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Departures from the Eightfold Way. III. Pseudoscalar-Meson
Electromagnetic Masses*t
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(Received 29 October 1964)

The leading contributions to the w+-m and Z+-E' mass differences are calculated. The contributions of
pseudoscalar-meson and vector-meson intermediate states are considered, and the Feynman integrations are
performed assuming very general momentum dependence at the vertices. Using form factors having poles
at the vector-meson masses, and the unitary-symmetric vector mixing model of Coleman and Schnitzer, we
Qnd m +—m 0=4.9 MeV and mz+ —mz'= 2.9 MeV. It is difficult to give a reliable estimate of the errors in
these calculations; we believe they are correct to within 1 MeV. The uncertainty lies partly in the deter-
mination of the y-p-x coupling constant and partly in the dynamical assumptions. VVhen the scalar-meson
contribution suggested by Coleman and Glashow is included, the m-meson mass difference is unchanged and
the E-meson mass difference becomes m~+ —m~'= —1.4 MeV. Qur numerical values have been tabulated
without discussion in two earlier papers of this series.

L INTRODUCTION calculation of the electromagnetic mass differences
within the spin--,'baryon octet', it has also been ex-
tended to estimate the I'* —I'~+ mass di6erence' and
the decay rate for ~ —+ 2x,' obtaining satisfactory agree-
ment with somewhat unreliable experiments in both
cases. The results of comparable calculations for the
pseudoscalar mesons have been reported in Table II of
Ref. 6 and in Table II of Ref. 7; the details of these
calculations are published here.

The method of calculation builds on the work of
Riazuddin, '0 who showed that the electromagnetic self-

energy of a pseudoscalar meson can be related by
dispersion theory to the amplitude for Compton scat-
tering of unphysical photons. In diagrammatic lan-

guage, the lowest order electromagnetic self-energy is
expressed as a sum over Figs. 1(a)—1(c). Figures 1(a)
and 1(b) together represent the contribution of the
lowest mass intermediate state, which contains a single
pseudoscalar meson. Figure 1(c) stands for an infinite
number of diagrams in which the intermediate state is
heavier than the single pseudoscalar meson. The theory
allows a contribution from Fig. 1(d), which does not
contribute to the absorptive part but adds a constant
to the scattering amplitude. Historically, Riazuddin
and later Bose and Marshak' only considered Figs.
1(a) and 1(b), neglecting all higher mass intermediate
states. Their calculation is presented in a somewhat
more general form in Sec. II.

In Sec. III an estimate is made of the contribution

~~~NE of the most tantalizing problems in particle
physics is the problem of calculating the mass

differences between particles belonging to the same
isotopic multiplet. One usually assumes that these
mass diGerences are entirely electromagnetic, ' for other-
wise, one would have to abandon one of the most
cherished symmetries of the strongly interacting par-
ticles. In the example that concerns us here, the
theorist has been confronted with the experimental fact
that the x+-z' and E+-E mass diRerences have op-
posite signs. To explain the observed mass diRerences,
Bose and Marshak' postulated electromagnetic prop-
erties of the E mesons totally different from those of
the vr meson. In recent years, such eGorts have been
rendered unacceptable by the success of the SU(3)
supermultiplet theory of Gell-Mann' and Ne'eman. 4

The accuracy of the Coleman-Glashow formula' relating
the electromagnetic masses of the spin--,' baryons leads
one to expect the higher symmetry to dominate the
electromagnetic properties of the particles in a super-
multiplet, even in the presence of symmetry break-
down, and leads one to demand that all of the electro-
magnetic mass differences within a supermultiplet be
explained at once, using common assumption's.

The earlier papers in this series'7 have addressed
themselves to this challenge. The calculational scheme
proposed in Ref. 6 has been successfully applied to the

7

*This work constituted a chapter of a thesis submitted to of vector-meson intermediate states to the pseudo-
Harvard University in partial fulfillment of the requirements for
the degree of Doctor of Philosophy, May 1964. scalar meson mass differences. This contribution is a

t Partially supported by U. S. Office of Naval Research Con- part of tlie contribution represented by Fig. 1(c).The
tract Nonr 3656 (09). author ss aware of only one other attempt to calculate

' The classic paper which first exploited this assumption was by the contribution of Fig. 1(c)."
R. P. Feynman and G. Speisman, Phys. Rev. 94, 500 (1954).

'S. K. Bose and R. E. Marshak, Nuovo Cimento 25, 529
(1962). 'R. Socolow and S. Coleman, Phys. Rev. 135, 31451 (1964).

'M. Gell-Mann, California Institute of Technology, Report S. Coleman, S. L. Glashow, H. J. Schnitzer, and R. Socolow,
CTSL-20, March 1961 (unpublished); Phys. Rev. 125, 1067 Proceedings of the International Conference on High-Energy
(1962), Physics, Dubna, USSR, 1964 (to be published).

