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Effect of Closed Inelastic Channels on the Width of Resonances
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The sects of including nearby inelastic channels are examined on three separate examples of p-wave
resonances: (a) a three-channel (nn, n&o, EE) system is treated in a calculation of the p (760 MeV) reso-
nance, (b) a two-channel (vX, stX) system is considered for the K* (885) and, (c) a two-channel (v N, KZ)
system is treated for the N*(1238).The input forces in (a) and (b) are taken to be due to the exchange of the
known vector mesons and in (c) the baryons alone. The masses and coupling constants of the exchanged
particles are taken from experiment; the coupling constants which cannot be related in a direct manner to
experimental quantities are related to the others by the assumption of SU& symmetry. Straight cutofts are
used to insure that the multichannel ED ' equations have a unique solution. Full numerical solutions of
these equations are obtained by the matrix inversion technique. The values of the cutoffs were adjusted in
the three examples to yield a peak in the cross section at the observed energy for the one-channel case and
readjusted (to a lower value) to reproduce the resonant energy in the presence of the inelastic channels. This
allows one to study the e6ect of the additional channels on the width and shape of the resonances. With the
latter values of the cutouts, the inelastic channels are turned oG and the changes in the positions of the reso-
nances are noted in order to estimate the relative contributions of the forces producing the resonance. It is
noted, e.g., that the mo channel has more effect on the position of the p than does the EEchannel; also, the
EZ channel has relatively little effect on the Ne (even though for pure SUe symmetry the Ne is equally com-
posed of 21-37 and EZ). All the calculated widths are two to 6ve times larger than the observed values, in-
dicating that the lowest mass channels coupled via the longest range forces do not constitute a realistic
model.

I. INTRODUCTION

I~
~

NE of the current problems in high-energy physics
is the calculation of the properties of resonances

by obtaining solutions of partial-wave dispersion rela-
tions. Since the input forces involve the exchange of
these resonances themselves, the spin of some of them
being & 1, some sort of high-energy cutoff is required in
order to obtain solutions. Although one might, on
physical grounds, put limits on the magnitude of the
cutoff, the calculated positions of resonances are often
quite sensitive to the exact value of the cutoff. One can
only make it plausible that a particular resonant solu-
tion will result from a specihc model of strong inter-
actions. On the other hand, by adjusting the cutoff to
produce a resonance at a given energy, one can make a
theoretical prediction of the width.

In many of the relativistic calculations of resonances,
the predicted widths are much broader than the ob-
served widths. The statement is sometimes made that
including nearby inelastic channels would greatly
reduce this discrepancy. ' The purpose of this article is

*Part of this work was done while the author (JRF) was at the
University of California, San Diego.

t Supported in part by the U. S. Air Force through Air Force
OQice of Scientific Research Contract AF 49(638)-1389.

t Alfred P Sloan Fellow. .' It is evident that if the forces in the closed channel alone are
strong enough to produce a bound state, then an arbitrarily
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to examine this statement in a quantitative manner.
We consider three separate examples of p-wave reso-
nances which have been widely studied theoretically:
p(760 MeV) s ' E*(885),' and Ã*(1238).s The positions
of these resonances are such that each can decay into
only one channel. Most calculations ignore the closed
inelastic channels and consider the resonances as one-
channel systems. The results of these calculations all
yield resonances which in addition to being too wide are
(in contradiction with experiment) very asymmetric,
i.e., the cross section falls off much slower on the high-
energy side than on the low-energy side. By adding
nearby inelastic channels in each case and solving the
multichannel ftfD ' equations we study, (i) the effect
on the width, (ii) the effect on the shape, and (iii) the

narrow resonance will appear if the coupling to the open channel
is arbitrarily weak.

