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A shell-model potential is defined for calculations on the structure of finite nuclei by the reaction-matrix
theory. The rearrangement potential is part of this shell-model potential. The contribution to the rearrange-
ment energy from the short- and long-range parts of the nucleon-nucleon potential is calculated in infinite
nuclear matter. The third-order rearrangement term is shown to be predominantly due to the strong short-
range part, while the second-order term comes mainly from the long-range part. The dependence of the re-
action matrix on the structure of the nuclear medium in which the nucleons interact is investigated. The re-
sults from the calculations of rearrangement energies is then of help. Part of the short-range repulsion is pro-
portional to the reaction-matrix potential energies of the interacting nucleons. Another part is a function
of the “local” density. The long-range part of the reaction matrix varies somewhat less with the density of
an infinite system than does the short-range part. It seems, however, that it would be important to include
its dependence on the medium, especially for studying small nuclei or the structure of the surface.

I. INTRODUCTION

HE Brueckner theory of nuclear matter has been
reasonably successful when applied to infinite
nuclear matter, as is reported in several publications.!—3
There have been made both exact calculations (within
the Brueckner theory) and approximate ones. The value
of the approximation methods lies, apart from the
simplicity of the calculations, in the improved under-
standing of the physics that they give.

Still, the problem of the infinite medium cannot be
regarded as finished. It is to be expected, for one thing—
and it has been shown explicitly*—that different nucleon
forces, all of which do describe free scattering, do not
necessarily give the same binding or saturation for
infinite nuclear matter. Therefore the final calculation
has to await an accurate experimental determination of
nucleon forces and a satisfactory theory of these forces.
It has further been found that the off-energy-shell effect
is more important than perhaps first expected.? It has
been demonstrated that certain higher order terms in
the reaction matrix expansion that earlier were found to
be negligible,® partly due to the off-energy-shell effect,
are not s0.%7 Fortunately there seem to be large can-
cellations among these higher order terms,” but this
is a problem which still has to be clarified.

Of special importance in nuclear matter calculations
is the short-range repulsion which is usually represented
by a hard core. This repulsion also enters in a seemingly
important way in the off-energy-shell effect. It still re-
mains to investigate the importance for nuclear-matter
calculations of replacing the mathematical hard core
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by a more physically plausible soft core. Some pre-
liminary investigations of this have been made.?

The above are some of the problems still remaining in
the infinite-nuclear-matter problem. We do, however,
also want a theory that describes other properties of
the many-body system, such as, e.g., appear in the semi-
empirical Bethe-Weisziicker mass formula. Especially,
we would like to be able to calculate the surface energy,
from assumed known nucleon forces, and connected
with this the surface thickness, suitably defined. For
such a calculation we may treat a semi-infinite nucleon
system, by which we would understand the surface of a
very large nucleus (neglecting Coulomb forces). How-
ever, from the structure of the reaction matrix from
which the surface energy is to be calculated, one must
be led to believe that the surface energy is not a constant
quantity, but would rather depend on the specific
nucleus, e.g., on its size.

We would also like the theory to reproduce binding
energies, density distributions, and separation energies
of single particles for specified finite nuclei.

It is certainly true that before trying to deal with
these problems we should first fully understand the
simpler problem of infinite nuclear matter. Some of the
remaining dark points of this were mentioned above.
However, even the simplest reaction matrix theory,
ignoring higher order terms and off-energy-shell effects,
contains many features that undoubtedly are physically
important, and we would like to investigate the relation
of these features to the physics of a finite nucleus.

In the infinite system, the model wave functions are
(by assumption) plane waves, and the state of the
infinite system is defined by only one parameter, e.g.,
the Fermi momentum or the density. In a finite system
the theory also has to provide the spatial wave func-
tions, and the number of parameters required to define
the state of the medium is in principle infinite. This is
the essential difference between the finite and the
infinite problem. Once the model wave functions are

8 H. S. Kohler and Y. Waghmare (to be published).
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given, the procedure of calculating the reaction matrix,
etc., is formally identical in the two cases.

However, the calculation of the reaction matrix is
quite time consuming even for an infinite medium, and
would be far more so in a finite medium. Thus, we also
wish to have an approximate way of calculating the
reaction matrix in a finite medium and (we might hope)
to use results from the calculations in the infinite
medium. Brueckner and co-workers used such a pro-
cedure and derived a density-dependent reaction ma-
trix?1° and applied this method to some finite nuclei.!!2
However, their approximation of the reaction matrix
has no deeper justification—as they also pointed out.
One may hope that by a better approximation one
would be able to improve the agreement with experi-
mental binding energies, etc., of the finite nuclei, which
was only moderately good.

In this paper we shall study the definition of a shell-
model potential and an approximation to the reaction
matrix to use in finite nuclear calculations. To this end,
we also calculate rearrangement energies, which also
contribute to the shell-model energies.

II. A SHELL-MODEL POTENTIAL

We assume that the wave functions are solutions of a
Schrédinger equation with some potential that we shall
refer to as the shell-model potential. It is the object of
the theory to provide this shell-model potential.

In the well-known Hartree-Fock theory a shell-model
potential Vgr is usually derived by a variational
method. We briefly review some steps of this derivation.
With an interaction v given, the single-particle energy is

Ei= (@i p*/2M | 0:)+ 2 i(pi0i| v| pipi)+exchange, (1)

and the total energy by

E=3:(o:| p*/2M | 0:)+3 Zii( 0igil v] 0i00))
-+exchange, (2)

where p is the momentum and M the mass of the
particle. The minimization of £ by varying the wave
functions ¢; while preserving the normalization,

(‘Pihoi):l; (3)
gives
(#*/2M~+V ur) pi=Nipi, 4)
where the Hartree-Fock potential Vyr is
Var=2;(¢;|v¢;)+exchange, ©)

and where the eigenvalues \; are the Lagrangian mul-
tipliers to take care of the side condition (3). For future

? K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev.
110, 431 (1958).
(1;"55). A. Brueckner, and D. T. Goldman, Phys. Rev. 116, 424
1 K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phys.
Rev. 121, 255 (1961).
(1”613(). S. Masterson, Jr., and A. M. Lockett, Phys. Rev. 129, 776
963).
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reference, we point out that there is no @ priori reason
to give any physical meaning to the eigenvalues A. If,
however, we operate with ¢; from the left in (4) we
obtain with (5)

A= (¢:] 9%/2M | 00)+2i(¢105] 0] i) +exchange. (4a)

Thus, we now find from (1) that \;=E; and X; is thus
now found indeed to have a physical meaning. That this
is, however, an a posteriori finding is of value for the
understanding of our more general shell-model potential
now to be derived. (This point will be better clarified by
a practical application in a paper soon to be published.)

