistency requirements
of a bootstrap d,ispersion theory. "However, the experi-
mentally observed mass splittings of the particle mul-
tiplets are large. Therefore, the goal of bootstrap theory
must be to predict a badly broken SU3, rather than an
exact SU3.

The symmetry-breaking mechanism that fits in most
naturally with bootstrap models is "spontaneous break-
down. " This mechanism has been studied by many
authors, and was first applied to SU3 symmetry by
Glashow. ' Basically, the idea is simple. One supposes
that the masses and interaction constants of the par-
ticles are described by a system of nonlinear equations.
A basic symmetry (SUs symmetry in our considera-
tions) is present in the sense that these equations
possess a solution involving degenerate multiplets and
exact interaction symmetry. We call this solution the
degeneracy solution. It is also supposed that the equa-
tions possess at least (and perferably, at most) one solu-
tion involving mass splitting and a breaking of the
interaction symmetry. This solution must correspond.
to realitv. In order to apply this technique to a boot-
strap model, one simply takes as the basic equations the
self-consistency equations associated, with the positions
and residues of the poles identified with the particles.

The application of this technique to bootstrap models
has been d.iscussed in several papers. ' ' However, calcu-
lations of mass splitting for realistic systems of particles
usually have been confined. to terms that are of first
order in the deviations of the masses from the de-

f Supported in part by the National Science Foundation.' R. H. Capps, Phys. Rev. Letters 10, 312 (1963).' R. E. Cutkosky, Phys. Rev. 131, 1888 (1963); a list of other
references is given in Ref. 6, below.' G. Jona-Lasinio and Y. Nambu, Phys. Rev. 122, 345 (1961);
124, 246 (1961); J. Goldstone, Xuovo Cimento 19, 154 (1961);
M. Baker and S. L. Glashow, Phys. Rev. 128, 2462 (1962); S. L.
Glashow, ibid. 130, 2132 (1963).

4 R. K. Cutkosky and P. Tarjanne, Phys. Rev. 132, 1354 (1963).
~ R. H. Capps, Phys. Rev. 134, B460 (1964).' R. H. Capps, Phys. Rev. 134, B1396 (1964).

generacy-solution values. ' ' Unfortunately, one can ob-
tain no idea of the magnitude or the sign of a mass
splitting from such a first-order calculation. However,
one of the most striking features of the experimental
mass spectrum is the fact that the mass splitting of the
lightest (pseudoscalar meson) multiplet is almost as
large as is physically possible. One may describe the
observed spectrum of strongly interacting particles with
the phrase, "unitary symmetry with a sore thumb. "
The sore thumb is the pi meson, which is so much
lighter than the other particles that it transmits the
forces of longest range, and in this sense "sticks out. "
The main purpose of this paper is to investigate the
possibility that the small pion mass may result from the
self-consistency requirements of a bootstrap dispersion
theory.

We consider a simple model of a coupled P (pseudo-
scalar) meson octet and V (vector) meson octet. SUs
symmetry is assumed; we are not concerned here with
the dynamical origin of this symmetry. The V mesons
are associated with resonance poles in the coupled PP
states, and the P with poles in the PV states. (In this
paper the term "resonance" is used frequently to refer
both to bound states and resonances. ) A more complete
model involving both baryons and. mesons is discussed
brieQy in Sec. V.

It is reasonable to assume that the forces in the j= 1,
PP states are transmitted by the exchange of the V
mesons. On the other hand, it is not obvious whether P
exchange (associated with the VPP vertices) or V
exchange (associated with VVP vertices) should be
most. important in the PV states containing the P
resonance poles. Since the VPP interaction in SU3
symmetry is antisymmetric with respect to the inter-
change of corresponding members of any two of the
three octets, the P-meson poles must occur in the anti-
symmetric octet combination of the P and V octets. It
is interesting that the most attractive force resulting
from either the V or P exchange mechanism occurs in
the antisymmetric octet state, so that either assumption

"R. F.. Cutkosky, Ann. Phys. (N. Y.) 23, 415 (1963).
s R. H. Capps, Phys. Rev. 132, 2749 (1963).
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is consistent with our model. ' Unfortunately, no matter
which assumption one makes, there is no accurate dis-
persion theoretic approximation for treating such tightly
bound systems as the P mesons. Therefore, we will not
specify the origin of the forces, but will make a simple
approximation for all the forces in the model. Deviations
from exact SU8 symmetry of the forces will be neglected.

It has been shown previously that this type of ap-
proximation agrees closely with more detailed calcula-
tions of the depend. ence of the first-order V octet mass
splitting on the first-order P octet mass splitting. ' How-
ever, it does not follow that the approximation is
accurate for the present calculation in which both V
and P mass splittings are calculated, and higher order
terms in the deviations from degeneracy are includ, ed.
Present-day dispersion techniques are too crude for an
accurate calculation of such higher-order effects. How-
ever, the problem of calculating self-generating mass
differences is of key importance in bootstrap theory. In
order to make a start on this problem, we make some
rather drastic assumptions that lead to simple equations
for the mass splitting. We cannot argue that all neg-
lected. effects are small. The basic idea of the present
calculation was suggested previously by the author. '

The general procedure is to first assume masses for
the P mesons, calculate the V masses from the disper-
sion relations associated with the U resonance poles in
the PP states, then calculate final P masses from the
equations for the P poles in the PV states, and fjInally

compare with the P masses assumed originally. We
believe that the effects of the many unknown short-
range forces that are neglected in any dispersion-
theoretic calculation are not so important for the mass
differences of particles within SU3 multiplets as they
are for the ratios of masses of particles in different
multiplets. Accordingly, we do not attempt to calculate
V/P mass ratios, but take the average V/P mass ratio
from experiment.