'G. F. Chew and S. Mandelstam, Nuovo Cimento 19, 752
(1961); J. S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29
(1961); D. Y. Wong, Phys. Rev. 126, 1220 (1962); L. A. P.
Balttzs, ibid 129, 872 (1963.); 137, B168 (1965).' F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).
We refer to this paper as ZZ.

e R. H. Cap s. Phys. Rev. 131, 1308 (1963); Nuovo Cimento
27, 1208 (1963;Phys. Rev. Letters 10, 312 (1963).

5 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956);
W. R. Frazer and J. R. Fulco, ibid. 119, 1420 (1960);S. Frautschi
and J. Walecka, ibid. 120, 1486 (1960);E. Abers and C. Zemach,
ibid. 131,2305 (1962);J. S. Ball and D. Y. Wong, ibid. 133, 3179
(1964); A. Hendry and B. Stech, ibid 133, B191 (1964). .
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relative contributions to the forces producing the
resonance.

The program is the following: For each of the three
above examples we compare single-channel calculations
with multichanne1 calculations. The input forces are
determined from single-particle exchange diagrams
with the masses and coupling constants of the ex-
changed particles taken from experiment. ' SU3 sym-
metry is assumed for the determination of those cou-
pling constants which are not readily obtainable from
experiments. A straight cutoff A. is introduced to insure
that the integral equations are of the regular Fredholm
type and thus have a unique solution. For the one-
channel calculation, A is adjusted to yield a peak in the
output cross section corresponding to the experimental
value. In all three examples, we find that the output
width of the resonance is considerably larger than the
experimental value. Also, unlike the observed shapes
of the resonances which are approximately symmetric
about the peak position, the calculated shapes are very
asymmetric: the half-width at half-maximum on the
high-energy side of the peak, j. z, is much larger than
the corresponding value on the low-energy side 11..'
Then an inelastic channel is added and A. is readjusted
(to a smaller value) to again reproduce the observed
peak position. The effect of the inelastic channels on
(i) the width and (ii) the shape of the resonance is

FIG. 1. Input forces in the three-channel calculation of the
p(760) resonance. The potential functions Bg, Eqs. (8)-(13), are
obtained by projecting out the J= l partial-wave contributions
from these diagrams. Channels 1, 2, and 3 correspond to ww, w&,
and EE;, respectively.

6 We are interested in seeing how well the exchanges of the
known particles reproduce themselves, in contrast with some
calculations which are primarily concerned with ending a self-
consistent (bootstrap) solution.' Note that for a wide resonance, the full width of the cross
section is generally larger than that derived by taking the deriva-
tive of cotb and multiplying it by the phase-space factor evaluated
at the zero of cotb. In fact, the peak of cross section is also shifted
signi6cantly away from the zero of cotb. The asymmetry of the
resonance shape is due to these two effects.
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FIG. 2. plots of the I= j, J=1 ~27- cross section versus center-
of-mass energy. The cuto6 parameter A is separately adjusted for
the one-, two-, and three-channel calculations of the p to reproduce
the experimentally observed peak position. A narrowing of the
calculated resonance by =100 MeV on the high-energy side is
obtained in going from the one-channel calculation to any of the
plotted multichannel calculations.

determined. Finally, with this latter value of A, the
inelastic channels are turned off and the change in
position of the resonance is noted in order to estimate
(iii) the relative contribution of the forces producing the
resonance. The same procedure may be repeated for
additional inelastic channels.

The calculations for the p, E*, and. Ee are described
in Secs. IIA, IIB, and IIC, respectively. Two inelastic
channels were considered for the p resonance: xm and
EE.Thus in addition to the one channel mx calculation,
two 2-channel calculations (ter, tree) and (7r7r, EE) and a
three-channel calculation (rrsr, rrto, EE) were performed.
The input forces, shown in Fig. 1, were taken to be due
to the exchange of the known vector particles. The pxm

and pzm coupling constants are obtained from the
experimental values of 100 and 9 MeV for the p and co

widths, respectively, and the remaining coupling
constants are assumed to be related to these by SU3
symmetry. 9 Ke see, from Fig. 2 that the one-channel

'Proceedengs of the International Conference on Hegh Energy
Physics, Dnbna, 1964 (to be published).