The derivation of a shell-model potential in the
theory of a finite nucleus is a very important point. It is
necessary to realize that the many-body theory we are
dealing with is approximate. The shell-model potential
we shall derive thus enters into an approximate theory
and will itself be approximate. The aim of any approxi-
mation is naturally to reduce as much as possible the
error in the quantity one wants to calculate. However,
it is equally natural that one can only estimate the
goodness of an approximation. We further want to
emphasize that the development of a theory should be
guided by internal consistency and formal elegance or
simplicity. We would also like to have quantities which
are physically meaningful whenever possible.

We mention this because a shell-model potential is
not prescribed by the reaction matrix theory, and there
is in fact no unique way of defining it; it will depend
rather on the approach we choose.

We now define the shell-model potential by a varia-
tional procedure, as in the Hartree-Fock theory,
minimizing the energy of the system in question. One
must realize that this is not an exact procedure, since
the energy we minimize is approximate. This minimiza-
tion should thus be distinguished from the variation of
the wave functions of the exact Hamiltonian which by
a well-known theorem does give the exact wave function
when the energy is minimized.

In principle, of course, one has to be careful in pick-
ing the expression for the approximate energy to
minimize. The choice often depends on what we wish to
calculate. We usually require a good approximation not
only for the energy, but also for the change of energy
with the variation of the wave functions, and thus for
the wave functions at the energy minimum.

For a very large system (infinite nuclear matter), the
only function to vary is, as previously mentioned, the
density or Fermi momentum, i.e., the wave function at
the top of the Fermi sea. In fact the accepted procedure
for calculating the saturation density is to calculate the
energy as a function of density and search for the
minimum. Thus our definition of the shell-model wave
functions agrees with that for infinite nuclear matter in
the limit of a vary large nucleus. The agreement is
brought out more explicitly if, instead of searching for
the energy minimum as is usually done, we calculate the
energy of a real hole as a function of momentum at some
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trial density. Then we choose the next density by taking
as the Fermi momentum the momentum at which the
energy of a real hole agrees with the total energy. We
then iterate until the density is stationary. This pro-
cedure is equivalent to the conventional one by the well-
known theorem on the equality between total energy
and the energy of a nucleon at the Fermi momentum, at
saturation density.

In the theory of infinite nuclear matter, the energy
is given in Brueckner theory by the K-matrix ap-
proximation

E=% (0| p*/2M | 0:)+3% Zsi(0i0i| K| pio;)
+exchange, (6)

with the reaction matrix K defined as usual by
K=v4+GK, )

where v is the interaction and G the propagation in
nuclear matter. As has been described, the K matrix is
designed to sum certain terms or graphs up to third
order in a K-matrix expansion of the energy by suitable
definition of the propagator.2:3:6 It has to some extent
been shown that the corrections to (6) are small at the
saturation density. (In a recent publication by Bethe,”
it is, however, estimated that higher order K-matrix
graphs are very important although important cancella-
tions occur.) It is perhaps not so clear that the change
of energy with density is well approximated from the
expansion (6). So although the energy may be well ap-
proximated by (6) we can perhaps not expect the same
good agreement for the saturation density.

But this is a well-known dilemma of quantum
mechanics as applied, for example, in atomic physics.
Wave functions for a system of electrons that approxi-
mate the energy well, often do not give the same good
agreement when one calculates other quantities like
transition probabilities. The only sensible procedure is
to include more terms in the approximation to the
Hamiltonian in order to improve on the wave functions.

By the same token, our first aim in the calculation on
nuclei would be to calculate binding energies. Densities,
radii, or other properties of the wave functions may
however be changed by smaller changes in the approxi-
mate Hamiltonian. Mathematically, this is clearly
because of the minimization. The energy changes only
relatively slowly around the minimum as we change the
wave functions.

Although the K-matrix approximation (6) for the
total energy is argued to be a good approximation for
calculations on infinite nuclear matter, it is not neces-
sarily true that this approximation is good for the treat-
ment of a finite system. It is a matter of numerical
calculation to investigate whether any higher order
K-matrix terms should be included, just as one has
previously investigated the importance of, e.g., hole-
particle, hole-hole, and third or higher order terms for
infinite nuclear matter.

B 1147

To emphasize the difference between the finite and
the infinite medium we point out that in the infinite case
we are concerned only with varying the wave functions
at the top of the Fermi sea. In a finite nucleus, however,
the lower lying states also come into play in the varia-
tional procedure.!® Thus it can be, at least in principle,
that terms in the K-matrix expansion of the energy
which are unimportant for the calculation on an infinite
system are not so for a finite system, since the surface
of a finite system is also built up of lower lying states.
That this may be true in practical calculations is made
plausible by the important state dependence or non-
locality of the K matrix.

When carrying through this scheme in practice,
it may of course happen that we find terms in the
K-matrix expansion of the energy which contribute
insignificantly to the energy but significantly to the
shell-model potential. But this can again only be in-
vestigated by detailed numerical work.

In our work to be presented now, we shall, as a
natural first step, assume that for a finite nucleus also,
the K-matrix approximation (6) is good.

In order to be able to perform the variational pro-
cedure in practice, we should now investigate the
dependence of the reaction matrix on the wave func-
tions. In fact, we have to do more. As pointed out in the
Introduction, the numerical solution of (7) is already a
complicated task for an infinite system, and the solution
for a finite system does not (at present) seem, in general,
possible. Therefore we are also compelled to solve (7)
approximately for wave functions of a finite system, and
in the following sections we shall deal with this problem.

III. PREVIOUS INVESTIGATIONS ON THE MEDIUM
-DEPENDENCE OF THE K MATRIX

The reaction matrix is defined by (7). Taking matrix
elements between some set of states of the unperturbed
medium, one gets

Kkl,ij= 'Ukl."j‘l'Zmn vkl,mnGmn,inmn,ij ’ (8)

and
Gun,ij= (EF*+Eff— En*— Es*) 7, (9a)
if m, n are unoccupied states, and
Gmn,3i=0, (9b)

for m, n occupied. The virtual energies E;* are de-
termined by

E#=p2/2M+3i(Kijii— Kijii) (10)

for hole states, while the energies for particle states m, n
are determined similarly to (10) from a matrix K®
calculated with a propagator off the energy shell, as has
been explained elsewhere.!3

The dependence of the K matrix on the density of an
infinite system was investigated by Brueckner, Gammel,
and Weitzner,® and we briefly review their procedure.

1B H. S. Késhler, Bull. Ann. Phys. Soc. 9, 504 (1964).



B 1148 H. S.

They concluded that the density variation is important
only for angular momentum /=0 states. Further, they
investigated separately the density dependence of the
core part and of the attractive part. The core part is
proportional to the slope of the wave function at the
core edge. Thus they put

K=Kcorf.-+Ka- (11)

It was concluded that K, depends so little on density
that this dependence could be ignored. Next they
assumed a parametrical dependence on density for the
core part and fitted the parameters to their calculations
of the slope of the wave function at the core edge. This
density-dependent Keore(p) together with the attractive
part K, (calculated at the saturation density of infinite
nuclear matter) has been used in extensive calculations
on finite nuclei.? The density then put into Keore(p)
was the density at the center of mass of the two inter-
acting nucleons, and therefore this approximation is
referred to as the local density approximation. However,
a closer inspection shows that core repulsion depends in
a more complicated way on the structure of the medium
in which the nucleons interact, and it may not be
permissible to treat K, as independent of the medium
either. As the correlation between the nucleons,
especially the correlation due to the core, is so important
for the saturation of nuclear matter, we have to assume
that an exact treatment of this correlation is also
necessary for the structure of a finite nucleus.

