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A mathematical theorem is established for traces of products of bounded Hermitian and definite operators,
a and b: Tr(ab)?*™ < Tr(ah?)? for p a non-negative integer. This theorem is applied to the equilibrium
partition function by exploiting an infinite-product representation of the exponential function of the sum of
two operators. As a result, a set of inequalities is established which yields a set of upper bounds for the
partition function. This result is invariant to the particle statistics of the system. A general argument yields
the result that the classical Helmholtz free-energy function serves as a lower bound to the corresponding

quantum result.

1. INTRODUCTION

HE existence of several variational principles
which furnish upper bounds for the Helmholtz
free-energy function is relatively well known.! As a
result, it is possible to effect reasonably good approxi-
mations to the statistical thermodynamic behavior of
systems in practical computational terms. Whatever
the variational formulation may be, however, its effec-
tiveness as a minimal principle can be enhanced con-
siderably if there is available a means for determining
lower bounds to the Helmholtz free energy function. It
is to that end that the present paper is directed.

In the following section, a mathematical theorem re-
lating to the traces of products of bounded, Hermitian,
definite (i.e., non-negative) operators is established.
This theorem is employed in the succeeding section to
establish a set of lower bounds for the Helmholtz free-
energy function. In particular, the inequalities are un-
affected by symmetry restrictions relating to identical
particles. An important result is the demonstration that
the classically evaluated Helmholtz free-energy function
serves as a lower bound to the correctly evaluated
quantum mechanical quantity.

2. A MATHEMATICAL THEOREM

In the present section the following theorem will be
proved.

For any two bounded,? Hermitian, definite operators
a and b, which are otherwise arbitrary,

Tr(ab)**" < Tr(a?b?)?, p integral and >0. (1)

Since, by hypothesis, the operators are definite there
exists a (nonunique) square root of the operator a, say.
Hence, since the trace is invariant to cyclic permutation

* Supported in part by the U. S. Office of Naval Research.

1 These seem first to have been examined systematically for
classical systems by Gibbs. See, for example, J. W. Gibbs, Col-
lected Works, Statistical Mechanics (Dover Publications, Inc.,
New York, 1961), Vol. II, Chap. 11. See also M. D. Girardeau,
J. Chem. Phys. 40, 899 (1964), where additional references to the
subject may be found. See also W. Byers Brown, #bid. 41, 2945
(1964).

2 The restriction that the operators be bounded is necessary
only to ensure the existence of the trace operation in what follows.
Alternatively, the existence of the traces may be assumed instead
of the explicit restriction upon the operators. See the end of the
present section.

of its factors, we may write
Tr(ab)?=Tra'?2baba2> 0,

where we have chosen a2 to be Hermitian. Then, by
the Cauchy-Schwartz inequality,?

Tr(ab)2< Tr(ab) (ab)t="Tr(ab) (ba)=Tra?h?,

so that the theorem evidently holds for p=0.

Now we assume that the theorem holds for all
0<p<m—1, m>1 and show that it then holds for
p=m, thereby establishing the theorem by induction.
To that end, consider that for integral 7

Tr(ab)?” " < Tr(ab)2" (ba)2™ )

by the Cauchy-Schwartz inequality. Let
= (@b} (ba) " P =, ®)
Bn= (ba)2" ™ (ab)* "™ =Bat, (4)

for m>n2>0, n integral. We note that, for arbitrary
non-negative integral IV,

Tr(“n)NETr(gn)N; (5)
while

Tr(en)Y=Tr(en18r 1)y, m>n. 6)

In these terms we have from Eq. (2)
Tr(ab)”™" < Tr(e181)  Tr(es)?, (M

the last inequality resulting from a further application
of the Cauchy-Schwartz inequality.
For m=1, it is evident that

Tr(ey)?=Tr[ (ab) (ba) (ab) (ba)]
=Tr(a?b?)?,

in accord with the theorem. However, for m>2, we

have
TI‘((!1)2= Tr ((12@2)2 N

3 When the trace operation involves discrete sums, it is known
as the Cauchy inequality; when integration is implied, the in-
equality is the well known one due to Schwartz. See, for example,
NBS Applied Mathematics Series-55 (U. S. Government Printing
Office, Washington, D. C., 1964), p. 11.