Y. Ne'eman, Nucl. Phys. 26, 222 (1961). 1 Riazuddin, Phys. Rev. 114, 1184 (1959).
5S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423 "J. K. Perring, (unpublished). The recent work by J. H

(1961). Wojtaszek, R. E. Marshak, and Riazuddin, Phys. Rev. 136,
' S. Coleman and S. L. Glashow, Phys. Rev. 134, 8671 (1964). B1053 (1964} divides the problem quite differently, and its

S. Coleman and H. J. Schnitzer, Phys. Rev. 136, B223 (1964). connection with Riazuddin s original formulation is not clear.

B 1221



B 1222 ROBERT H. SOCO LOW

assumption that the form factor in Fig. 1(b) is the
square of the form factor in Fig. 1(a).

We will evaluate (1),making the assumption that the
form factor F(k') possesses the spectral representation

F(k') = dc p(c)
gyp —jp

(2a)

where p is a weight function restricted only to satisfy

p(c)dc=1. (2b)

FIG. 1. Contributions to the electromagnetic mass differences
of the pseudoscalar meson. The solid line represents a pseudo-
scalar meson, the dashed line represents a photon, the double line
represents any intermediate state heavier than the pseudoscalar
meson, and the wiggly line represents the I=1 scalar meson 7t- '.

In Secs. II and III, the breaking of exact SU(3)
symmetry by the strong interactions is introduced by
using the physical particle masses and allowing for co-g

mixing.
A limited number of results may be obtained from

the group transformation properties of a set of inter-
mediate states, without knowing the details of their
interactions. These results a,re summarized in Sec. IV.

The suggestion that Fig. 1(d) should contribute to
the electromagnetic mass splittings was made by
Coleman and Glashow, in the first paper of this series. '
Coleman and Glashow call Fig. 1(d) the "tadpole"
contribution to the mass splitting, and as a result
Figs. 1(a)—1(c) become "nontadpole" contributions.
The aspects of the tadpole theory relevant to our
calculation are reviewed in Sec. V.

II. THE CONTRIBUTION OF THE PSEUDOSCALAR
MESON INTERMEDIATE STATE

The contribution of the lowest mass intermedia. te
state to the electromagnetic self-mass (dm) of a pseudo-
scalar meson has been written down by Riazuddin:

3k' —4k p —4m'
d4k D (k') 7'

k'(k' —2k p)

where p, m, and F(k') are the momentum, mass, and
electromagnetic form factor of the pseudoscalar meson;
n=e'/4m =1/137 is the fine structure constant; and we
use the metric p„p„=p'=m'. Figures 1(a) and 1(b) are
not independently gauge-invariant. The two contribu-
tions have been combined in (1) in the only possible
gauge-invariant manner. The integral in (1) is identical
to the Born approximation obtained earlier by Feyn-
man and Speisman from field theory, ' except for the
appearance of the form factors in (1). This method of
combining Figs. 1(a) and 1(b) is equivalent to the

A straightforward I'eynman calculation gives the
result":

where

mo, 't" IC2

dci dc'(ci) p(cg)
0 0 16m-(cg —ci)

X Lf(c2) f(cl)7, (3a)

f(c)=c inc (c—4)—'w(c), (3b)

w(c) = dx(x' —cx+c)—'. (3c)

m + mo= (m—nC/16m-)L4+C lnC
—(C—4)(C+2)w(C)7=4.37 MeV. (5)

This result is within 0.2 MeV of the experimental
value. This felicitous feature of the p meson mass was
discovered by Bose and Marshak. '

In calculating the electromagnetic masses of the E+
and E0 mesons, we have two alternatives. If we assume
that the E-meson form factors are given in terms of
the x-meson form factors by the predictions of the
octet model of unitary symmetry, neglecting the
medium-strong interactions entirely, then the E' form
factor must vanish, and the E+ form factor must be
identical to the x+ form factor. %e prefer instead to

"Equations (3) and (21) are the analogs of the expressions
written down by M. Cini, E. Ferrari, and R. Gatto, Phys. Rev.
Letters 2, 7 (1959),who considered the lowest intermediate state
contribution to the electromagnetic self-energy of the nucleon.

To eva, luate (3), we need an explicit choice for the
weight function appearing in (2). We make the ap-
proximation that the form factor may be written as a
sum of poles at the masses of the p, co, and p mesons.
The x' form factor vanishes, because the x meson is its
own charge conjugate. Because of the odd 0 parity of
the m.+, the photon coupling is purely isovector and
only the p pole can contribute to its form factor. Hence,
we choose

p(c) =0 (ir' meson),

p(c) =5(c—C), where C=m, '/m ' (ir+ meson). (4b)

This leads to the result
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allow for the medium-strong interactions at this point.