In a previous publication,* we did in fact show that
an important part (part of the dispersion term of the
separation method) stems from a density dependence
of the short-ranged part of the K matrix that is mainly
proportional to the sum of potential energies of the two
interacting nucleons. The potential energies of two
nucleons in a finite nucleus are, however, not related to
the “local” density. In fact, the density averaged over
the whole of the nucleus would be more relevant. As
has been pointed out,!* the center-of-mass coordinate
on the other hand feels mainly the center of the nucleus
where the density is high. As the repulsion due to the
core increases with density, we expect the local-density
approximation to overestimate this repulsion and give
too little binding. In an infinite medium, the part of the
dispersion term we discuss contributes about +6 MeV
to the energy at normal density. We may thus expect
that an erroneous treatment of this term can under-
estimate the binding of a finite nucleus by some MeV.
Further, the shell-model potential derived from the
K matrix would be in error. Only by actual solution for
the wave functions, however, can the effect of this be
estimated numerically.

Brueckner and co-workers do consider a separation
of the K matrix into the core and attractive parts, as
in Eq. (11). The dispersion term from the separation
method results from a short-range part that includes

% H. S. Kohler, Nucl. Phys. 38, 661 (1962).
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some of the attractive part, so there is no direct connec-
tion between the Keore of (11) and the dispersion term.
However, we have previously'* shown that our dis-
persion term is numerically comparable with the Keore
of Brueckner et al. This is because the wave function
for relative motion in nuclear matter is quite insensitive
to changes in density, except right at the core edge
where the slope of the wave function enters in an im-
portant way into the calculation of the K matrix.
Actually, this circumstance is responsible for the success
of the separation-method approximation as developed
in Ref. 15, where in first approximation the wave func-
tion at small distances was approximated by the wave
function for free scattering.

However, the other terms in the separation-method
approximation are also density-dependent, and K, of
Eq. (11) is not completely independent of density either.
Even a few percent error in the potential energy can
mean an error of MeV’s in the total energy. In the
separation method, there appear terms connected with
a long-range correlation which is appreciable in the 35y
state® due to the tensor force, the long-range part of
which contributes appreciably in second-order Born
approximation.!® It may not be sufficient to treat only
the short-range part of the X matrix as depending on
the medium. We shall try to throw some light on this
problem in the following and shall then use mostly the
separation-method approximation 2%

IV. THE SEPARATION METHOD

The separation-method approximation has been
found to be semiquantitative,* and is physically illustra-
tive. It is acceptable for the studies we are now going to
make. This method gives!®

K=v+K 4+ Q.7 —1)(eo—e) (2, F—1)+20,0(Q.F—1)
+u(Q/e)u+ @QF—1)e(@Q—1)(@7—1), (12)

where v; and v, are the long- and short-ranged parts of
the interaction, respectively, and Q is the Pauli operator.

The separation should be chosen so that the diagonal
element of K defined by

Q,F =14 (1/e0) K7,

KaF= stsF )

(12a)
(12b)

is small or zero. The propagator 1/e, contains only
kinetic energies. We refer to the first and the third to
last terms of (12) as the first order, the dispersion, the
interference, the second-order Born term, and the Pauli
term, respectively.

The separation method has been extensively discussed
previously. We only wish to point out here how this fits
into the K-matrix theory, as we feel this has been
neglected hitherto.

1. S. Kohler, Ann. Phys. (N. Y.) 16, 375 (1961).
( 16 B). L. Scott and S. A. Moszkowski, Ann. Phys. (N. Y.) 14, 107
1961).
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By introducing a K matrix, one sums to all orders
certain types of important terms of a perturbation
expansion. Now the separation method emphasizes that
for the long-range part of the interaction it was really
not necessary to do the summation over all orders, so
one makes a re-expansion of the K matrix in powers of
this part. We shall refer to this procedure as the
separation-method expansion. In actual calculations one
has kept only the first few terms in this expansion. One
has also made approximations on these terms, and the
goodness of these has been investigated.!® We refer to
the final expression (12) as the separation-method
approximation. In Fig. 1 we show the graphs that this
method includes.

Work with the K matrix and the separation method
has shown that it is practical to split the nucleon force
into three parts which have different influences on the
two-particle correlation.

(i) The short-range part v,(r), #<1.1 F. This contains
the hard core which is the main reason for strong two-
particle correlations. However, the strength of this
correlation depends to an important degree on the
medium through

(ii), the long-range central part v;¢(r), #>1.1 F. This
part gives the main contribution v; to the K matrix in
(12), because of the cancellations between repulsion
and attraction in v,. It is also characterized by giving a
small second-order Born term.

(iii) The long-range tensor force v;7(7), 7> 1.1 F. This
gives no first-order term, but the second-order Born
term gives several MeV to the binding and is therefore
important. Associated with this, it gives long-range 35
correlations between two nucleons.

In the following investigation we shall often discuss
contributions from these parts of the force separately.

V. REARRANGEMENT ENERGIES OF
INFINITE MEDIUM

If the K matrix depended only very little on the
medium or, in other words, if the two-particle correla-
tion were mostly independent of the medium, we might
neglect that dependence and replace the actual K matrix
by a matrix calculated at some average state of the
medium. However, it is known that the density de-
pendence is important for the saturation of infinite
nuclear matter, and such a procedure would not seem

OO

(a) (b) (c)

Fi1c. 1. Graphs summed over explicitly in the separation-method
approximation. The interactions (wavy lines) are essentially
v+K,F. If the interactions were K we would have only the Fig.
1(a), but in the separation method we also have to sum explicitly
over 1(b) and 1(c). We distinguish between 1(b) and 1(c), which
have a bubble interacting with a hole and a particle state,
respectively.
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(o) (b) (c)

F1G. 2. Rearrangement contributions to energies of holes states.
The interactions are K-matrix interactions. Splitting the K matrix
into a short- and a long-range part, we get the contributions from
them and from the interference between them.

hopeful for a finite system either. Also, for a finite
nucleus, it would result in neglect of the contributions
to the shell-model potential from the medium depend-
ence of the K matrix. An important part of these con-
tributions is related to the often discussed rearrange-
ment energy.” This is the energy shift, due to the
implicit dependence on the medium of the K matrix,
when a particle is physically removed.

We shall therefore be concerned in this section with
rearrangement energies. Such have been calculated by
Brueckner, Gammel, and Kubis for an infinite medium
at normal density.!® Their calculations are exact, based
on an exact calculation of the K matrix. However, we
wish to investigate how the different parts of the inter-
action discussed at the end of the last section contribute
to the rearrangement energies. This is of help in under-
standing how the K matrix depends on the medium.