'M. Gell Mann, Phys. Rev. 125, 1067 (1962); California
Institute of Technology Synchrotron Laboratory Report CTSL-
20, 1961 (unpublished). The E*rrX and pltZ couplings can be
obtained either from the p~ coupling using SU3 or from the
experimental widths of 50 MeV for the X* and 3 MeV for the p.
The two methods agree quite well. In spite of the fact that p, X*,
and p do not satisfy the Gell-Mann —Okubo mass formula very
well, it seems reasonable to treat them as members of an octet.
The results of our calculation will not change signiicantly even if
one takes a co—p mixing model of the singlet and the octet. We
also note that a bootstrap model calculation of the vector octet
PJ. R. Fulco and D. Y. Wong, preceding paper Phys. Rev. 137,
81239 (1965)g gives the splitting of the masses with the correct
order of magnitude but the breaking of the coupling constant is
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FIG. 3. The cutoB A is adjusted to give the observed position of
the p peak for the three-channel calculation. Then the m-co and EE
channels are switched o8, keeping the same h., in order to deter-
mine the relative contribution of the forces producing the reso-
nance. For example, we observe that the neo channel has more
eGect on the position of the p than does the Eg channel.

Fro. 4. Input forces in the calculation of the E*(885) resonance.
Channel 1 corresponds to mX and channel 2 to yE.

calculation requires a cutoff of 4= '72.1 m, for m, = 760
MeV and gives an output width F=(Fir+Fr, )=600
MeV with Fl 200 and I'~400 MeV. For the same
position of the p resonance, the (e.s-,a.o~) problem re-
quires A=37.4 m and for (xw,EE), A.=45.5 m'. Both
two-channel calculations give a slightly smaller Fl.
whereas I'~ is reduced to 300 MeV. The three-
channel calculation requires 4=34.6 m but the shape
of the resonance is essentially the same as the two-
channel ones. With a fixed cutoff A=34.6 m, Fig. 3
indicates that the xsam channel contributes a substantial
fraction of the force necessary to produce the p whereas
the EX channel contributes relatively much less.

The diagrams corresponding to the forces in the E*
problem are given in Fig. 4. The cutoff for the one-
channel (rrE) calculation is A=219 m, and the output
width, as seen from Fig. 5, was =210 MeV with
Fi,=75 MeV and Fir=135 MeV. The two channel

(rrE,r)E) calculation required a cutoff of 4=56.5 m
and gave I'1.=60 MeV and I'II =95.We note from Fig. 6
that the qE channel plays a significant role in determin-
ing the position of the resonance.

In the Ã*(1238) calculation, Fig. 7, only baryon
exchange was considered. "We observe that the addition
of the ZE channel has a very small effect both on the
width and position of the Ã*. This (Figs. 8 and 9) may
appear to be a little surprising since for unbroken SUg
symmetry, the S* is a 50-50 mixture of the two chan-
nels. However, the EZ threshold is substantially higher
than that of ~E and the cutoff required for the E*
problem is not very high (compared with the p and Ee
cases). We have used a fixed cutoff in the total energy
8', a fixed cutoff in the total kinetic energy, as well as a
Axed cutoff in the total meson energy. In all three cases,
the EZ contribution is so small that it can only shift the
Ã* position by &10 MeV and has practically no effect
on the width.