The basic dynamical equation of the model is Eq. (23)
of Sec. IIB. This equation is very simple. In Sec. IIA,
it is shown that this equation follows from six plausible
dynamical assumptions. Readers uninterested in the
detailed assumptions may skip to Eq. (23), and then
read through to the end of the paper (skipping Sec. IV)
without loss of continuity. Section III contains the
results, and Secs. IV and V contain discussions of pos-
sible modi6cations and extensions of the model.

G. DETAILS GF THE MODEL

A. Assumptions

The first assumption is,
(1) Isotopic spin and hypercharge are conserved

The mass variables of the model are the m, E, and. g
P meson masses and th-e p, E* (called here the M), and

This is demonstrated for the V exchange mechanism by R. H.
Capps, Nuovo Cimento BD, 340 (1963).' Reference 5, Sec. V.

q U-meson masses. The p is coupled to mw and EX
states, the M to mE arid gE states, the q to EX, the
x to mp, E3f, and X3f, the E to xM, g3f, Ep, and Eq,
and, the g to EM and KM. The basic method used is the
matrix N/D dispersion method. At energies above the
various thresholds, the partial-wave amplitudes con-
necting the P-wave PP states, and. connecting the
j~=0 PU states, are related to the appropriate ele-
ments of the unitary 5 matrix by the equation, T;;

(ND I) . (g, $, ,)/(2~q, 3/2p I/2q, 8/2p .1/2) where q
.3p,

is a phase space factor and q; is the magnitude of the
i-channel particle momentum in the center-of-mass
system. Since the resonating states are all P-wave states,
the factor p; contains no zeros or poles at the channel
threshold. It is not necessary to specify the p; exactly
for the simple approximation of Secs. IIB and III.

The forces are assumed to satisfy the following three
condltlons:

(&) The forces (elements of the N matrices) are simple
poles. The force poles for the various amplitudes coupled to
a particular resonance are at the same energy.

(3) The ratios of the residues of the force poles are
chosen so thut un SU3 symmetric solution imohling u

degenerute P octet und u degenerute V octet exists, und so
that the forces eanish in all nonresonating PP and PV
stutes.

(4) The average residues of the V and P force poles are
chosen so that the calculuted ratio of the magnitudes of the V
and P octet mass squared mec-tors agrees with experiment

Assumption (2) leads to the form listed below for the
ED ' equations for the channels coupled to the reso-
nance pole associated. with the V meson n, if only the
PP states are considered in the unitarity condition.
(Frequently, we write only the V pole equations. In all
cases the P pole equations may be obtained simply by
replacing the index V by P.) The equations are,

T;; =Pg, N;I, "cof;p(D )/~D ~,

N,; =F;; /(s s.), —

De =o,; Pg H, (s), —

(1)

(2)

(3)

s sa
Il; (s)=

ds'q, "ap;r (s')

„=0 (s' —s~)'(s' —s—te)

"R.H. Capps, Phys. Rev. 134, 8649 (1964).

where cof, A,
. (D ) and ~D

~
denote the jh cofactor and

the determinant of D, s is the square of the total energy
in the center-of-mass system, and s and P;; are
constants. Time-reversal invariance implies that F;;
=Ii;, .Thei j representation is the representation of the
physical two-particle states.

We now show that the ratios of the force residues F;;
are determined by assumption (3). We consider the
degeneracy solution, in which all the phase space
factors (qP p;r) for the j=-1,PP states are equal. It has
been shown previously that the requirement that the
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resonance n correspond to a simple pole in some of the
T;; implies that the residues r;j of this pole satisfy a
factorizability condition,

r ..a Qv~.ap.a

where Cv is a positive constant independent of i, j, and
0,, and, y, is the coupling constant of 0. to the two-
particle state i.' If the pole corresponds to a resonance
rather than a bound state, we make the small width
approximation, i.e., we neglect the imaginary parts of
the dispersion integrals when determining the position
and residue of the pole. In general, the above factoriza-
bility condition does not imply that the force residues

F;; must satisfy a similar condition. However, our
assumption that the forces vanish in the nonresonating
states does imply not only that the F;; are factorizable,
but also that they are proportional to the r;j, i.e.,
F 'j C 7 ' pj . In order to verify this assertion, one need
only write the d.egeneracy-solution matrix amplitude T
in the representation in which it is diagonal (in which
representation all elements are zero except that associ-
ated with the resonance) and then transform to the
representation of the physical particles. Since the p; are
proportional to the Clebsch-Gordan coeScients A; of
SU3, we write