The K matrix depends on the medium through the
Pauli operator and through the energy denominator in
the propagator. The change in the Pauli operator due
to the creation of a hole when a particle is removed
produces a second order (in K) rearrangement term
[Fig. 2(a)], and one gets

n,n,(l —_ %m)Kma'ijz

’
'm.*'—' Ea*

Ve®(@)=2 (13)

ijm Ei*+Ej*—E
where 7, 7, a are hole states, and m a particle state, and
the »’s are occupation numbers. The energies E* are to
be calculated from an on-the-energy-shell K matrix as
described by Brueckner and Goldman.'” This makes
energy-conserving transitions possible, and leads to a
finite lifetime for the hole. It also leads to a large
numerical value for Vz®. The main contribution comes
from small momentum transfers. In actual calculations,
the principal value is taken to obtain the real part of
Ve®. The energy denominator AE is replaced according
to

AE — [(AE)+T?]/(AE). (14)

After making this replacement in (13) V@ is calculated
in the limit I'— 0. When the hole energy graph is
inserted into an energy diagram the particle energies
E,* are to be calculated from an off-the-energy-shell

17 K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207
(1960).

18 K. A. Brueckner, J. L. Gammel, and J. T. Kubis, Phys. Rev.
118, 1438 (1960).
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F16. 3. The second-
order rearrangement
term Vgp®. In the
K-matrix expansion
(12) the Born and
interference  terms
contribute to this.
We have plotted the
contribution from a
central (C) and a
tensor (7)) force as
described in the Ap-
pendix.
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K® matrix and the corresponding contributions to the
inserted hole energies are much smaller.l”

In our variational-principle definition of the shell-
model potential, the main contribution again comes
from the energy-conserving transitions, i.e., with E,*
calculated from an on-the-energy-shell K matrix. This
may seem somewhat strange. However, the singularity
we then obtain has the same origin as the well-known
singularity in the X matrix of any two nucleons with
opposite momenta close to the Fermi surface. This
singularity, which may give rise to the Bardeen-Cooper-
Schrieffer phenomenon,’ is believed to be unimportant
for the total energy calculations, and is usually avoided
by introducing a gap in the virtual energy-conserving
transitions. This would correspond to our T' in (14).
That the two singularities are related is best seen if we
consider the infinite-nuclear-matter problem. Then we
vary only the density or occupation numbers at the
Fermi surface. The change in the Pauli principle is then
most important for nucleons close to the Fermi surface
which can make transitions with AE small or zero.

Now in the expansion (12) the terms that contain the
Pauli principle are the Born, the interference, and the
Pauli terms. We have calculated the contributions to
Ve® from these different terms in infinite nuclear
matter of normal density. Details of the calculation are
in the Appendix We use the effective-mass approxima-
tion with M*/M=0.67 at the Fermi surface.! The
result of this calculation is presented in Fig. 3. We do
expect a large contribution to come from small-momen-
tum transfers and therefore the second-order Born term
with central force (BORNC) contributes significantly
compared to the second-order Born term with tensor
force (BORNT), especially for small momenta, although
the tensor force contributes significantly more to the
total energy than the central in second Born approxi-
mation. The interference terms contribute significantly
less, owing to the one short-range interaction involved.

¥V. J. Emery and A. M. Sessler, Phys. Rev. 119, 248 (1960).
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The Pauli terms contribute insignificantly and are not
shown in the figure. From the figure, we read the
values 25.5 and 4.8 MeV at the bottom and top of the
Fermi sea, respectively, for the total contribution to
Ve®. These are to be compared with the values 26.8
and 4.4 MeV obtained by Brueckner, Gammel, and
Kubis. Thus, the calculations agree remarkably al-
though the interactions are not exactly the same in the
two cases.

Calculations of the density dependence of Vg® gave
as a result that Vx® is nearly proportional to density.

The result of this calculation is thus that the long-
range part of the central force gives a strongly mo-
mentum-dependent contribution to the second-order
rearrangement term. The long-range tensor force gives
a considerably smaller contribution for small momenta
but gives the main contribution at the Fermi surface.

We defer a discussion of the implications of this
result on the calculations on finite nuclei until the next
section, after we have treated third-order rearrangement
terms.

A calculation of third-order rearrangement terms
[Figs. 2(b),(c)] was done in Ref. 20 in connection with
the binding energy of a A particle in nuclear matter, and
also in Ref. 14 in connection with a calculation on
oxygen 16. It was there found to be of special advantage
to split the third-order rearrangement term into two,
the hole (Vg4®) and the particle (Vz,®) rearrange-
ment terms. [ In Ref. 14 we referred to these as V,; and
V,. Actually the V,; of Eq. (35) in Ref. 14 contains two
terms. Only the last of these is the rearrangement term.
The first probably has no physical meaning but appears
only as a result of the variational procedure. Thus we
see, as mentioned after (4a), that the shell-model eigen-
values do not always of necessity have a physical
meaning. ] The hole and particle rearrangement terms
are shown, respectively, in Figs. 2(b) and 2(c).

The third-order rearrangement contribution to the
energy of a hole can be written!®

Ve®()=3 2 nmi(1—n,)(1— 1) Konn, i
ijmn
a 1
6”(1 Ei*+EJ'* - Em*_En*

, (15)

where the virtual energies were defined by Eq. (10)
and thereafter. Thus we get

VR(a) (Ot) = _% Z nin]'(l_”m) (1—nn)Kmn,ij2

ijmn

Kia,ia_l—Kiu,fa_Kma,ma(l) hat Kma,na(l)-l-exchange
X
(B Eff— By — B,

J

(15a)

( 2“Je}musz Dabrowski and H. S. Kohler, Phys. Rev. 136, B162
1964).
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or with a Hermitian K matrix

Ve®@)=— X nnj(l1—nm) (L—12,)Kmpn,i?

ijmn
Kz'a,ia_Kia,ai_’Kma,mau)+Kma,am(l)
(B By — Ey*— B,

, (15b)

or
Ve®()=—2i Cini(Kia,ia— Kia,ai)

+Zm(1_”m>cm, (Kma,ma(l)_Kma.am(l)) ’ (ISC)
where
C,-= Z nj(l—nm) (1"'77/n)Kmn,ij2

jmn
1
X , (16a)
(E#4Ej*— En*— E,*)?

and

Cn!' =2 nin;(1—10)Kn i
ijn

1
X .
(E#+ Ej*— Ep*— E,*)?

(16b)

This result is understood physically as follows: The first
term of (15¢) is the correction to the first order (in K)
single-particle energy due to the deletion of state 4
[Fig. 2(b)], and C; is the amplitude for this deletion.
Similarly C,’ is the amplitude for finding a nucleon
excited into state m [Fig. 2(c)] due to the correlated
wave function. We then get

Ver®(@)=—2: Coni(Kia,ia— Kia,ai)

Vep® (@) =2 m(1—1m)
XCM,(Kma,ma(l)'_Kma,am(l))- (17b)