Our consistent failure to obtain sufficiently narrow
resonance widths is rather disturbing. In particular, for
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FrG. 5. Plots of the I= 2, J=1 xE cross section versus center-
of-mass energy. A. is separately adjusted for the one- and two-
channel calculations of the E* to reproduce the observed peak
positions.

the case of the p resonance, even a three-channel calcu-
lation yields a full width which is approximately Ave

times larger than the experimental value. However,
since the two-channel

(xeric.

oi) calculation did narrow
the calculated p width by 100 MeV as compared to the
single-channel xw calculation, we were led to examine a
model in which the effect of the +co channel was en-
hanced while the masses and input pox and pm-co coupling
constants were still given by experiment. This was
simply achieved by introducing different cutoffs in the
two channels. " Two different approaches were con-
sidered: (1) a lower value of h, was used for the s.s.
channel than the e.o~ channel; (2) an additional cutoff

"The additional forces due to the exchange of the X~(1238) and
p are rather weak in the J=-', , I=-,' amplitude; see Ref. 5.

"A single cutoff was used in the above calculations simply to
reduce the number of parameters. Physically, it is not unreason-
able for the cutofts in diGerent channels to be quite diGerent. See,
e.g., M. Bander and G. Shaw, Ann. Phys. (N. Y.) (to be published).
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a factor of 3 for the E* and a factor of 5 for the p.
On the other hand, one might argue that the cutoGs we
employed here of the order 30—200 m are already so far
into the higher energy region that other closed inelastic
channels might be just as important. In particular, the
baryon-antibaryon channels, having the property that
they couple to the vector mesons in an S state, may be
particularly favorable for producing the vector mesons
as quasibound states. Furthermore, if Bronzan-Low's
quantum number" A is approximately preserved, one
would expect that the coupling of the i' system to the
two-pseudoscalar channels is sufficiently weak that the
vector mesons will appear to be narrow resonances.
Still another such possibility is that the ~co ~co force
could be largely due to the exchange of an 1+8 meson
which would enhance the attraction in the ~co~+co
amplitude. On the other hand, it does not directly
couple to the ~z channel. "

As for the E*, the discrepancy of the width between
the static-theory calculation (which agrees with
experiment) and the relativistic i'-' results is also
somewhat disturbing. However, the diGerence here is
slightly less than a factor of 2, and the approximations
made within the pseudoscalar-baryon model could
possibly account for such discrepancies without recourse
to additional channels.

Finally, we comment on the solution of the ED—'
equations. The numerical method we used was the
matrix inversion technique for solving integral equa-
tions. The details are given in the Appendix. Two of the
numerical checks of the program are the independence
of the solution to the position of a subtraction in the D
function and the symmetry of the T matrix as required
by time reversal invariance. Many calculations have
used the approximate solutions of the ED ' equations
given by the determinantal method which is quite sensi-
tive to the value of the subtraction point. Also, straight-
forward application of the determinantal method
violates time reversal invariance. For example, the two
channel (ss,s.co) calculation of the p by Zachariasen
and Zemach' (ZZ) leads to an amplitude 3 „which
is greatly diGerent from A„.In addition, we note
that the eGect of the xor channel was greatly enhanced
in ZZ due to the fact that their p mass was 659 MeV,
which is 121 MeV lower that the co mass. Since the co is
almost unstable with respect to the ~p decay in their
calculation, the p-exchange diagram for mar —+ mes con-
tains a singularity very near the physical threshold,
thus giving rise to an unrealistically strong force in that
channel. In spite of this, their calculated width ob-
tained via the derivative of the Breit-Wigner de-
nominator is still approximately four times larger than
the observed width. "The width obtained by plotting
the cross section is, as usual, even larger.

"J.Bronsan and F. E. Low, Phys. Rev. Letters 12, 522 (1964).
'4 J. Franklin (private communication).
'5 There is a factor-of-4 error in the calculation of the p width in

Ref. 3. The value of the calculated p width quoted there should be

where s is the square of the energy in the center-of-mass
system and in the elastic region, 4m '(s((m +m„)',
$yy = 8 ~~ Sln51r~.

The unitarity condition reads

Im[T;; '(s)];;= 8;,8(s —s;)8(A;—s s)p;(s)—

where s; and A; are the threshold and the cutoG of the
ith channel, respectively.