(6)

where gv is a positive constant.
It has been shown that the V-meson exchange force

in the PP states does satisfy the factorizability condi-
tion. ' An equivalent statement is that this force is zero
in the nonresonating PP states of the representations
10 and 10*. The P-meson exchange force in the PV
states also vanishes in the representation 10 and 10*,
but not in the nonresonating symmetric representations
of dimensions 1, 8, and. 27. It has also been shown that
to first order in the mass differences, such a factoriza-
bility assumption on the forces is superfluous, for the
nonresonating representations are not coupled to the
resonating representation. "However, in a higher order
calculation, such a coupling can exist. Since we do not
know the nature of the exchange force in the PV states,
we do not know the eGect of this coupling. Hence, we

neglect this coupling.
We conclude that assumption (3) determines the

residues of the force poles in terms of two constants gv
gp. These constants are to be determined later from
assumption (4). The fifth assumption is not really an
assumption since it is necessary for self-consistency.
It is,

(5) The positiols s of the iiarious force poles are deter

missed so that the iialues of any particular VPP iuteractiort
coustaut determAued from the residues of the resonance
poles correspoudiug to the three particles iu the vertex are
corIsisterIt with each other.

The condition that a resonance or bound state occur
at an energy-squared s„ is that (D (s„)

~
vanish if the

'~ Reference 6, Appendix.

integrals H; are replaced by their real parts. These
integrals are dimensionless, and thus must be functions
of ratios of the quantities s, s, p;,', and p;q', where p,;,
and p;q are the masses of the two particles of the state i.
We make the following simple approximation for the
integrals,

(6') The ietegrats ReH; for the V resortauces are ap
proximated by

s s~
ReH, N Hov+H, v +Hsv

@i~ pa~

(7)

B. The Basic Equation

The assumptions of Sec. IIA lead to a simple equation
relating the mass of a resonating particle to the masses
of the particles in the two-particle states coupled to the
resonance. The 6rst step in deriving this equation is to
rewrite Eqs. (1) and (2) in the form given below,

T;;=t,;((s s) iD(, —

t;;=pg P;I cof;I, (D),

(9)

(10)

where the index 0, on the quantities t, T, and D has been
suppressed. If Eq. (10) is multiplied by H, and combined
with Eq. (3), the result is

H;t;; =Pp(bo, Dg,) cof;p(D). —

The quantity PI, D;I, cof,&(D) is equal to the deter-
minant of a matrix formed by replacing the j row of
D by the i row, and is thus equal to 8;;~ D ~. Therefore,
Eq. (11) may be reduced to the form

(12)

and JIO, H~, and II2 are corIstarlts commorI, to all the
V poles.

Ke discuss brieQy the justification of this approxima-
tion. The dispersion integrals H; depend on p;, and
p;~ only by means of the phase space factors, p,g . The
most important factors are the q; these are related to
the particle masses by the equation,

4g s 2(ti +@j'b )+ (tika p 0) /s''

The approximation of Eq. (8) is equivalent to replacing
the above equation by 4q =s—4', and is thus very
accurate for values of the integration variable close to
threshold.

The approximation of Eq. (7), that ReH; depends
linearly on s and s, is reasonable since the dependence
of the integrals of Eq. (4) on the s and s factors in the
products (s' —s ) 2(s' —s) ' is not as important for
bound states and low-lying resonances as the depend-
ence on the (s—s,) factor. Equation (7) is a modification
of the effective range approximation. This equation is
not accurate if s&&p,&. The effect of this inaccuracy is
discussed after Eq. (23) and in Sec. IVA.
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In order to obtain a further simplification we make
use of Eq. (6), concerning the factorizability of the Ii;;.
This condition implies that the determinant of a sub-
matrix of the matrix F;;=8;;H; can fail to vanish only
if the submatrix has but one element. Because of this
fact, many of the terms in

~
D~ and in H;t;, vanish; these

quantities become simply

)D) =1—P.~.aH. ,

H;t;; =H;Ii;;, or t;, =Fg..

(13)

(14)

The final equation for T;; is obtained by combining
Eqs. (9), (13),and (14), and then using Eq. (6) to write
the Ii;; in terms of SU3 Clebsch-Gordan coeKcients.
The equation is,

gvA; A
P. .a-

u
( —.)«-g. Z.(A.-) H.-()&

(15)

=A A /(C"Z ) (17)

Z~= (~ '—g )P„(A„~)'Lg(ReH~~)/gg], ~. (18)

If the ratio of coupling constants for two channels
coupled to the same V or P resonance pole is taken, the
result is,

y ~/y "=A ~/A ~ (19)

This ratio is unaffected by deviations from degeneracy
in our approximation, and corresponds to exact SUB
symmetry. We may now make use of the self-consistency
requirement concerning the residues, i.e., assumption
(5)." This requirement, together with Eq. (19), is
sufhcient to establish that the ratios of all five of the
VPP interaction constants must correspond to exact
SU3 symmetry. The qEE, pEE, 3f~E, and MqE
constants are all associated with the E pole, and thus
must correspond to exact symmetry because of Eq. (19).
Furthermore, the interactions p~x and pEE are both
coupled to the p pole, so the ratios of all five (ps.m, pEE,
rpEE, MmE, and cVqE) interaction constants corre-
spond to exact symmetry. It is seen from Eqs. (17) that
this condition implies that the various Z for each of

"The possible utility of this requirement in complete bootstrap
models is discussed in detail in Ref. 6.