Replacing the K matrices in (16a) and (16b) by wave
functions, one finds that C; is proportional to the volume
of the distortion of the model wave function created by
the correlation, while C.’ depends on the Fourier
transform of this hole. In Ref. 20, C; was computed by
such a procedure with the Bethe-Goldstone solution for
the wave function. We then found C; to vary only by
some 309, as a function of momentum state ¢ at normal
density. Thus we could take an average of C over 3.
We obtained C (averaged over 7)=%pX1.16=0.15,
where p is the normal density (p=0.172 nucleons/F?).
In Ref. 14 we obtained C=%pX0.5=0.065. The dis-
crepancy between these two calculations may be due to
an underestimate in that calculation using the wave
function for free scattering corresponding to the wave
operator @, in Eq. (12). But it may also be due to a
too slow healing? of the Bethe-Goldstone solution. It is
anyway clear that the calculation of C; is sensitive to the
wave function. In Ref. 14, we introduced the effective
core radius ¢, and we then obtained ¢,=0.50 F. The cal-

(172)

2n],. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann.
Phys. (N. Y.) 3, 241 (1958).
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Fic. 4. The coefficient C (k) as defined by (16a) and entering
into the third order rearrangement term Vg®. The contributions
from the Born terms are shown with a central (C) and tensor (7)
force as described in the Appendix.

culation in Ref. 20 gives ¢,=0.6 F. It would be of value
to perform this calculation with a more accurate wave
function.

It is clear from these calculations that the main con-
tribution to C; comes from the short-range interaction
KF, since this can make the necessary excitations. In
the expansion (12), this corresponds to calculating C;
from the dispersion term, as we also did in Ref. 14.
However, the Born and Pauli terms also depend on the
energy denominator e. Estimates show that the Pauli
term would contribute completely negligibly. The
smallness of the second-order Born term with a central
interaction shows that this part can also give only a
small contribution to C;. The tensor force gives a much
larger second-order Born term, however. Therefore we
also calculated the contributions to C; from this term in
(12). This corresponds to replacing the K’s in (16a) by
the long-range part of a tensor force. We also did the
same calculation with the long-range part of a central
interaction. The results of these calculations are shown
in Fig. 4, while some details of the calculations are found
in Appendix A. The result is about as we can expect
from previous discussion.

We approximate the contribution as C(k.) from the
tensor Born term in Fig. 4 by

C(ka)=0.0041--0.0250k,—0.00609k.2.  (18)

We further assume an effective-mass approximation
for the K matrix, and thus obtain a quadratic momen-
tum dependence for this. We deduce the two parameters
of this dependence from the result of K-matrix potential
energy given in Ref. 18, by fitting at the values —112
and —70.3 MeV at the bottom and top of the Fermi
sea, respectively. We put this into (17a), do the sum-
mation and get a contribution to the third-order
rearrangement term (in MeV) from the long-range part
of the tensor force.

Ven,BornT= 2.66—0.51k,2. (19)

The calculations of C in Ref. 14 and 20 were only with
central interactions. As the long-range central term
contributes so little (Fig. 4), we can state that those
calculations of C were both due to the short-range part,
i.e., due to the dispersion term. We therefore call that
contribution Vg, prsp® and

VRh,DISP(s) = “CsU(ka) ) (20)
where C, has been previously calculated (0.065<C,
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F1c. 5. The con-
tribution to the re-
arrangement  term
Ve from the differ-
ent terms of the
K matrix expansion
(12), with a central
(C) and tensor (7T)
force as described in
the Appendix. We
have also plotted
separately the sum of
all contributions from
the terms contain-
ing the long-range
interaction, and the
contribution  from
the dispersion term.
Shown separately is
also the dispersion-

25

LONG \ RANGE

20

° o8 o8 2 xgf!  term contribution to
e ——— Vra®, denoted by

INTC DISPH.

<0.15) and U (k,) is the first-order K-matrix potential
energy of momentum k. The contribution (19) is
smaller than (20) but not completely negligible.

The size of Vg,® in (17b) is indeed uncertain. It
depends critically both on the high-frequency Fourier
transforms of the correlated wave function and on the
off-the-energy-shell K® matrix for large momenta, as is
brought out explicitly in Refs. 14 and 20. However, it
can be regarded as independent of hole state & because
the states m [ Fig. 2(c)] are all of such large momentum
that the relative momentum between m and a is
practically independent of a.

In the work of Bethe ef al.? it was found that, under
the assumption that the hard core works in all angular-
momentum states, the single-particle virtual energy for
off-the-energy-shell interaction has an effective mass
less than the real mass even for very large excitations.
The single-particle potential energy is then positive for
these excitations, and this leads to a positive V,®. We
can calculate this term as in Ref. 20. If we neglect the
difference in reduced masses due to the difference in
masses of lambdas and nucleons, and further realize
that the attraction in angular-momentum states />0 is
smaller than in the A-nucleon case, we end up with
[Ref. 20, Egs. (101), (102)]

Vip®~10 MeV. (21)

However, this figure is rough and therefore only indica-
tive. Actually we expect V g, to be equal to the contribu-
tion to the energy from the third-order bubble-particle
graph [Fig. 1(c)], which may perhaps be as large as
10 MeV due to off-energy-shell propagation.

We found the tensor force to contribute significantly
to C; of (16a) because of its effectiveness in scattering
out of the Fermi sea. Therefore, it would also contribute
to C»' (16b) and thus to Vz,® according to (17b).
However, most of these scatterings will be to momenta
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just outside the Fermi sea. The single-particle potential
energies there are relatively small compared to the
single-particle potential energies to which the short-
range force scatters. (Due to the off-energy-shell effect
the particle potential energies increase rapidly with
momentum.?) Therefore the tensor force contributes
relatively little to Vg,®. Because of this, and because
of the uncertainty of the calculated number 10 MeV of
Eq. (21), C,/ was not calculated for the tensor (or for
the central) force.
Thus we get

Vz® (bottom)=18-28 MeV,

22
Ve® (top)=15-20 MeV, (22)

for the total third-order rearrangement term at the
bottom and top of the Fermi sea, respectively. These
values are considerably larger than the (assumed) exact
values of Brueckner, Gammel, and Kubis,'® who obtain
9.4 and 6.1 MeV, respectively. The disagreement is
probably because of an underestimate of the off-energy-
shell effect, so that we should compare our values for
V g1 ® with their total third-order term. Then our result
agrees with theirs if C,=0.06, which is close to our
estimate in Ref. 14. We shall therefore use this value in
subsequent calculations. In Fig. 5, we have plotted the
contributions to the rearrangement energy from the
different terms in the expansion (12).