We assume that the isoscalar part of the E-meson
form factor has poles at the &o and p masses, and that
the ao and the P are eigenstates of an interaction which
has mixed two isotopic singlet particles, one belonging
to a unitary singlet (&o&) and one belonging to a unitary
octet (res). To handle the co-p mixing, we turn to the
vector mixing scheme of Coleman and Schnitzer. "

According to Coleman and Schnitzer, " the matrix
propagator for vector mesons should be written in the
form

D-'(u') = M s-u'I-e~ (6)

where A carries the coefficients which express the
symmetry breaking. Ms' is a diagonal mass matrix
whose elements are the squares of the particle masses
in the absence of symmetry breaking, and I is the unit
matrix. The characteristic feature of (6) is that ck

multiplies k'; it is therefore suitable for electromag-
netic calculations in which a photon couples to other
particles by means of this propagator, since a real
photon automatically couples to the static charge.

We arbitrarily restrict our consideration to the nine
vector mesons, p, E*, to, g, and assume that in the
absence of symmetry breaking they form an octet and
a singlet. If the usual octet-type symmetry breaking is
assumed, then the matrix d, has the form

'0
l3

0
.0

P 0 0
—2e 0 0

0 26 0
0 0

(7)

where e characterizes the splitting within the octet and

P characterizes the octet-singlet mixing. The rows and
columns label co&, co8, p, E*,respectively. The propagator
is required to have poles at the physical masses of the
particles. The form of (6) is such that it is the ileerse
masses squared which are related by the Gell-Mann-
Okubo formula; that is,

1/p+3/res= 4/E*,

where Mo is the mass of the vector-meson octet in the
absence of symmetry breaking. (9) yields the value
~0——837 MeV.

Suppose that the octet and singlet masses are de-
generate in the absence of symmetry breakdown. "Then

where each symbol refers to the square of the corre-
sponding particle mass. We may also obtain

1/3p+2/3Ee= 1,/M, ' 1/3p —1/3Ee= e/M ' (9)

1/E*=-,'(1/~+ 1/y) . (12)

This relation is satisfied to 1.5%. [The right-hand
side of (12) predicts a E*mass of 878 MeV, compared
with the observed value of 891+1MeV.j We therefore
assume this degeneracy in what follows, as it enables
us to write the propagator (6) in a simplifmd form.

From the structure of (6), (7), and (10), it is clear
that we can write the propagator for the ro and P
mesons in the form:

1 (cos8 —stn8) (to/(o& —k')
D(e) =

M&'ksin8 cos8 ) k 0

( cos8 sing)
XI . i, (13)

k —sin8 cos8I

where 8 is called the ce-P mixing angle. Taking the
inverse of (13) and comparing the lower right matrix
element with the corresponding element in (6), we

obtain
sin'8/re+ cos'8/y = (1—2e)/M p'.

With the help of (9), this yields 8=27'."
We use (13) to obtain the E-meson form factor.

Since the oJ~—E—E and or&
—y couplings vanish in the

limit of unitary symmetry, we obtain

px(c) =-',P (c—c,)+(sin'8 3 (c—c„)
+cos'8 5(c—ce))j, (15)

where c,=re,s/rlx', and the upper (lower) sign refers
to the E+ (E ) form factor. In obtaining (15), we have
assumed exact unitary symmetry at the vertices. When
we insert (15) in (3), we obtain expressions for the
E+ and E electromagnetic masses. Only the terms in
which one electromagnetic vertex is isoscalar and one
is isovector will contribute to the mass diGerence,
which is found to be

mac�„c„sin'8
mx —mx —— — $f(c„)—f(c,)$

16K' cd cp

cy cos 8
+ t f(ce) f(c,)j =+2—.17 MeV, (16)

In the absence of octet-singlet mixing but in the
presence of octet splitting this assumption leads to

1/E*= zr (1/~s+1/~r) ~

since co~=MD. Thus, in the presence of octet-singlet
mixing as well, we obtain the prediction

Ms' ——Mes 1. (10)
cy —cp

"S. Coleman and H. J. Schnitzer, Phys. Rev. 134, 8863 (1964).
'4This octet-singlet degeneracy has often been assumed in

investigations of larger symmetries than SU(3). When traditional
mixing procedures are used, one obtains X*=xm(m+4), which
predicts a E*mass of 909 MeV.

"A matrix propagator having the same form as (13) was used
by R. F. Dashen and D. H. Sharp, Phys. Rev. 133, 81585 (1964).
They obtain the value 8=39' from entirely different considera-
tions. Our value, 8=27', can be obtained more properly as a best
fit to the exact propagator of Coleman and Schnitzer (see Ref. 13),
where our Eq. (10) is not assumed.
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when 8=27'."The experimental E-meson mass differ-
ence has the opposite sign. In order to obtain agree-
ment with the experimental value, one is forced to one
of two alternatives. One may postulate exotic form
factors for the E mesons, as was done by Bose and
Marshak'; in the process one gives up the assumption
that remnants of a higher symmetry should still be
evident in the relation of the m--meson form factors to
the E-meson form factors. Alternatively, one may look
for other contributions to the E+ E: ma-ss difference.