This equation is almost as simple as in the degeneracy
approximation, the only extra complication being the
fact that the H~ are different in different channels.

The self-consistency conditions associated with the
position and residues of the pole n are obtained easily
from Eq. (15). The resonance energy is the energy at
which the second factor in the denominator of Eq. (15)
vanishes, if the imaginary parts of the integrals Hi, ~ are
neglected, i.e.,

Pp(Ag")' ReHI, (m ') =gi —'. (16)

The relation between the residues of the resonance poles
and the coupling constants is given in Eq. (5). Applied
to Eq. (15), this relation is,

the two sets of poles must be equal, i.e.,
Z~=Z~=Z" (=Zi'), (20a)

where
.'/„) —(Z /H

(I/~-') =2' ((A' )'/p''j.

(21)

Since (A;~)' is the probability of the two-particle state i
in the wave function for the particle o. that corresponds
to exact symmetry, p

—' is essentially the average value
of p; 2 for the particle n.

The pole-position equation, Eq. (16), for our simple
choice of ReH;, is

5$a2 SaH" +H' =g -'—H'
2 2Pa Pa

(22)

If the variable s /m is eliminated from this equation
by means of Eq. (21), the resulting equation for the
mass-squared of the V meson may be written in the
formq

(A a)2- —1

e.'-=1P P, (23)
.2

The sum is over the two particle states coupled to the
pole n; A, ~ is the appropriate SU3 Clebsch-Gordan
coeScient, and p; is the average mass of the two particles
of the state i. The normalization constant Sv depends
on the coupling constant gv and on the other constants
introduced in this subsection; it is positive for reason-
able choices of these constants, and is the same for all V
mesons. The method used for determining the normali-
zation constant is explained at the end of this section.

Equation (23) and the corresponding equation for the
I' masses (obtained. by substituting S~ for X~) are the
basic equations of the model. If the terms in these equa-
tions are expanded in powers of the deviations of the
individual P and V square masses from the respective
average square masses, the linear approximation is tl e

probability matrix approximation of Eq. (15) of
Ref. 5 t with the constant npi of Ref. 5 set equal to

) Ii ~'I'/([Ii ~'I'+
~ g ~'~')]. The principal effect of the

higher order terms of Eq. (23) is that when the differ-
ence between the masses of two states coupled to the
same resonance pole is increased, the lighter state plays
a larger role in determining the properties of the reso-
nance pole. This is certainly a real physical effect. Our
assumption that it is important is consistent with the
most popular philosophy used in applying dispersion
relations.

Zq Zw ZK( —ZP) (20b)

This is regarded as a condition on the subtraction
constants s .

We now make use of our simple approximation for
ReH;, Eq. (7). It is seen that with this approximation
Eqs. (18) and (20a) lead to a simple equation for the
subtraction energy, i.e.,
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It was pointed out in Sec. IIA that the approximate
form assumed for the dispersion integral, Eq. ('7), is not
accurate if s/pP&)1. In fact, Eq. (7) blows up if s/pP
approaches infinity, while the actual integral, Eq. (4),
remains 6nite. This catastrophe does not occur in our
results, however, as the only range of s/pP that plays
a role in the equation for the pole n is that immediately
around m '/pP. However, it follows from Eq. (23) that
m '/pP is bounded from above by N" ~/(A, ")'.

In order to make clear the behavior of our approxima-
tion in the extreme limit p ~ 0, we consider the p mass
equation following from Eq. (23), i.e. :

lO
O

tO
O

IO
O
I

ioo

8

P '=Z p''E' (24)

where P;v ~ is the square of the mass of the i member of
the V or P octet and the E; are defined to be orthogonal
unit vectors in an eight-dimensional space. For each
choice of original P masses, N~ is chosen so that the
calculated

( gv~/~ gp
(

ratio corresponds to experiment,
and E~ is choseri so that the calculated value of [ g~~
agrees with that assumed originally.

In order to determine the experimental value of
~
g" ~,

one must specify the combination of the experimental
co and y particles that is to be identified with the
isoscalar member of the V octet. The only strong argu-
ment for m —y mixing results from the assumption that
the Gell-Mann —Okubo (GO) sum rule is accurate for
the V octet. ' However, the justification of this rule
depends on the assumption that the linear approxima-
tion to mass splitting may be made. On the other hand,
a nondegenerate solution to the dynamic equations of a
bootstrap model can exist only if higher order terms in
mass splitting are comparable to the linear terms for at

~4 M. Gell-Mann, Phys. Rev. 125, 1067' (1962);S. Okubo, Progr.
Theoret. Phys. (Kyoto) 27, 949 (1962).

+
m ' 41Vr E3p, ' 3IJx'1

If p —+ 0, this equation leads to nz, —+ 0, whereas the
linear approximation Lm, '=4Xr(Ppp, „'+ipyzrP)] leads to
m, '~ —,'1Vv(yrrp). Thus, the E meson plays no role in
determining the p mass in this limit of our approxima-
tion. (If the p meson were coupled only the m, p ~ 0
would necessarily lead to m, —+ 0, since only the ratio
m,/p would be determinable. ) In an exact model, the
decoupling of the E meson would not be complete in
the limit p —+ 0. The present approximation is not un-
reasonable, though, as is obvious from the fact that most
bootstrap treatments of the p meson neglect the E
coupling completely, simply because the p&/p mass
ratio is so large.