VI. DISCUSSION OF THE REARRANGEMENT-
ENERGY CALCULATIONS

The rearrangement energies in the previous section
were calculated in a system of infinite nuclear matter.
However, we expect qualitatively the same results for
a finite system as far as the momentum dependence is
concerned. In configuration space, we usually refer to
this as a nonlocality. Thus we can deduce from our
calculations on the infinite system that in a finite system
we should get rearrangement contributions to the shell-
model potential accordingly :

(i) From the short-range part of the nucleon inter-
action, including the core, we get a third-order (hole)
contribution, which is proportional to the first-order
K-matrix (Hartree-Fock) contribution [Eq. (20)]. We
estimated the proportionality factor to be 0.06X (p/po)
where po is the normal density (end of last section). We
get another third-order particle contribution involving
the short-range interaction which is local (independent
of momentum), and at normal density about 10 MeV
[Eq. (21)]. The third-order term varies about as
density-squared.

(ii) The long-range part of the central potential
contributes an amount in second order which is at
normal density just a few MeV at the top of the Fermi
sea (and therefore probably negligible for central
densities of a very large nucleus), but is strongly
momentum-dependent (nonlocal). Thus, it might be
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quite important to include this part of the shell-model
potential in a shell nucleus or in studies of a surface.!3

(iii) The long-range part of the tensor force con-
tributes roughly equal amounts in second and third
order. And the nonlocality seems to be roughly like the
Hartree-Fock potential as seen in Fig. 5.

However, these qualitative findings do not tell us any-
thing about the spatial dependence of the rearrange-
ment contributions to the shell-model potential in a
finite nucleus. To investigate this we must first under-
stand how the K matrix depends on the spatial dis-
tribution of nucleons, or more generally on the state of
the medium. We can understand this somewhat by
studying our results of rearrangement energies.

It is first of all clear that if rearrangement energies
were all small compared to first-order K-matrix energies
then the K matrix could be represented by some “‘static”
(or effective) K matrix.

In an infinite medium we are concerned only with the
density, as the only parameter to describe the state of
the system. Thus if (at a specified density) a specific
part of the K matrix leads to a negligible single-particle
rearrangement energy at the Fermi momentum, that
part of the K matrix can be treated as static when
calculating the saturation of infinite nuclear matter.
Thus our findings indicate that we can probably treat
the second-order Born term with central interaction,
together with the corresponding interference term as
well as the Pauli term, as a static part.

However, we find a large contribution to come from
the third-order graph and specifically from excitations
due to the short-range part, i.e., the dispersion term.
The contribution is 4-14 MeV depending on the off-
energy-shell treatment. We conclude from this (and
previous calculations of saturation densities) that one
must include the density dependence of the dispersion
part. This necessity is further brought out by the
circumstance that the dispersion part is nearly pro-
portional to the density. If important in an infinite
medium, it should also be important in a finite medium.

Next in importance at normal density is the 3S; Born
term (tensor part), contributing =3.3 MeV in second
order and =1.7 MeV in third order.

The 1S) Born term (central part) gives a small second-
order rearrangement term at the Fermi momentum
which is, however, strikingly momentum-dependent. As
mentioned above, it should be sufficient to treat this
term as static in an infinite medium, but in a finite
nucleus we are also concerned with specifying the lower
lying states. Thus we conclude that it would, at least in
principle, be more important to consider the medium
dependence of the 1Sy Born term in a finite than in an
infinite medium. Associated with this we get, as
previously mentioned, a large contribution to the non-
locality of the shell-model potential.

The importance of the lower lying states is, however,
suppressed by the phase-space factor. There is always
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room for more nucleons in the higher lying states, and it
may be that it is after all not so important to include,
e.g., the medium dependence of the 1Sy Born term.

How do our conclusions compare with the investiga-
tion of Brueckner and co-workers? leading to the ap-
proximation of Sec. III? First, they only calculated
the K matrix as a function of density in an infinite
medium. This would correspond to our deducing the
medium dependence of the K matrix only from looking
at the rearrangement energies at the Fermi momentum.
However, we have already argued that also the lower
lying states have to be changed to form a finite nucleus.
Further, we then miss the nonlocality of the rearrange-
ment potential. The phase-space factor mentioned
above may reduce the first error. The second was
approximately investigated by Masterson and Lockett
and was found to be not very important.!2

However, it was also concluded in the previously
mentioned work that their long-range part K, [Eq.
(11)] is static as defined above. However, this conclu-
sion was reached by varying the density of an infinite
system, and we have already commented about that
procedure. Further, however, the K, does vary with
density and it is not actually clear from the calculations
that this can be neglected, as mentioned in Sec. III.
Thus, we can’ conclude that there is no contradiction
between our results and those of Brueckner and co-
workers. We only look into more detail on the medium
dependence of the K matrix. (See the next section.)

In order to investigate quantitatively the possible
importance of these points just discussed, numerical
calculations on finite nuclei are clearly necessary. The
outcome of this depends in a fairly complicated way on
self-consistency conditions on both the shell-model
potential and the K-matrix virtual energies. In a later
publication we shall present some such calculations.

VII. MEDIUM DEPENDENCE OF THE K MATRIX

Our previous investigation showed that the important
medium-dependent terms of the expression (12) are the
dispersion and Born terms, while the rest of the K
matrix can be considered as static. The procedure in
actual calculation would then be to calculate the K
matrix at some average density, and then separately the
dispersion and Born terms, which are then subtracted
from the calculated K matrix to obtain the static part.
We believe this is a possible procedure in practice. In a
calculation on a finite nucleus, one then has to use these
parts of the K matrix to calculate the total energy. The
most complicated phase of this is the calculation of the
Born terms, because this involves by necessity a sum
over intermediate excited states. The calculation of the
contribution to the shell-model potential from the
implicit dependence of the Born terms on the medium
would be still more complicated. It is, however, not clear
how important this part of the shell-model potential is,
and it may be enough to make a crude approximation



B 1154 H. S.

to it. Some preliminary calculations indicate that this
is so.

The dispersion term, however, can be approximated
in a sensible way, as well as the contributions to the
shell-model potential. We actually showed this in a
previous publication.!* For completeness, we shall now
discuss this approximation again, especially with regard
to the off-energy-shell effect, the importance of which
was stressed in Ref. 3.

There is actually a further reason to treat the medium
dependence of the dispersion term properly. It is
associated with the third-order graphs, and is a correc-
tion for the inclusion of the bubbles in these graphs, and
thus contains the potential-energy factor eo—e [Eq.
(12)]. Therefore the dispersion K-matrix term is nearly
proportional to the density, and positive. Thus it is
very important for saturation.

We now compute the matrix element of the dispersion
term [third term of (12)7] between two single-particle
states 4, 7, described by spatial wave functions, ¢;(r;)
and ¢;(r). We drop the indices on the wave operator and
obtain for the dispersion term K2,

KijiP= (¢igi] @D (e0—0) | @—1)| @ig)). (23)
The operator 2—1 operates on the state of relative
motion between ¢ and j, and depends on the relative
angular momentum. It is important only for relative
S states and can be well approximated by zero for higher
angular-momentum states. This is because the core
perturbs only the relative S-state motion appreciably.
Associated with this is the finding that only the S-state
part of the K matrix is density dependent.® We now
separate into relative and center-of-mass coordinates
and get

@—1)| gs(r2) 03(e2))

=@=1D]oi(R+31)¢;(R+31)). (24)

Now the operator (2—1) is very short-ranged (~0.5 F)
in coordinate space. The range is short compared to
typical wavelengths of nucleons. Thus, it is a good
approximation to neglect the r dependence in ¢; and
¢;. We then obtain from (24)

Re] @—1)] gios)=x (") 0:(R) ¢;(R),

where x(7) is the correlation function. In a more exact
treatment x would also depend on the state of relative
motion. This dependence is weak, however, as seen, €.g.,
from Ref. 20, Eq. (42), or from Ref. 2, Table IV.