The phase space factors p; are given by"

p;=q jets, i=1 and 3

ps= qs'gs,

(3)

(4)
where

qis=-,'s —m '; qss= [s—(m„+m )'][s—(m„—m, )']/4s;

and

g3 = 4$—Pl~ .

Using the ED ' method and defining by 8;;(s) the
corresponding potentials (single-particle exchange
amplitudes), we have" for an ri channel problem

i42

iV,;(s) =8,;(s)+g — ds'E, s(s,s')lV s; (s'), (5)

that is, e systems of e coupled inhomogeneous integral
equations for the matrix elemen's of E.The kernels are
de6ned by

( 1 (s—ss
F;,(s,s') =

I 8;;(s')
I fl;;(s) p, (s') . (6)

(s —s — s —sp

The D;; elements are given in terms of the Ã functions
by

s—ss) s" p, (s')1V;;(s')
D,;(s)=8,;— i

ds' . (7)) „(s'—ss) (s' —s)

multiplied by 4. See, for example, R. H. Capps, Phys. Rev. Letters
10, 312 (1963), footnote 6.

~'This form of the p functions can be readily seen from Eq.
(2.21) of ZZ since the amplitudes t;; dined there have kinematical
singularities that can be eliminated by using the phase space
factors (3), (4). This statement is however in disagreement with
the paragraph preceding (2.11) of ZZ.

"The following form of integral equations for the Ã functions
was erst published by J. Uretsky, Phys. Rev. 123, 1459 (1961).

II. MULTICHANNEL I'D ' EQUATIONS

A. The p Meson

The relativistically invariant matrix elements for the
three-channel (s.s.,sco,EX) partial-wave scattering am-
plitude, free from kinematical singularities and with the
appropriate threshold behavior are defined by (we use
units h=c=1)
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It can be shown that the solutions of (5) and (7) are
independent of the value of the subtraction point s, and
T is symmetric (as required by invariance under time
reversal) for a symmetric B.

In our calculation we limit ourselves to considering
only the forces produced by the exchange of the known
vector mesons. Then the potential functions B;;(s) are
obtained by calculating the diagrams corresponding to
Fig. 1. Following ZZ, the elements of the symmetric
matrix B;;(s) are then given by'2

B11(s)= (g, 2/42r)F1(s, m, m, mp),

B12(s)= (gpppgpp~/42r)F2(s, mp)mp)mph', mp) )

B„(s)= (12+8)(gx*.x2/4')F1 (s,m. ,mx, mx*),

B2,(s)=(g„„/24n)rF (2s, m. , m„,m )p,

(8)

(9)

(10)

F1(s,m1,m2, m) = (4/p2q2)

X$-'4m+-' 2+s(m1' —m2')'/4m. '—-,'(mP+m2') ]Q1(Z), (14)

Z= (m'+ ', s mP -m—22)/(—2pq), (15)

F,(s,m1,m2, ms, m) = (v2/3pq) LQ0(C) —Q2(C)], (16)

C= )m2+2 (s+m22+m22+2mP) j/(2pq), (17)

FO(s,m1,m2, m) = (1/8sp2)

&&l3b&n((D+1)l(D —1))+50—sP'j (18)

440= p'+m1 81=p'+s —(m2 ml) /s

42 3p2+2m 2+m 2 g2 p2

f10= 440 i10Dy 50 441 442D

(19)

D= [s+2(m' —mp —m2') —(m,'—m2')'/S7/(4p2), (20)

and where p and q are the momenta in the center-
of-mass system of the initial and final particles,
respectively.