4We are employing here the so-called “Second Principle of
Finite Induction.” See, for example, G. Birkhoff and S. MacLane,
A Survey of Modern Algebra (The Macmillan Company, New
York, 1953), p. 13.
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making use of Eq. (6). Since 3 and 3 conform to the
conditions of the theorem with p=0, we have

Tr(e2B2)’< Tr(e)?(82)* < Tr(az)*, )

the last inequality resulting from a further application
of the Cauchy-Schwartz inequality. Again if m=2, the
theorem is satisfied explicitly; however, if m2>3, we
have

Tr ((!2)42 Tr ((!3@3)4 y

in terms of which an application of the theorem for
p=1 yields
Tr(ab)?™*"' < Tr(as)s.

Clearly, the procedure may be repeated under the stated
assumptions until one obtains

Tr(ab)?" "' < Tr(an)?" = Tr(a?h?)?". 9)

The theorem stated in Eq. (1) now follows.
As an immediate consequence of Eq. (1) we can
obtain

TI'(ab)?P g Tr[azrbm-]z(p—‘r) < Tr[a2‘1b20]2(r‘® , (10)

p>q>2r>0. As a result, we see that the previous
analysis applies if the right side of Eq. (10) exists for
¢>1. In such a circumstance any boundedness restric-
tions implicit upon a or b may be relaxed and replaced
by a condition on the existence of the trace of the rele-
vant product of these operators.

3. THE HELMHOLTZ FREE-ENERGY FUNCTION

The Helmholtz free-energy function for a system is
defined by
F=—0 InTre 1/ (11)

where ®=£T, k is Boltzmann’s constant, 7" is the abso-
lute temperature, and H is the Hamiltonian of the
system in question. To exploit the mathematical
theorem of the preceding section, we note that for any
partition of the Hamiltonian

the exponential can be represented by®
e HIO= |im [¢~H1/NOg—H2NON (13)
N ->x

Clearly, an immediate identification of the factors in
Eq. (13) may be made with the a and b operators of
Eq. (1). As a result, we may transcribe Eq. (10) to yield

Tr[eH1/O¢—Ho/0 > Tr[ ¢~ H1/28g—Ha/207]2
> Tr[e Hi/2P0gHa/2r0 20
> Tr[ e Hi/290—Ho/208 720
2 Tre®i8, p<yq.

5 See, for example, S. T. Butler and M. H. Friedman, Phys.
Rev. 98, 287 (1955). A proof is given by S. Golden, Phys. Rev. 107,
1283 (1957).

(14)
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Then, if we define
F,=—0 In Tr[¢H1/290gHo/200720 (15)

we have

F2F,2F,, p<q, (16)
since the logarithm is a monotonically increasing func-
tion of its argument. For any finite value of N in
Eq. (13) we are able to take the resulting expression as
an approximation to the canonical distribution formula.
Regardless of the mode of partition of the Hamiltonian,$
such an approximation yields one for the partition func-
tion which results in a value for the Helmholtz function
which is not greater than the correct value.

It is evident that when the physical system consists
of identical particles the trace operation may be re-
stricted to bases of complete, orthonormal functions
which are either symmetric or antisymmetric with
respect to exchange of identical particles. The relations
which have been derived are unaltered thereby. Hence
Eq. (16) applies, as well, to systems satisfying Bose-
Einstein or Fermi-Dirac statistics.®

When ¢=01in Eq. (15), the resulting form of the par-
tition function corresponds to what may be termed
pseudoclassical.” In particular, when Hj is taken to be
the kinetic-energy operator for the system, with H, the
potential energy of the system, the resulting partition
function can be evaluated in such a basis (i.e., plane
waves with appropriate boundary conditions) that
provides for a separation into the usual factors for
translation and configuration. Such a partition function
yields a Helmholtz function which may be identified
with the classical evaluation of that quantity.® Desig-
nating the latter by F,;, we have the important result
that

F2>F,, 1

or that the classical Helmholtz function® provides a
lower bound to the correct quantum-mechanical
Helmbholtz function.?

6 One must ensure that the partition of the Hamiltonian does
not introduce divergences which will yield unbounded operators
as factors. Likewise, the separate factors may be supposed to have
symmetries identical with those of the total system.

7 The phraseology pseudoclassical used here is meant to empha-
size that a choice has been made of one of the operators, say Hj,
which can be regarded as the “unperturbed’”” Hamiltonian of the
system. In the basis which diagonalizes the latter, the energy of a
state is then a sum of the unperturbed energy and the remainder.
See, for example, the discussion by the present author in Ref. 5.

8 Again we note that what has been termed here as classical
must be understood as being restricted. Thus, the choice of the
kinetic-energy operator for H; still requires a proper quantum
elevation of partition function for translation. Of course, for large
finite containers one gets the usual classical statistical mechanical
result obtained by integration over the appropriately measured
momentum space.

9 This result is known as an approximation. See, for example,
L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1958),
p. 100.