Now in (23) there appears the potential-energy term
eo—e, and we use the notation

(25)

Vi=2"1xKir,it— K 1s) » (26)
for hole states 7, and
Vi=> e (Koo, ® — Kig, i) (26a)
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for particle states /. Then (23) gives
Kijii?=—(Vit Vj)/xz(r)dr/p,-(R)p]-(R)dR

-I-f ZZ 2iR) i R)x ()| 010m) Vit V) (020m|
X ¢:(R) 0;(R)x (r)dRdr.

The first term corresponds to Fig. 1(b) and the second
to 1(c). The first contains the correlation volumes
JSx%(r)dr which entered into the calculation of Cs, (20),
and for which we have obtained the value 0.5-1.16 F3.
It further contains a factor S p:(R)p;(R)dR, which is
the amplitude for two nucleons to interact via a short-
ranged force. It is also proportional to the K-matrix
potential energies of the interacting nucleons. This first
term is readily evaluated without further approxima-
tions for any medium, given the single-particle wave
functions. '

To evaluate the second term, we first note that the
sum over intermediate states / and m produced by the
short-ranged function x involves excitations with
momenta of about 4 F~, which is quite high compared
to the average momentum in a nucleus. Thus we can to
good approximation put V;=V,. Further, due to the
short range of x (r), the sum over the intermediate states
explores the nucleon medium only around the center-of-
mass coordinate R. Thus the second term depends, for
fixed R, on the nuclear structure only at and around the
point R. This circumstance suggests the use of a
Thomas-Fermi type of approximation. The finite
system is imagined to be built up at point R of plane
waves with a maximum momentum Zr related to the
density p(R) by p=2%n%p3. We then Fourier-analyze
the function x(r) into components k2 and assume in
accordance with the discussion above that the particles
i, j are scattered into states of opposite momenta k; and
ks, with ki=ks. If we assume the center-of-mass
moment to be kr/2, we then obtain

b= ka2,

27)

(28)

Thus we are now concerned with the potential energy of
a nucleon with momentum £, in infinite nuclear matter
of density p and we denote this by V(k1,p). We insert
this into the last term of (27) and get, with the index p
referring to particle interaction,

KijiPr=2 / / pi(R)ps (R ()Y (ko (R))dRK,  (29)

where k; is given by (28). The factor 2 comes in because
we have two potentials V; and V.

Thus we found that, to a fair approximation, the
summation over the intermediate states can be reduced
to essentially a problem of infinite nuclear matter, with
the density evaluated at the point of interaction, i.e.,
a local-density approximation is appropriate. In con-
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trast, the first term of (27), which we analogously refer
to as KP* does not depend on the medium structure at
the center of mass but rather on the extension of the
respective states of the interacting nucleons over the
whole nucleus. This is so because of the potentials V;
and Vj.

The procedure and the conclusions we draw from the
result are mainly the same as in Ref. 14. (We did not
now include a dependence of x on initial relative motion,
because this is probably an unnecessary refinement.)
[See text after Eq. (25).]

Actually, the approximation used in the summation
over the excited states can be used in any calculation
of the Green’s function Q/e. Thus we may also use it to
compute the Born-term part of the K matrix in (12).
However, this involves a long-range correlation of the
wave functions of relative motion, especially in the low-
density region and with tensor force. Thus it is doubtful
that a Thomas-Fermi-type approximation would be
good, since the correlation ranges in question are of the
order of the thickness of the nuclear surface.

In Ref. 14 we concluded that in an infinite system
KP? was negative, and only about —109%, of the first
term of (27). However, Bethe and co-workers showed
that the off-energy-shell effect makes the K® matrix
potentials V;and V., quite large.? In fact they obtained
(with Rajaraman’s correction®) an effective mass m*
=1—(47/3)c%p, where ¢ is the core radius, for large
excitations. This makes KP? contribute about equally
or more to the total energy. As mentioned after Eq. (21)
KP? contributes in fact an amount equal to Vg, which
was estimated at 10 MeV.

The contributions to the shell-model potential from
the dispersion terms are readily evaluated by variation
of the wave functions. This was done in Ref. 14 and we
refer to this paper for details.
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v(r)=Vewr,
‘l)l(f)=0,
V=603.06 MeV, d=1.1T,

r>d,
r<d, (A3)
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APPENDIX A: EVALUATION OF SECOND-ORDER
REARRANGEMENT ENERGIES

When evaluating Vz® (@) of (13) we use the effective-
mass approximation for the K-matrix energies E*. The
excitations close to the Fermi surface are most im-
portant, so we use an effective mass of the Fermi surface,

=0.67M.

We use the following notations: k,, momentum of
nucleon m; k,, momentum of nucleon «; k, relative
momentum between ¢ and j; P, center-of-mass momen-
tum; 6, angle between k,, and k.; 8, angle between P
and k.

When we consider S-state interactions only, we can
put Kne,ij — K(k,k') and get

3 AX2M*(2x)?
Ve®(by)=— ——— / (kk)—k *dkn,

4 h(2m)®

X k*dkd(cosB)d(cosd), (A1)

where

k=% (knt+kod—2knks cosd)l/?,
and

AE=2k2—2Fk",

The integration over cosf is performed analytically. The
limits of integration are

if 0<kLkpr—iP, —1<cosB<1,
if —P/2<k< (kp2—1P2)12,
0> cosB> (k*+1P*—ks)/kP,

where P= (kn2+ko2+2knks cosf)’?. We must have
P<2kp, where kp is the Fermi momentum, so that

k< knox= (ko2 cos?0— k 244k )2 —k, cosl,

and we get

o IAX kr—1P 2
/ / [ / — K2(kk)kdk
cosf=—1 k=0 AE

(kp2—1P2)}
+ / =
k=kp—%P

2 kP—B—1P
K2 (k,k )k2dk:|km2dkmd(— cosf). (A2)
AE kP
Then we get
47rVe—""’|"p. cosk_d—Fk_sink_d
K (k)=

I
u coskyd—k, sink,d
_ -+ + + :I, (Ad)
wtky?
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where ky=k-F and k_=k—Fk'. The expression (A2) is
evaluated with the replacement of AE as in Eq. (14).