The latter course is followed below.

III. THE CONTRIBUTION OF THE VECTOR-MESON
INTERMEDIATE STATES

To estimate the contribution to the pseudoscalar
meson mass differences which comes from higher mass
intermediate states, one requires some kind of approxi-
mation scheme. In the spirit of much of particle
physics in recent years, we will exalt the importance
of the resonant channels and will assume that the major
part of this contribution comes from the most tractable
of the intermediate states, those containing a vector
meson. The phenomenological gauge-invariant electro-
magnetic couplings are

Zi= (3ef,p /m )e„„i„(B„Ai)
TrHV, ei„P+ (B„P)V,)Q$, (17)

and

2,= (ref„.../m. )e„„i„(B„Ai)S,TrI Qei„PJ, (18)

where V„P, and A i Q, the fields of the eight vector
mesons, the eight pseudoscalar mesons, and the photon,
respectively, are 3&3 matrices in the unitary spin
space over which the traces (Tr) are taken. The explicit
representation for V, P, and Q written down by Cole-
man and Glashow' is assumed in normalizing the two
independent dimensionless coupling constants f~, and

f~„, ."S, is the field of o&i, the vector meson which is
a unitary singlet. The relative plus sign in (17) is
required to make the coupling invariant under charge
conjugation.

The phenomenological Lagrangians (17) and (18)
contribute in a formally similar way to the meson
self-energy (dm). We obtain, upon evaluating the graph
represented by Fig. 1(c):

(f;s 'ie'm L(k p)' —k'm'jLFvi (k')g'
dm =

I
d4k, (19)

5 m. (2')4 k'(k' —2k p+ m' —M')

where f,=f» or f~„„,depending on whether (17) or
(18) is used. s is a parameter, supplied by the 3&(3

"One gets m~+ —m~p=+2. 10 MeV if 8=39' is used.
'7 The normalizations in (17) and (j.8), coupled with the nota-

tion of Ref. 5, are consistent with the normalizations implied by
the phenomenological Lagrangians:

~gpss =&m7r fypx&ps4rgr~Ii JC~v~)
and

oCy 1x =8m fy 1xGP )i Q7&p — -1 4' 0% A

= —iP (x—y)
0

where mo is the mass of the meson in the absence of
the interaction and, p(u') is a positive semide6nite
function which is nonzero only for physically realizable
states. In particular, p(a') is zero below the mass m
of the physical pseudoscalar meson and is greater than
zero for at least some a'&em'. Hence mo') m', whenever
the left-hand side of (20) vanishes. Any interaction
Lagrangian which is linear in the pseudoscalar field
will have an associated current J(z) which is inde-
pendent of p(x), and the commutator on the left-hand
side of (20) will vanish. Hence, in particular, the inter-
actions (17) and (18) lead to negative electromagnetic
self-energies.

Knowing the sign of the vector meson contribution,
we may immediately draw some qualitative conclu-
sions, using only the information from unitary sym
metry about the p-V-I' coupling constants. Because
f~ g, o xo=2f~ « x+ in the unita-ry symmetry theory,
the mass of the E' is depressed four times as much as
the mass of the E+ by the contribution of the E*
intermediate state, so that the effect enlarges the mass
excess of the E+ over the E'. Thus, one cannot possibly
produce the experimental E+-E' mass difference by
combining this contribution with the one considered in
the previous section; both have the wrong sign.

In the case of the m+-m' mass difference, we will
consider p, oi, and p intermediate states. The p-meson
intermediate state couples only to the isoscalar part
of the electromagnetic 6eld, and does not contribute
to the m+-7r' mass difference. The co and P contributions
lower the ~' mass, and hence enlarge the sr+-mo mass
diGerence. If the effect is large, the agreement between
the experimental value and the theoretical calculation
of Bose and Marshak will be disrupted.

da'p(a') (mo2 —u'), (20)

~8 H. Lehmann, Nuovo Cimento 11, 342 (1954).

SU(3) matrices, which expresses the relations among
the coupling constants; it is unity in all cases occurring
here except two: s=v3 for the 7-co8-no coupling, and
s= 2 for the 7-X*o-EecouPling. Fvv(k') is a form factor,
normalized to unity at k'= 0, expressing the momentum
dependence of the y-V-I' vertex when the photons are
unphysical but the mesons are on the mass shell. 3II and
m are the masses of the vector and pseudoscalar meson,
respectively.