By using the relations among the diferent coupling
constants given by the unbroken eightfold way and

B22(s) = ( g '2—) (gx4, rrgxpx„/4m)F2(s-, mls, m, m„,mx4),
(12)

B32(s)= —
2 (g.zz'/4 )F1(»mz m1r m. )

+-', (g,xg2/4n)F, (s,m-x, mx, m„), (13)
where

(g, „2/4m)=0.35 for I'„=9MeV. (22)

We have then proceeded to solve Eqs. (5) and
(7) for the one-channel (2r2r), two-channel (4m.p.co) and
(2r2r, EE), and'the three-channel (~Or, 7r40,KK) cases.
First, by choosing diferent values of A to produce the
resonance at the same position p(760), we were able to
6nd out the eBect of the higher mass channels on the
width of the computed p meson. The results are repro-
duced in Fig. 2. Second, fixing the cutoG h. in such a way
as to produce a resonance at 760 MeV in the three-
channel case, and using then the same value of A to
solve the one-channel and both two-channel problems,
we found the e6ect of the higher mass channels on the
overall strength of the forces in the J= 1,I= 1 pion-pion
amplitude. The results are shown in Fig. 3.

B. The X* Meson

We consider the two-channel problem (E2r,En) and
use the same formulation as for the p meson, except that
now the phase space factors are given by

and
p;(s)=qo/gs; i=1,2, (23)

qp = Ls—(m.+mx)'jLS —(m —mx)'j/(4s),
q2'= Ps (m„+m—&)'jets (m, m—~)2j/(—4S) (24).

The input forces produced by the diagrams of Fig. 4
are now given by

B11(s)=&2(g, g,xg/4n)F(s, m„mx,m, mx, m )', (gIr. x2/4—n )—F(s,m„mx,mx, m, mx 4), (25)

B12(s)= (glr 4 14glr*„x/42')F(s,m, mx, mx, m„,mx.), (26)

B22(s)= (gx*,x2/4n)F (s,m„m. 1r,mx, m„,mlrp), (27)

where

assuming the ~ to be a singlet, '9 namely: gp gpKQ

gyxK ~ gK+ K = 3 3 2 ~ gp gK2tK, one can com-
pute all the elements 8;; in terms of the pm+ and pm'
coupling constants. The values of these two parameters
can be calculated from the experimental widths of the
p and co mesons. One obtains

(g, 2/4m-) =0.45 for I', =100 MeV, (21)

t' 4 m' s (mp —m2')(m2 4m) (ml+m2+m2+m4)
F(s,m1,m2, m„m4,m) =

~

&p2q2 4''
Z= $m'+-2(s mp m2' —m4' — m—)4+(m- —p m2') (m4'—— m)4(/2s)$ (/p2)q.

Q1(Z)

(29)

Again, by using the relations among the coupling
constants given by the unbroken SU3, namely g,
gpKK ~ gK+pK ~ gx+gK 3 3 1: 1, we can compute all

» There is apparently a printing error in Eq. (3.5) of ZZ where
0, should be replaced by P in the expressions for a& and u~.

the elements B;;(s) in terms of the p4r4r coupling constant
LEq (21)3

As explained in Sec. IIA, we have first solved the
one-channel and two-channel cases with diferent values
of A to reproduce the resonance at the same energy
K*(885), and we have then looked at the effect of the



FULCO, SHA W, AND WONG

Eg channel in the width of the computed E*. Fig. 5
shows the cross section obtained in this case. Secondly,
we have investigated the effect of the higher mass
channel on the position of the E*by fixing the cutoff in
the two-channel problem to obtain the resonance at
885 MeV and then using the same value of A in solving
the one-channel case.

C. The N* Resonance

It is well known that for the scattering of pseudo-
scalar mesons from baryons it is more convenient to
define the partial wave amplitudes as functions of the
total energy 8".' We then choose the elements of the
2X2 scattering matrix for the mE and EZ I=-,', 7=-,'
state as' "
2'; (W)= (2$) (M ) sl {L(W+m') —p' ]

X ((W+m;)' p,']) 'l—'to, (-30)

where again in the the elastic region t~~ ——e'~ ~ sinb ~.
The unitarity condition reads

(W —m, —m, +m)g, (Z) —P(W—m, )'—»']
4g q

fW+mi+ms m)—
xL(w — )'— ']l

)ig, (Z) ; (40)
4sw;

Z = Ls' —s(mi'+ms'+ pi'+ ps' —2ms)

—(m '—„,') (m '—p,P]/4w, s.