When we deal with the tensor force we put in (13)
K pa,:ii=K(q), where ¢ is the momentum transfer in the
interaction. We then get

1
Vie® (ka)=C f K?(g)—-dadk;, (AS)
AE

where
AE= Zkaqta‘*_ Zkiqtf )

t; and f, being the cosine functions for the angles be-
tween k; and q, and between k, and —q, respectively.
We then get with the replacement (14)

qkjtiqkata
(gkititqkata)*+To*/4
Q*dqk 2dkjdt .t ],

Ve® (ka)=C / K*(q)

(A6)
where
To=TQM*/%).
We can now integrate over
- 1<ta< (sz‘“kaz_ 2)/2qka= Ta< 1 ’
and get, with T;="T,.;,

C katkr T; kr
net— [ [ [ k6
ka q=0 tj=—1 kj=0

(qkiti+qkaT a)*+To?
X In qqu]zdkjdtj .
(gkiti— qka)*+T¢?

Statistical factors, etc., give with Serber force
1(2x) 3 2M* 3 M*

=— —XAX8X (dr)—=— —
4 (27)5 16 72w R

(A7)

We have not included the exchange term.
We used for K(g) the long-range part of the tensor
force of the Gammel-Thaler potential and

K(g)= / P Vo) jalkr), (A8)
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where 7, denotes second-order spherical Bessel function,

V=V (6_“/ ur),

V=—1594 MeV, u=1.045F"1, (A9)
and d=1.0F.

We evaluated (A2) and (A7) with T'=3.0 MeV and
with I'=6.0 MeV and extrapolated to I'=0.

When calculating the contributions from the inter-
ference terms, the replacement (1/AE)K ma,:;=52:F—11s
made and, owing to the short range of this operator in
coordinate space compared to »;, we put

(Q,F—1) (k,k") =constant=—4%wc.?, (A10)

and we use't ¢,=0.5 F.

APPENDIX B: EVALUATION OF THIRD-ORDER
REARRANGEMENT ENERGIES

We are here concerned with calculating C(k,) of
(16a). We again use the effective-mass approximation.
However, the particle energies are now calculated off
the energy shell, and we then put an average for the
gap A at the Fermi surface in the two-particle energy
spectrum. We put?? A=50 MeV.

We now use the notations: k;, momentum of nucleon
7; kn, momentum of nucleon #; k, relative momentum
between m and »; k/, relative momentum between o and
7; 0, angle between k, and k;; other notations are as
before.

When we consider S-state interactions we have again
Kun,aj— K(EE'), and get

3 4 K2(k,k)
ct=-—— [ =ik, @y
4 (27)* (AE)?
where
B =%(k2tked—2kk, cosf)?,
and

AE= (72/2M*) 22— 2K+ A).

We can perform the angular integration over 8. If
E>kp+3P, then —1< cosB<1. If (kp*—1P2)V2<k
<kp+3iP, then 0<cosf< (2 P*+k2—Fks?)/kP, and

LPPp Ry

C(ka) =

3 kF 1 kp+iP 2
T
(27l')4 kj=0 J cosf=—1 k=(kp*-1P?%)'/? (AE)2

k%dk
kP

i 2
+ / K2 (,E) kzdk]kfdk,d(coso). (B2)
k=kpi3P (AE)?

With K (k,k’) from (A4), the contribution to C from the long-range part of the central force was calculated.
When we deal with the tensor force we get again with previous notations.

Clka)=C f

K*(q)
(AE)?

dkdq, (B3)

2 G. E. Brown, G. T. Schappert, and C. W. Wong, Nucl. Phys. 56, 191 (1964).
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where

B 1157

AE=2¢*—2qkoto+2qkjti+ Ao,

and

Ao=A(2M*/12).

We perform the integration over ¢,

—1<t,<T,, where T,=(kr*—kl—q")/2¢k.<1,

to get

C 1
C(ka)=— /K2(9)<
ke 2¢?—2qkoT o 2qkiti+ Ao

Next the integration over #; is performed,

to get

1
)ngkadkjdtj . (B4)
2q2+2qka+2qkjfj+Ao
Ti<t;<1, Tj=(kr*—ki—q")/2qk;<—1,
22— 20k o T o +2qk i+ Ao) 22+ 2qk o+ 2qk; T i+ Ao)
(29 q gr;j 0)\4q qril; 0 qdghsdk;. (B5)

C 0 kF
C(ka) —/ / K3(q) lni
ka J qkp—taJ ki=tr—q (2¢*—2qkoT ot 2qk;Ti+ Ao) (2¢*+2gkat2gk i+ Ao)

If K(g) is given by (A8) statistical factors, etc., now gives C= (3/2x?) (2M*/#%?*). The exchange term was omitted.
The numerical computations were performed on the CDC-1604 computer of the Computer Center at the

University of California at San Diego in La Jolla.

The integrations were all made by Simpson’s rule, successively dividing the integration intervals by two until the

integral changed less than a specified amount.

We calculated, unless otherwise specified, with a Fermi momentum %kr=1.4 F-1.
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Spin, Hyperfine Structure, and Nuclear Magnetic Dipole Moment of 23-sec Na*{
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The spin and hyperfine structure of 23-sec Na2l, the mirror nucleus to Ne?, have been measured by the
atomic-beam magnetic-resonance technique. The Na?! was produced by the reaction Mg (p,a) Na?.. The
target material in the form of a powder was bombarded in an oven in the resonance apparatus. If the oven
was heated to about 450°C, the Na?! escaped from the Mg in sufficient quantity to make a useful atomic
beam. Both AF=0 and AF=1 resonances were observed, and the final values are /=%, Av=1906.466
=40.021 Mc/sec. Comparison with Na% yields ur=2.386 124-0.000 10 nm (diamagnetically corrected). The
results are discussed in terms of the current nuclear theories.

I. INTRODUCTION

N the last several years much experimental effort
has been made both at this laboratory and at others

to measure the magnetic moments of radioactive mirror
nuclei. The incentive for this effort lies partly with the
hope that knowledge of the magnetic dipole moments
of both members of a mirror pair will yield information
on mesonic currents in these nuclei.l? The success of
such a program depends on our being able to use the

1 This work was supported by the U. S. Atomic Energy Com-
mission and the Higgins Scientific Trust Fund.

* Present address: Bettis Atomic Power Laboratory, Pittsburgh,
Pennsylvania. .

1R. G. Sachs, Nuclear Theory, (Addison-Wesley Publishing
Company, Inc., Cambridge, Massachusetts, 1953).

2R. J. Blin-Stoyle, Theories of Nuclear Moments (Oxford
University Press, London, 1957).

sum of the moments and other relevant experimental
data to obtain a good wave function for the nuclear
ground state. By good we mean precise enough so that
a discrepancy of the order of 0.1 nm between the
individual experimental moments and the theoretical
values obtained from this wave function can be attrib-
uted to mesonic effects. The magnetic-moment operator
used to calculate the moments from the nuclear wave

function is
Yop= }% (gd+g.8),

al
nucleons

where the g factors are those for the free nucleons. Thus
the measurable mesonic effects will include quenching?
of the g factors in addition to exchange currents. It

3S. D. Drell and J. D. Walecka, Phys. Rev. 120, 1069 (1960).