It is possible to show on very general grounds that
the interactions (17) and (18) lower the mass of the
pseudoscalar meson, i.e., that dm is negative, by making
use of a theorem due to Lehmann. ' Given Lehmann's
spectral representation for the vacuum expectation
value of the commutator of two spinless Heisenberg
Acids p(x), and the field equation (U'+m 02)p(x) =J(z),
it is straightforward to show that

(0I Li(x,0),~(y,0)3 I o)
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In order to make quantitative estimates of the
vector meson contribution, (19) is evaluated explicitly,
using Feynman's techniques and assuming that the
form factor possesses the spectral representation (2);
this yields"

mn—(f;sm'1'
dm=

~ ~
dcr deep(cg) p (cQ)

16' km. l o o

w(b, c) = dx(x'+bx cx+c—) ' (21c)

and
b = —1+M'/m'. (21d)

The calculation may be completed once the form
factors are chosen. If the form factor is restricted to
have the form of a sum of pole terms,

cyc2
X (U(b, cs) —U(b, cq)], (21a)

C2 Cy

where

2cU(b, c) =2cs+ (b —c)L6c—(b—c)s] ln/(1+b)/c)

+2bs ln(1+b ')+$4c—(b—c) ]'w(b, c), (21b)

the mixed propagator for the isoscalar form factor and
a p-pole approximation to the isovector form factor.
Only parts of Fig. 1(c) which contain one isovector and
one isoscalar vertex contribute to the mass difference,
which is found to be

where
mz+ —mzo=3am&m, 'f'y(16 s. m, s) ', (25a)

If we continue to assume that the photon always
couples to the strongly interacting particles by means
of the neutral vector mesons, then we may rewrite the
parameter u as a ratio of strong coupling constants,
a= G„„/G„„.This ratio may be estimated by matung
use of the experimental result that the decay p -+ p+s.
is almost completely suppressed. " The amplitude for
this decay vanishes if

a= ctn0. (26)

y= c„(c„—c,) '(sin'8
—a sin28)(U(b', c )—U(b', c,)]
+co(co c,—) '(cos'8+a sin28)

XLU(b', c,) —U(b', c,)], (25b)

c;=m s/mxs, and b'= 1+—mx~'/mx' (.25c)

then

p(c)=P t;8(c c;), P t;—=1, One consequence of (26) is that only the oo intermediate
state contributes to the x+-m mass difference. Inserting
(26) and 8=27' into (24) and (25) yields

dm= ( mn/16 —)(sf sm/m )'(Q t'V(b, c;)
and

mx+ —mxa =+18.5f' MeV, (27a)

+P 2c;cAt;tI, (cs—c,) 'fU(b, c~)—U(b, c,)]}, (22)

where

V (b,c)=c'(d U(b, c)/dc)
= L

—3c'+-', (c—b)'(2c+b)] in)(1+b)/c]
+c(2c—b) —b' ln(1+b ') —-'$(c—b)' —4c]

X$(c—b)' —3c(c—b)+2c]tc(b,c). (23)

To calculate the vector meson contribution to the
m+-m' mass difference, we use the vector-mixing propa-
gator (13) for the co and P intermediate states and a
form factor having a single pole at the p-meson mass.
This yields

et+—mo
=3rrm f'(16 )s'((a cos8+sin8)'(m '/Mo') V(b,c,)

+ (a sing cos8)'(m—o /Mo ) V(bo, c,)], (24)

where f henceforth stands for f»„and where

b„=m„'/m. ' 1& bo=mo'/m. s —1, cp mp'/m—.'——,

and
a= f,„,./v3f

Similarly, the contribution of the E* intermediate
state to the E+-K' mass difference may be found, using

m + mo=+1—1 Sf' MeV. . (27b)

An alternative path to (26) is found by imposing
conservation of the A quantum number of Bronzan
and Low." If A is exactly conserved, however, the
only allowed coupling is p-~-m, and there is no E*
contribution to the E+-E' mass difference. In the case
at hand, we have a consistent picture of a nearly con-
served A quantum number if we consider (26) to be
approximate. The co-p mixing measures the violation
of A conservation and is small (ro is a nearly pure
singlet). The presence of substantial A conservation in
turn accounts for a qualitative feature of (27): The
vector contributions to the E and x mass splittings
are comparable in spite of the fact that the x has a
relatively much heavier intermediate state (b„))b').

The estimate of the coupling constant f has been
attempted several times; great disparities between the
results of different methods still remain. Gell-Mann,
Sharp, and Wagner" tried to estimate these coupling
constants using models for the decays co —+3m and
m' —+2y. There was a distressing lack of agreement

'P. L. Connolly, E. L. Hart, K. W. Lai, G. London, G. C.
Moneti et al. , Phys. Rev. Letters 10, 374 (1963).

'0 J. B. Bronzan and F. K. Low, Phys. Rev. Letters 12, 522
(1964).

"M. Gell-Mann, D. Sharp, and W. Wagner, Phys. Rev.
Letters 8, 261 (1962).
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Tmx.E I. Contributions to the x+-m. and E+-E'
mass differences (in MeV).