Within the approximation of the unbroken eightfold
way, we have the following relations among the coupling
constants":

Bis(W) = (gg, zgsxsr/4w)G(w, mi, pi, ms, ps, mg)
—(gy zgzxsr/47r)G(W, mi, pi, ms, ps, mz), (38)

B»(w) =2(g x-.z'/47r)G(w, ms, ps, ms, ps, m-)., (39)

where the indices 1 and 2 refer to Ãm and Z~, respec-
tively, and

G(w, m;,p;,m;,p;,m)

Im/1 i (W)];;= —8;,8(s—s;)8 (A;s —s)p; (W), (31)

where

p;(W) =
q sg(W+m;)s —p,,.s]/(2ss); s= 1,2 (32)

V =Ls—(m;+p;)']i s—(m' —p')']/(4s), (33)

and m~, m2, py, p2 are the masses of the nucleon, Z, m

meson, and E meson, respectively.
Using the ÃD ' method as before, one obtains

g+ z= (2/v3) (1 f)g.iv-
g~xiv= (1/~~)(1+2—f)g N,

gz~z = 2fg~x,

gzKN (1 2f)gwiv y

g KZ g2rN y

(g,Ns/4rr) = 14,

(41)

T,;(W)=(cVD ')...
Ai

1V;;(W)=B,;(W)+P—

Finally,
/W —Wp

De (W) =5.
„

)&p, (w')/(W —W) . (35)

hi p (w')iv -(w')
+ dW' . (36)

(W' —W) (W' —Wp)

Here also the solutions to Eqs. (34) and (36) are in-
dependent of Wo.

In the approximation which considers only the forces
produced by the exchange of baryons, we have the
diagrams shown in Fig. 7. The matrix elements of the
potential are now given by

Bii(W) =2(g ivs/4s)G(w)mi, p4mi, pi, mN), (37)

'p A. W. Martiri and K. C. Wali, Phys. Rev. 130, 2455 (1963);
Nuovo Ciniento 31, 1324 (1964).

)&E,s (W, W').'Vs;(W'), (34)

~w —wpy
Kg(w, w') = B;;(W')—i iB„(W)

kW' —Wp)

and f is the D/F branching ratio as defined in Ref. 19.
It is dificult to estimate the degree of accuracy of Eqs.
(41) since experimental values are not available for
these coupling constants. There is also an ambiguity in
the choice of the value of f, since one can follow several
criteria to determine it and obtain different values in
each case. One can ask for the value that produces the
maximum strength of the forces in the I'Ss+Bs —+ Bip
interaction, as is done in Ref. 19 or use the idea of the
conditions for a reciprocal bootstrap between the 88
and Byp multiplets, as in the work of Cutkowsky" and
Hara. "In the 6rst case one obtains f~0 25 and in the.
second f~0.33. Fortunately, these two values of f
practically do not change the results of our model. We
then use f=0.31 and proceed as before by first fixing
A; to obtain the X*at the same position (1238 MeV) in
both the one-channel and two-channel cases. The effect
of the EZ channel on the width of the computed E* is
shown in Fig. 8. Since the value of A& is not very far
above the EZ threshold we have used three different
criteria to select both cutoffs. First: A~ ——A2 at the same
total energy 5'. Second: by requiring the same cutoff
on the total kinetic energy in each channel. Third: by
using the same cutoff on the meson total energy. We
have found that there is practically no difference among

"R.Cutkowsky, Ann. Phys. (N. Y.) 23, 415 (1963).
"V.Hara, Phys. Rev. 1BS, 31079 (1964).
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the results obtained with the different choices of A;.
Then we adjust A1 for the one-channel calculation to
give the observed position of the S* peak. . A two-
channel calculation with the same value of A.2=A1 is
performed; I'ig. 9 shows the results.