Finally, we discuss the exact method used to deter-
mine the normalization constants N~ ~. The normaliza-
tion is in terms of the V and P octet mass-squared
vectors gr and g~."These vectors are defined by

CO

O

0.6 -0.5 0 Sp 05 0.6 0.$

FIG. 1.Self-consistency angle X for different P mass assumptions.
The diagonal )( is the physical point. The curves corresponding
to 10' and 20' near the top of the figure follow close to the m and
E coasts to the points marked on the E coast.

least one multiplet. Therefore, we assume pure co and q

states, in which case the q must be identified with the
isoscalar octet member, since it is coupled strongly to
the KE state. (An SUp singlet V meson is not coupled
strongly to PP states. ) The ratio

( gr~/( gp
~

plays a
nontrivial role in our model only when the masses of
the PV states coupled to the P poles are computed.

III. RESULTS

The self-consistency of a particular assumption con-
cerning the P masses may be expressed conveniently in
terms of the P octet mass-squared vector, introduced in
Ref. 11 and defined in Eq. (24) above. Since the
absolute magnitude of gp is not computed, the angle X

between the g~ assumed originally and that calculated
in the last stage of the calculation is a measure of the
self-consistency. Exact consistency corresponds to
X=0 .Since isotopic spin conservation is assumed, there
are only the three (m, E,q) independent I' masses, i.e.,
g~ is confined to a three-dimensional subspace of the
eight-dimensional octet mass-squared space. A con-
venient set of three orthogonal components for Iip is
the following:

P = (1/g)'I'(3P +4P +P,),
Pi = (1/3)"'(2px+P. 3P-), —

Pp'= (3/4o)"'(P +3P p 4px)—
(25)

where p, =mp. Similar components may be defined for
the V mesons. The comPonents Pi~ and Pp~ measure the
mass splittings that satisfy and violate the GO sum rule,
respectively. " (The sum rule is the statement that
P&~ ——0.) We define normalized mass-squared variables
by the equation b, =P;/

~ g ~, so that 5p'+8iP+5pP= 1. The
angle X is then given by cosh=+ '—p i p 5,~5,~'; we con-
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2
0.5 0.4

FIG. 2. Large-scale version of the region of near
self-consistency near the boundary.

sistently use a prime to distinguish the P mass-squared
vector calculated at the fi.nal stage of the procedure.

The self-consistency angle X calculated, for diferent
assumed values of 5»" and 82~ is shown in Fig. 1. The
boundary of the rounded triangular region in b»"—82"
space corresponds to zero mass for one of the three P
mesons; the points where the slope changes correspond
to two zero P masses. The plot in Fig. 1 resembles a
relief map of a triangular island, so we have used
geographical terms. That part of the boundary corre-
sponding to P =0 is called the pion coast, etc. Two +
marks show the positions of the two exactly self-
consistent solutions. Curves corresponding to X=10'
and 20', and several peaks corresponding to large values
of X, are also shown.

The solution corresponding to 5» =82 =0 is the
d,egeneracy solution. The other exactly consistent solu-
tion occurs on the pion coast and corresponds to 8»

=0.612, 82~——0.43. The fact that this solution occurs
exactly on the boundary is a consequence of the crude-
@.ess of the calculation. In a more exact treatment this
point would be expected to move either out or in. If the
point moved out, there would be no nondegenerate
solution. Hence, the calculation is not sufficiently accu-
rate to indicate whether or not a nondegenerate solution
really exists. However, the calculation does indicate that
if such a solution exists, it is likely to occur in the region
of low pion mass.

We assume that a self-consistent solution to a more
accurate treatment of the V= (PP), P= (VP) model
does exist, and that the present approximation is
sufficiently accurate that the angle X defined above
should be small for the P mass values of this solution.
The only region corresponding to X&10', other than
that centered around the degeneracy point, is the
thumblike region extending down from the P =0
boundary. We cannot estimate from our mod. el how
close to zero p /I )~

I
should be, but we can estimate the

range of values of P„/Plc that corresponds to approxi-
mate self-consistency. An enlargement of this region is

shown in Fig. 2. In this figure the "pion river" lies along
the valley defined by the condition that X possess a
minimum as a function of P,/Px, for a fixed low value

f&-/lv I

The components of the experimental P mass-squared
vector are 8''P /I y I

=0.09 8 2P&/IIi 1=1.20 8 P /
I

= 1.49, or, equivalently, 5i ——0.572, 52
———0.023.

This point is indicated with a diagonal X in Figs. 1
and 2; it lies close to the pion river. Explicitly, the
minimum value of X for 8'I'P„/I g I

=0.09 occurs at
P„/Px=1.45 (or 5+=0046).Thephysicalratioof P„/Px
is 1.24. Figure 2 illustrates the possibility that the ac-
curacy of the GO sum rule for the P octet may be to
some extent an accident. Nonlinear terms in the mass
splitting are essential in our model, yet most of the pion
river lies fairly close to the 52~——0 axis.