Fig. 1(a)
+Fig. 1(b) Fig. 1(c) Fig. 1(d) Total

7r+ —7r0 4.37 0.49 +0.37 0.0 4.9 ~0.4
X+—K0 2.17 0.77 +0.58 -4.2 -1.3+0.6

Experimental
value

4.590&0.004
—4.2 +'0.5

between the two models; stated one way, the calculated
m' decay rate was much too large. But when co—P
mixing was taken into account by Dashen and Sharp, "
the agreement was improved. The reason is that the
m'-decay model involves the ~&—p —m coupling, which
is a factor of sin8 smaller than the co—p —m coupling of
the or-decay model. The vector mixing model predicts a
smaller mixing angle than Dashen and Sharp have used,
and consequently it achieves still better harmony be-
tween the two models. If we insert I'(p-+ 2z-) =110&10
MeV, I'(co —+ 3') =8.5&1.9 MeV, I'(w'-+ 2y) = 6.3&1.0
MeV, and 0= 27' into Dashen's and Sharp's expressions,
we And

f=0.11&0.02 (to-decay model),

f=0.09+0.02 (z'-decay model) .

(28a)

(28b)

The two results are in agreement. "This may be con-
sidered a point in favor of the vector mixing approxi-
mation of Coleman and Schnitzer.

An entirely independent estimate of f has been made

by Serman and Drell, "on the basis of an analysis of
a "p' bump" in the photoproduction of pion pairs. In
our notation, they find

f'=0 27. . (29)

(28) and (29) may be considered representative esti-
mates of f"We he. lplessly repeat a sentiment recently
expressed by Adler and Drell, "that a better knowledge
of this coupling constant is essential. In Table I, we

quote results in such a way that the upper limit agrees
with (29) and the lower limit agrees with the average
of (28a) and. (28b).'r Our most important result is that
the vector intermediate state contribution is not large
enough to spoil the agreement previously obtained by

"R. F. Dashen and D. H. Sharp, Phys. Rev. 133, B1585
(1964). See also Ref. 15.

"The co and vr0 decay rates are the same as those used by
Dashen and Sharp, and references are given there. The p decay
rate is taken from M. Roos, Rev. Mod. Phys. BS, 314 (1963),
footnote 40, who compiled a weighted average of a number of
experiments. (The masses of the particles used in our work have
also been taken from Roos.) A p width of 110 MeV rather than
100 MeV, which was used in Ref. 22, improves the agreement
found in (28); the ratio of (28b) to (28a) varies with the cube of
this width."S.M. Berman and S. D. Drell, Phys. Rev. 133, B791 (1964).

"For further estimates see W. Alles and D. Boccaletti, Nuovo
Cimento 27, 306 (1963), and S. Hatsukade and H. J. Schnitzer,
Phys. Rev. 128, 468 (1962)."R. J. Adler and S. D. Drell, Phys. Rev. Letters 13, 349
(1964).

'~ The results quoted in earlier papers of this series assumed
that f was given by the average of (28a) and (28b).

Bose and Marshak for the ~+-m mass difference on the
basis of Figs. 1(a) and 1(b) only.

The uncertainty in f is not the only possible source
of error in this calculation; thus the numbers following

the ~ signs in Table I are not to be taken as the error
bounds of our calculation. It is difFicult to estimate
realistic error bounds; we would guess (perhaps with
excessive optimism) that the error is of the order of
one MeV.

TABLE H. Dependence oi signs of (z+—z ) and (E+—E ) and
value oi (z+—z')/(E+ —Eo) on the SII(3) transformation prop-
erty of the intermediate states, in the limit of exact symmetry.
The signs are calculated assuming that the separate contributions
of Fig. 1(c) lower the meson mass.

Sign of ( +—')
Sign of (E+ E')—
(E+—IP)/(z+ —z')

+
None

0

Transformation property of
intermediate states
go 8» 10Q+10 27

+ +
+ +
+1 —2 —8/7

IV. GROUP THEORETIC RESULTS FOR OTHER
INTERMEDIATE STATES

In the limit of exact SU(3), all intermediate states
which contribute to the x+-x and E'+-Eo mass differ-

ences must belong to a restricted set of supermultiplets,

1, 8n, 8s, 100+10, and 27. The subscripts D and F
distinguish between the two types of 8-8-y couplings;
the properties of the states under charge conjugation
generally force a given supermultiplet of intermediate
states to couple either one way or the other, and
forbid a linear combination of the two couplings. In
Table II, we tabulate the signs of the contributions
due to intermediate states in each channel, assuming

only that the basic diagram, Fig. 1(c), contributes a
negative electromagnetic self-energy. This is the sign
of Fig. 1(c) whenever the interaction is such that the
left-hand side of (20) vanishes; if the sign is opposite,
as in the calculation of Sec. II, the signs in the 6rst
two rows of Table II must be reversed. On the bottom
row of Table II, the ratio (E'+—E')/(z. +—z') is given
for each channel, assuming exact SU(3). This ratio
will be modified considerably, of course, if physical
masses are used in a calculation.