APPENDIX: NUMERICAL METHODS FOR SOLVING
MULTICHANNEL ND ' EQUATIONS

+m1ffl1 +m1n1(1,1). . . (1,1)

K„,, E„,„,(1,1). . . (1,1)

&m, m,
. &m, n,(2,1). . . (2,1)

+fA2fS] +'A2'01(2,1). . . (2,1)

(1,2) . .~ (1,2)
+m1m2 SR''82

+R1f1L2 +'%1f)t 2
(1,2) . . (1,2)

(2,2) . . V (2,2)E, ,

&n,m, &n,n,(2,2), . (2,2)

~ ~ ~

Once the potentials 8;;(s) are given, the S functions
can be calculated by solving the following Fredholm
integral equations of the second kind:

1 ', ' p1
X;j(s)=8;;(s)+— ds'i

Es sj

(A6)

The indices m; and n; are energy indices corresponding
to the threshold and the cutoff for the ith channel. The
dimension of ~ is equal to the sum

(s—$0 )8;),(s') —
~

i8(s),), pq(s')1Vi (s'), (A1)
Es'-s, i d„=g(e,;—jm, ) (A7)

where sp is the subtraction point for the D functions, s;
and A; are the threshold and the cutoff, respectively, for
the ith channel, and the p's are the phase-space factors.

To solve Eq. (A1) by numerical methods, one would
first replace the s' integration by a sum over a discrete
set of values of s'. Using now superscripts for the channel
indices and subscripts for the energy indices, we can
write

(', j) —8 ('j)+P Q, (im) g (,m, j) (A2)

where
1 f 1

&),i™-—(») ii
ks,-s,]

(si—so)8 (i,m)
~ i8 (i,m) p (m) (A3)&„—„)

and (»)) is the mesh size for the 3th value of s'. It is
important that the mesh distribution be chosen appro-
priate to the rate of variation of the remaining factors
of (A3). For L= k, the derivative of 8 with respect to s
is required.

For any fixed index j, Eq. (A2) can be converted into
a simpler matrix equation by combining the remaining
channel indices and the energy indices. One obtains

for an e-channel problem.
Now the solution of g, and hence the S functions, can

be obtained by inverting the matrix in (A4)

))(j)= (I—i()-'p(j).

Since the x matrix is independent of the index j, only
one matrix inversion is required. A standard subroutine
called. MATzNv (sHARE as well as CDC) can be used to
obtain g(&} for all j.The basic restriction of the numer-
ical program is the limitation on the dimension d„which
for practical purposes, should not exceed =100. If one
uses 20 mesh points for the lowest channel and succes-
sively fewer mesh points for higher channels, one could
easily accommodate six or seven channels in the
calculation.

For the three-channel problem of the p meson,
sufhcient accuracy is obtained with 20 mesh points for
the ~m channel and 10 to 15 mesh points for m~ and EE.
The CDC 3600 will yield the solution for the three-
channel g in the order of 15 seconds.

Having obtained the S function, one can calculate
the D functions by evaluating the principal part
integrals

where
)) (j) —p (j)+i( ))))(j)

-g 0,~).
fN1

g (1,~')

g(i) —Q (2,i)

g (2,~)

(A4)

(A5)

s—sp
Re(D,;)=e„—— I'

7r

As2 p;(s') jV,j(s')
ds' . (A9)

(s' —so) (s' —s)

Usually, the time required to calculate D;; is small
compared to the matrix inversion program.

Aside from examining the stability of the numerical
results with variation of mesh size, two checks of the
numerical accuracy can be obtained by showing that,
(i) the solution XD ' is independent of the subtraction
constant so and, (ii) XD is a symmetric matrix.