The choice of the experimental P masses for gP leads
to the following computed parameters: B»~=0.53,
82+=0 13 8» =0 46 82 '=0.08, and. X=9.6'. The
experimental V mass deviations, (based on p, iV, and

y masses of 750, 888, and 1019 MeV), are 5iv ——0.195,
52v/5iv ——0.35. It is seen that the calculated V mass
splitting is much too large, but the calculated ratio
8~ /Si, which measures the deviation from the GO sum

rule, is of the right sign and approximately the right
magnitude. A possible explanation for the small experi-
mental V mass splitting is given in Sec. IVA.

The manner in which the V and P mass splitting de-
pend on the 8i~ assumed initially (for 82~ ——0) is shown
in Fig. 3. The salient features of these curves may be
understood if the basic equation of the model is ex-
panded in powers of deviations from degeneracy. If
such an expansion of Eq. (23) and the corresponding
P-pole equation is made, the results may be expressed
in terms of the 8» —82 components, i.e.,

4v = -,'4~+Oa,

82v ————',82 +Op',

&i '=~(Ri»i +Rvbi )+Op",

3(Rz4 +Rv@—)+Ox"',
R =

I
Ii~l'"/(I Yl"'+

I
O'I"'),

(26a)

(26b)

(26c)

(26d)

The symbols 0&, 0&', etc., represent all terms of order
greater than the first in the 8. These higher order terms
are such as to lead to positive 82 and 82 '. The calcu-
lated ratio 82v/82~' is greater than one because the
linear term ——',Rvbmv in Eq. (26d) partially cancels the
higher order term in this equation. This conclusion does
not depend on the fact that 82~ has been set equal to
zero in Fig. 3. A calculation shows that if 8»~= 0.57, the
choice 82 ——0.06 leads to 82 '=82 and to a 82v/b2

'

ratio of 1.6.

IV. POSSIBLE MODIFICATIONS OF THE MODEL

The approximation of Secs. II and. III does not take
into account the fact that the P mesons are much more
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tightly bound systems than the V mesons, except when
the masses of the PV states are computed. In this
section we discuss some simple modifications that take
the V—P mass difference into fuller account. We do not
discuss the origin of I:he V—P mass difference, but
assume it results primarily from a mechanism similar
to that discussed previously by the author, i.e., the fact
that crossing matrix elements tend to be greater for
forces in states of low statistical weight, and hence low
spin. "We wish to make only one point related to V
resonances appreciably above threshold (Sec. IVA) and
one point that applies to the very tightly bound P
mesons (Sec. IVB).

A. Resonances Appreciably Above Threshold

If the mass of a resonating particle is appreciably
greater than the threshold of a particular channel,
Eq. (7) is not a good, approximation for the dispersion
integral associated with that channel. In fact, if m is
suKciently greater than 4p;s tha, t the region (s'(s) is
important in the integral, ReH; (m ') may be an in-
creasing function of p,s. [Since Eq. (7) must apply to
bound states as well as resonances, the constants in this
equation must be chosen so that B/ReH; (s)j/Bp, s is
negative. }

In ord.er to study this "high-resonance" effect, we
modify assumption (6) of Sec. IIA. We substitute the
phase space factor p;v=s "' into Eq. (4) and evaluate
the integral explicitly, assuming that s &0.The result is

J„—1 2(x—1)(J„—J,)
Ss ReH, (s)=1— +

~=ss/~p, y= ——.'s-/~.s,
~s= l:(y+1)/yj'" »l:(1+y)'"+y'"1,
J,= L(1—x)/x$'I' arctanLx/(1 —g)$'~', 0(g(1, (27)

J.= l (*—1)/xj'" 1nL(x—1)'~'+x'I'1, x~ 1.
For simplicity, we assume that s is large and negative,
so that lny»1 and lny))in@. In this case the leading
terms of ReH; and B(ReH, )/B are

Ss. ReH; =1+in(4y)(x —s)y ', (28)

Sir(x+y)B(ReH; )/B, =ln(4y)+g —' —1
—J (2+x '). (29)

If we assume that the V pole equations are a part of
a complete bootstrap model of the V and P mesons, we
may apply the coupling-constant self-consistency condi-
tion of Eq. (20a). (This condition does not depend on
the assumed form of H; .) It is convenient to express
this condition on s in terms of the two parameters mo'

"R.H. Capps, Nuovo Cimento (to be published). See also G. F.
Chew, Proceedings of the 1WZ Annla/ International Conference on
High-Energy Physics at CE&RN, edited by J. Prentki (CERN,
Geneva, 1962), pp. 525—529.
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pP

I

0.3 0.62

FIG. 3. Dependence of calculated mass splittings on hip, for 82"=0.

m~'=6+ (A ~)'pP. (32)

If the P masses are chosen to be the experimental values,
this choice leads to the ratio of lengths of the V and P
mass-squared vectors of 4.95, rather than the experi-
mental value of 3.69. On the other hand, agreement with
experiment of the calculated, V mass ratios is improved;
the calculation. leads to the results, m, '/m~s=0. 50,
m, '/m+=1. 30, or, alternately, Biv=0.315, Bsv ——0.045.