Table II shows that the E' is made heavier than the
E+ by intermediate states transforming like a 27-piet
or like an antisymmetrically coupled octet if the inter-
action contributes a negative self-energy, and by states
transforming like 10Q+10 or like a symmetrically
coupled octet if the interaction contributes a positive
self-energy. Even if contributions large enough to ac-
count for the physical E+-E' mass diBerence were

discovered, they would simultaneously have to con-

spire to cancel one another's effect on the x+-x' mass
difference. It appears unlikely, although not impossible,
that the meson mass problem can be resolved by higher
mass intermediate states alone.
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TAaxx UI. Scalar-meson contributions to the
electromagnetic mass differences.

Mass
difference

E+—ICQ

e—P
go g+
Z-—Zo

MQ4 w

Scalar-meson
contribution

None—1.75X
1.00X
1.45X
1.45X
1.90X

's The relation of X to the value of (w")/(g') discussed in Ref.
6 is (n")/(y') =X/(15 MeV).

~ R. A. Burnstein, T. B. Day, B. Kehoe, B. Sechi-Zorn, and
G. A. Snow, Phys. Rev. Letters 13, 66 (1964).

V. THE CONTRIBUTION OF SCALAR
MESON TRANSITIONS

Coleman and Glashow have suggested that another
contribution to the electromagnetic masses should be
taken into account, in which the x~' of a scalar meson
octet makes a virtual transition to the vacuum, thereby
violating isotopic spin symmetry in a well-defined way.
The magnitude of this symmetry breaking is fixed. by
their second assumption, to the effect that the transi-
tion to the vacuum of the g' member of the same scalar
meson octet is responsible for all of the observed mass
splitting between isotopic multiplets. The theory then
contains one free parameter, the ratio of the expecta-
tion values of the + ' and g' transitions. The magnitude
of the scalar meson contribution to the electromagnetic
mass splittings of the baryons and mesons is tabulated
in Table III. The normalization is arbitrarily chosen to
be unity for the neutron-proton mass difference. "The
lowest order contribution to the x+-~' mass difference
is zero, because this mass difference transforms like
I=2, and there are no I=2 particles in an octet. The
remaining coeKcients of X are ratios of intermultiplet
mass splittings, with numerical factors supplied by
SU(3). For example, the coefficient of X for the
E+-E mass difference is

2(w —E)mx—
tt 2(.—iV) —3(&—h.)j '= —1.75

where the unsubscripted symbols stand for the corre-
sponding baryon masses and squares of meson masses.
There is an arbitrariness in this coefficient (and the
others) to the extent that the Gell-Mann-Okubo for-
mula is not satis6ed exactly: one can add arbitrary
multiples of (4E—~—3r)) to the numerator and of
(2"+2K—2—3A) to the denominator. The coeffici-
ents in Table III are calculated with the guidance of a
simplicity assumption.

Coleman and Schnitzer have attempted to 6x the
parameter X by calculating the nontadpole contribu-
tions to the baryon electromagnetic mass differences
and then choosing X so that, when all contributions are
combined, a best fit to the experimental values is ob-
tained. Since their work, new experimental values for
the Z mass differences have been reported, " and these

TABI.E IV. Total contribution to baryon and meson electro-
magnetic mass differences for two values of the parameter X. All
values are in MeV.

Total contribution
(tadpole plus nontadpole)

Nontadpole X=2.4 X=3.0
contribution MeV MeV

Experimental
value

x+—~o
E+—EQ

e—P
go g+
Z-—ZQ

4.9
2.8—1.1—0.7
1.4
1.2

4.9—1.4
1.3
2.9
5.0
6.0

4.9—2.4
1.9
3.8
5.9
7,2

4.6—4.2&0.5
1.3

2.8~0.3
4.8a0.1
6.1~1.6

have an interesting feature. If we define 3= (Z
——Z')

—(Z' —Z+) to express the deviation from equal mass
splitting in the Z triplet, then the new result is 5= j..9
&0.3 MeV. The tadpole contribution gives 5=0. The
nontadpole contribution was calculated by Coleman
and Schnitzer in two ways, and they obtained 5=2.1
MeV and 5=2.0 MeV in the two cases."As a result,
it now turns out to be possible to obtain a quite con-
sistent value for X on the basis of the well-determined
Z and nucleon mass differences. Coleman and Schnitzer,
on the basis of earlier data, did not do this, but chose
to accept somewhat larger discrepancies in the baryon
mass differences in order to account for a larger part
of the E-meson mass difference. The two alternatives
are contrasted in Table IV. The nontadpole contribu-
tions to the baryon mass differences are taken from
the second column of Table III of Ref. 7."The choice
of X=2.4 MeV achieves excellent agreement with the
observed baryon splittings; the choice X=3.0 MeV
achieves less good agreement for the baryons, but
better agreement for the K mesons. Ke do not know
whether to regard the accuracy in the Coleman-
Schnitzer calculation of 5 as an accident; on the chance
that it is not, we have inserted into Table I a scalar

"An inspection of the results reported by Coleman and
Schnitzer reveals that their two calculations of 8 agree with one
another more nearly than do their two calculations of (Z —Z')
or (Z' —Z+) separately. This is not surprising. The calculation of
5 involves only the isovector form factors, since 5 transforms like
I=2; the calculations of the separate 2 mass differences, on the
other hand, involve the isoscalar form factors as well. The two
Coleman-Schnitzer calculations correspond to different approxi-
mations for the electromagnetic form factors; among other fea-
tures which distinguish the two approximation schemes, in one
case but not the other, ay-4 mixing is taken into account. Since
co-4 mixing is only relevant for the isoscalar form factors, an
important distinction between the two calculations of the separate
Z mass differences is absent from the two calculations of b.

"These are the contributions which result when the strange-
baryon form factors are obtained from the nucleon form factors
by the use of the exact relations provided by unitary symmetry
(Ref. 5). Coleman's and Schnitzer's second estimate of the non-
tadpole contribution to the baryon mass differences associates
with the poles of the form-factors vector mesons possessing
de6nite SU(3) transformation properties, and does not lead to
quite as good agreement with experiment when combined with
the scalar meson contribution. Since there is no apparent reason
to prefer one of their estimates to the other, it seems advisable
to regard as fortuitous any agreement to better than ~ MeV in
our Table IV.
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meson contribution to the E+-E' mass difference of
—4.2 MeV, corresponding to X=2.4 MeV.

In conclusion, the scalar meson contribution to the
E+-E mass difference has the right sign to agree with
experiment, and, curiously, taken alone it also has the
right magnitude. However, when the scalar meson
contribution is combined with the other contributions,
the sign, but somewhat less than half the magnitude,
of the E+-E' mass difference is accounted for. The
predicted m+-&' mass difference remains unchanged
when the scalar meson contribution is included, and
hence the agreement between theory and experiment
obtained by previous authors persists.

%e started out to explain the x- and E-meson mass
differences simultaneously, by exploiting the super-
multiplet properties of all particles participating in the
interactions, and it is clear that we have been less than
perfectly successful: The x-meson mass difference re-
mains much better understood than the E-meson mass
difference. If the scalar meson contribution were larger,
we would indeed have a satisfactory explanation of
both mass differences. One way that this could arise
would be if the nontadpole contribution to the srtter

rrtultiplet mass differences, neglected in finding the co-
eScients in Table III, were in fact substantial. The
successes of the tadpole theory persist if these non-
tadpole contributions have octet transformation prop-
erties and if, in addition, they preserve the ratio
( —1V)/(Z —A) found in nature. Subject to these con-
straints, such nontadpole contributions improve our

theory either if they split the mesons in the direction
opposite to that observed in nature, or if they split the
baryons in the same direction as that observed in
nature, or if they do both. If nontadpole contributions
with these signs exist, that would mean that we had
underestimated the ratio of the scalar-meson-pseudo-
scalar-meson coupling to the scalar-meson —baryon cou-
plings, and therefore had underestimated the tadpole
contribution to the E-meson mass difference.

As was shown in Sec. IV, it is possible but very
difficult for higher mass intermediate states to con-
spire to yield the experimental E-meson mass difference
without upsetting the x-meson agreement. The tadpole
theory, re6ned in the manner just described, presents
an alternative mechanism for explaining the IC+-E'
mass difference to the same accuracy as the m+-+ mass
difference.
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This paper presents the angle and momentum distributions for protons stripped from deuterons at 3.54
GeV/c by aluminum, copper, and lead. The parameters of interest are summarized in the table. Roughly,
the results are consistent with a cross section about -,'geometric (where r = 1.22A't'X10 "cm) and a mo-
mentum distribution obtained by transforming the deuteron internal-momentum distribution to the labora-
tory frame. The results are: d+ momentum, 3.54&0.100 GeV/c; p+ momentum, 1.77&0.100 GeV/c; angle
spread (full width at half-maximum) 3', o, (A1), 290 mb+25%; o, (Cu), 550 mb+25%; o, (Pb), 950 mb&
25 0'

HIS paper presents the angle and momentum dis-

tributions for protons stripped from deuterons at
3.54 GeV/c by aluminum, copper, and lead. The

t Work performed under the auspices of the U. S.Atomic Energy
Commission under Contract No. AT(11-1) GEN 10, PROJECT
10, MOD 4.

parameters of interest are summarized in Table I.
Roughly, the results are consistent with a cross section
about rsgeometric (where r=1.222'tsx10 " cm) and
momentum and angle distributions obtained by trans-
forming the deuteron internal-momentum distribution
to the laboratory frame (as though the deuteron were a
decaying particle).