An alternate procedure is to choose the parameter mo'

in Eq. (31) equal to 5.37; this value leads to agreement
with experiment of the calculated.

I gvl/I g~l, if the
experimental P mass values are used. The results of this
calculation are very close to those of Sec. III, i.e.,
6g"=0.53, 52~=0.11.

The reason for the decrease of the V mass splitting
that results from Eq. (32) is that the p and M masses
are sufficiently higher than the ~x and xE thresholds
that the values of the dispersion integrals associated
with these channels are much smaller comparatively

and so, rather than g~ and Z~. The @so' and. so are the
values of m ' and s that occur in the degeneracy solu-
tion corresponding to gz and Z~. Combination of Eqs.
(20a), (18), (27), and (29) lead. s to the equation for s,

ln(s. /sp) =
l P;(A; )'h(-', s./p )i—h(-', mp'),

h(x)= J,(2+x ') —x ',
where we have normalized the P masses so that p,'= 1 in
the degeneracy solution.

The pole-position equation, Eq. (16), may also be
expressed. in terms of $0 and mo'. If use is made of Eq.
(28), the pole-position equation leads to the relation,

m s—6 P;(A ~) p = (s /sp) (mps 6) ~ (31)

If (s /sp) is eliminated from Eqs. (30) and (31), the
basic equation of the modified, mod. el for the V masses
results.

We first consider the simple case mo'= 6, in which case
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than in the approximation of Sec. II. This is the eRect
discussed at the beginning of the present section. In the
present approximation this effect is important only for
an assumed value of j )~j/ j

)~
j

larger than the experi-
mental value. However, if we had chosen jsoj to be
comparable to mo', rather than very large, the low s'
regions of the dispersion integrals would be more ac-
centuated, and this eRect of a decreased. V splitting
would be present for a smaller value of

j )~ j/ j Il"j.
If Eq. (32) for the V poles is combined with the

approximation of Sec. II for the P poles, there is no
region except the central region of the 5~ —52 plot
that corresponds to near self-consistency. In this com-
bined approximation the initial assumption of experi-
mental P masses leads to a calculated. X of 17.9'.

B. Tightly Bound Systems

We may not carry out an approximation for the P
poles similar to that used above for the V poles, since
the appropriate choice of p,~ in Eq. (4) would, lead to a
divergent integral. In this subsection, we wish only to
illustrate the fact that if the approximation of Sec. II is
modified, the results for tightly bound, systems are very
sensitive to the procedure used in writing the forces
(elements of the 1V matrix).

We consider, for simplicity, a meson A that is a bound,
state of two identical mesons B.The spins of A and 8
need not be specified. The condition for a bound state
at m~' is of the form IZ(m~', mii', t) = constant, where H
is a dispersion integra1 and t is a variable of dimension
(mass)' associated with the force. (In our model t could
be the position of the force pole. ) We assume that the A
and 8 are members of larger multiplets, and consider
6rst-ord. er deviations 6; from the degeneracy solution
values. Our notation is A=Ao+A~, etc. , where A is
shorthand for m~', and the subscript 0 refers to the
d,egeneracy solution. The first-order equation for 6& is,

a~ ———(Hs/H~)hs (Hi/Hg)t, —(33)

where H, = BH/8i Dilatationa. l invariance (the fact
that II is dimensionless) implies the relation,

H~A o+HIiBo+H, to 0. ——(34)

In the probability matrix approximation of Refs. 5
and 6, the H, terms are neglected in both Eqs. (33) and
(34). The result is simple, i.e.,

(~z/A o) = (&a/Bo) ~ (35)

An alternative procedure that might be used is to
neglect the H& term in Eq. (33) but not in Eq. (34), and
to calculate H~/H~ from an assumed definite form of H.
If A o) j to j, as is often the case for a loosely bound or
unbound resonance, the H&to term of Eq. (34) is likely
to be small, so that the results of this procedure are
similar to those of the probability matrix approxima-
tion. On the other hand, if the system is tightly bound.
so that A o( j &o j, the value of &~ calculated in this way

is likely to be very sensitive to the assumed. form of II.
In the present paper, the coupling-constant consistency
condition was used to eliminate that to dependence of
the integrals from the problem; the linear approxima-
tion to the model is thus similar to Eq. (35).We feel that
this consistency condition must be present in any
reasonable model. The method used. here is admittedly
crude, however. We hope that in the near future more
accurate dispersion methods for tightly bound systems
will be developed.

V. CONCLUDING REMARKS

The results of Sec. III show that if one assumes that
the mass splitting of a resonating multiplet depend, s
primarily on the mass-splitting of the multiplets of the
coupled two-particle states, the most favored. type of
splitting in the simple P and V octet bootstrap model is
primarily of the Gell-Mann —Okubo type, with the
or and p being the lightest I' and V mesons. The basic
reason for this result is the strong pew coupling con-
stant that results from SU'3 symmetry. Essentially, that
type of mass splitting is most favored in our model
which leads to the strongest mutual coupling of the
lightest members of the various multiplets.

We now extend, this SU3 model to include four mul-

tiplets, the I' and V octets, a j= io baryon octet (B),
and a ji'= (oo)+ baryon decuplet (B*).It is assumed that
the V, B, and 8*are coupled. to PP, PB, and, PB states,
respectively, and. that the P are coupled, to a linear com-
bination of PV and BB.It is assumed that the PBB
interaction angle 8 is equal to 33', as given by considera-
tion of the 8 —8* reciprocal bootstrap model. ~ The
terms of first order in the mass splitting for this model
are discussed in Ref. 6.

If the x is taken to be the lightest P meson in this
four-multiplet mode1, and the V, 8, and 8* mass
splittings are assumed to result from the P mass
splitting, calculations to first order show that the
lightest members of the other multiplets are the iso-
triplet V, an isodoublet B (which may be identified. with
the nucleon), and. the isoquadruplet B*.'r The fact that
this corresponds with experiment is not a compelling
reason to believe that the P splitting causes the other
splittings, as one could. make a similar argument starting
with a light p meson or a light nucleon. The significant
point is that the mutual couplings among the lightest
members of the four multiplets are large. The proba-
bilities (calculated from exact symmetry) of the 7ror, or1iI,

and xX states in the wave functions of the p, X, and.
X*, respectively, are 3) 0 69' and. —,'. The probabilities
of the +p and XX in the PV and BBparts of the m. wave
function are -', and 0.46. Since the lightest particles are
particularly important in dispersion theoretic models,
it may be said that the pion became the sore thumb
of 5V3 because it does so much of the work in pulling up
on the bootstrap. In fact, it wouM be fairer to say that
the pion is not really sore, only exceptionally sturdy.
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For some Lie group schemes of particles, there are no
types of mass splittings that allow such a strong mutual
coupling among the lightest members of the Inultiplets.
In order to illustrate this point, we consider a scheme
based, on SU2, in which the P and V mesons are x and
p triplets. The p is a xx resonance, and the x is a xp
bound state. The particle-antiparticle pairs ~~ and p+
are each d.egenerate, but the neutral and charged par-
ticles are assumed, nondegenerate. Appropriate compo-
nents of the x mass-squared vector are,

0
O-
lA

40

O
O

O
O
Al

The fractional mass-squared parameters are defined by
the equation 8, =Pp/I (Pp)'+ (P&~)'J~'. Similar equa-
tions may be written for the p mesons.

One may follow the procedure of Secs. II and III for
this scheme, i.e., assume a value for 5&~, use Eq. (23) to
calculate 8~&, and then use the corresponding P-pole
equation to calculate 8& '. The self-consistency angle is
given by cosh =P; 0 & 8, 8, '. The value of this angle as
a function of b~ is shown in Fig. 4. In this case there is
no extended region of small X other than that around the
degeneracy point 8& ——0. A nondegenerate solution
exists at the boundary point 5&~ ———(3)'I'(P +=0), but
the region P«10' extends only a small distance inside
the boundary.

The basic reason that self-consistency for non-
degenerate multiplets is dificult to achieve i~ this
scheme is that the mutual coupling among the lightest
x and p is not particularly strong. The model favors
light ~+ and p' particles; the charged x is the "thumb"
of the mod. el. The probability of the x+ in the de-
generacy-solution wave function f(m+) is only ~~, while
the probability of the 7r" in P(m') is one. The situation is
not improved, if one extends the model to include a
nucleon doublet. Any nucleon splitting, being odd under
charge reAection, is not coupled to the m and p splittings.
Therefore, the XE part of the m wave function cannot
help in maintaining the m splitting.

Similar considerations have not been applied to a
large class of possible Lie-group schemes. However, the
linear terms in mass splittings in V —P models for a
large number of schemes are examined in Ref. 5; it
is shown there that for many schemes no type of mass
splitting is as highly favored as the GO type of the SU3
double-octet scheme. It is also shown in Ref. 5 that in
the linear approximation to the double-octet scheme,
isospin-violating deviations are less favored than the
Go deviation. It is worth pointing out here that isospin-
violating and, isospin-preserving deviations are not
coupled in models similar to the present one, even

O
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I'IG. 4. Self-consistency angle as a function of x
mass splitting for the ~model.

through terms of higher order than the first order in
the deviations are included.

The above comparison of different schemes illustrates
the fact that in the long run the large experimental P
mass splitting may be a blessing to the bootstrap
hypothesis. One e~ects that in an accurate calculation
within a particular group-representation scheme, the
over-all magnitude of the mass splitting of a non-
degenerate solution should be smaller if the splitting is

highly favored, i.e., if the mutual coupling of the light
members is large. As we have shown, the observed type
of splitting is highly favored. Yet experimentally, the
observed P mass splitting is almost as large as is
physically possible; the pion mass is barely positive. It
seems likely that if a dispersioo method is developed
that explains accurately the observed mass splitting
of the P octet, the same method when applied, to certain
other Lie-group schemes, may not yield any non-
degenerate solutions at all. In other words, the pressure
of the bootstrap in some Lie-group particle schemes may
break the thumb completely. We close with the specula-
tion that the sturdy thumb of the SUB bootstrap model

may be one of the crucial reasons that SU3 is realized, in
nature. Of course, the significance of this type of
argument would. be increased, if a simple reason were
found for discarding solutions to bootstrap models that
involve completely degenerate multiplets.
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