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A finite relativistic field theory of quantum electrodynamics is formulated; the theory involves as an
essential element the use of an indefinite metric to remove the divergences. Two auxiliary fermion fields
with anticommutation rela, tions of opposite sign from the normal fermion field (electron) are coupled with
the electron to the electromagnetic field in such a manner that any matrix element, calculated by a perturba-
tion expansion, is finite. Although the new Lagrangian is not explicitly gauge invariant, the electromagnetic
field is quantized by a method that yields a propagator in the true Landau gauge, and it is shown that this is
sufficient to insure that the physical vector particles are zero-mass transverse quanta (i.e. , photons). The
physical electron mass and the fine-structure constant are put into the theory, leaving only the masses of the
two auxiliary fields as parameters. The effects of mass s,nd charge renormalization are calculated (the
former using a technique involving a Taylor expansion in the mass), and are required to be small so that
there is no explicit contradiction to the validity of the perturbation expansion. The anomalous magnetic
moment of the electron and the differential and total cross sections for Compton scattering are calculated
and compared with experiment. A range of the auxiliary mass parameters is found for which the predictions
agree with experiment and for which the expansion criteria are satisfied. Thus, a finite quantum electro-
dynamics is accomplished.

I. INTRODUCTION space with an indefinite metric. ' In the realm of model
field theories, the indefinite metric has appeared via the
notorious ghost states' of the Lee model. "Field theories
with higher order Lagrangians, such as those considered
by Green" and by Pais and Uhlenbeck" strive to
remove inanities only at the expense of introducing an
indelnite metric.

In spite of these persistent appearances of an in-
definite metric, its use has been viewed with consider-
able skepticism. On one hand, such theories, when
interpreted in the usual fashion, lead to difhculties con-
nected with a probabilistic interpretation through the
appearance of negative probabilities of quantum states. "
On the other hand, it has been suggested that, if it were
possible to construct a consistent indefinite metric
theory, it should be possible to provide a reformulation
without using such a metric.

These points have been discussed in detail in an
earlier paper by one of the authors (E.C.G.S.)."The
point of view presented there is that an indefinite metric
with "local" interactions may be the most elegant

'HE idea that it might be of interest to introduce
an indefinite metric into the Hilbert space of

quantum states was first suggested by Dirac' as early
as 1942, and discussed in greater detail by Pauli. Since
that time, there have been various cases of field theories
and models where quantization has involved the use of
such a metric. The most well-known example, of course,
is the quantization of the electromagnetic field by
Gupta' and Bleuler. 4 Their procedure, which canonically
quantizes all four components of the vector potential,
yields a manifestly covariant local theory, but demands
that the metric no longer be positive definite. 5 Another
example, not always recognized as such, is the Pauli-
Villars regularization. ' This work is often referred to as
just a mathematical technique to treat divergent inte-
grals; however, in order to place the technique on a
Lagrangian ba, sis (and even to restore unitarity into the
perturbation expansions), quantization requires the use
of auxiliary 6elds which satisfy commutation relations
with the "wrong" sign (i.e., sign opposite to those of
ordinary fields). As is well known, quantization with
"wrong"-sign commutation relations implies a vector

* Supported in part by the U. S. Atomic Energy Commission.
t Present address: Department of Physics, New York Univer-

sity, New York, New York.
f. Present address: Department of Physics, Syracuse University,

Syracuse, New York.' P. A. M. Dirac, Proc. Roy. Soc. (London) AI80, 1 (1942).' W. Pauli, Rev. Mod. Phys. 15, 175 (1943).
3 S. N. Gupta, Proc. Phys. Soc. (London) A63, 681 {1950).
4 K. Bleuler, Helv. Phys. Acta 23, 567 (1950).
'Of course, the Dirac-Schwinger method of quantizing only

the transverse fields can be used without introducing an indefinite
metric. In this case, the Hamiltonian contains a nonlocal inter-
action corresponding to the instantaneous Coulomb interaction
between sources, and, while the theory is relativistically invariant,
it is not manifestly so.

W. Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949).
S. N. Gupta, Proc. Phys. Soc. (London) A66, 129 (1962).

B

8 For a comprehensive review of vector spaces with an indefinite
metric, as well as a brief summary of physical examples, see L. K.
Pandit, Nuovo Cimento Suppl. 11, 157 (1959), and K. L. Nagy,
Nuovo Cimento Suppl. 17, 92 (1960).' G. Kallen and W. Pauli, Kgl. Danske Videnskab. Selskab, Mat.
Fys. Medd. 30, No. 7 (1955), and W. Heisenberg, Nucl. Phys. 4,
532 (1957)."T.D. Lee, Phys. Rev, 95, 1329 (1954).

"A. E. S. Green, Phys. Rev. 73, 26 (1948). A. Pais and G. E.
Uhlenbeck, Phys. Rev. 79, 145 (1950).

"This is sometimes referred to in relation to the so-called
"pseudounitarity" of the 5 matrix. "Pseudounitarity" simply
means unitarity with respect to the indefinite inner product.
Since the concept of unitarity is undefined without specifying the
inner product, the terminology is mathematically misleading, but
common in the literature."E.C. G. Sudarshan, Phys. Rev. 123, 2183 (1961); see also
E. C. G. Sudarshan, in 1961 Brundeis Summer Jectures, Vol. 8,
(W. A. Benjamin, Inc. , New York, 1962). For a comprehensive
discussion, see G. Barton, IrItroduction to Advanced Field Theory
(Interscience Publishers, Inc. , New York, 1963), Chap. 12.
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method of constructing a theory that is equivalent to a
nonlocal relativistic theory (with a positive-definite
metric). In particular, using the example of the Gupta, —

Bleuler and Dirac-Schwinger forms of treating the elec-
tromagnetic field (as well as some simple models" '4),
it is suggested that if one requires (or prefers) manifest
covariance, negative probabilities may be inevitable.
Furthermore, this prospect is not viewed with alarm,
but a general invariant method of introducing a sub-
sidiary condition is outlined, which de6nes a 'physical'
subspace capable of probabilistic interpretation. (All
states in this subspace have positive norm. ) A general
scheme for the construction of a 6nite covariant theory
of interacting 6elds is presented" in which the inter-
action involves a linear superposition of 'normal' fields
(usual-sign commutation relations) and "auxiliary"
fields ("wrong"-sign commuta, tion relations) locally
coupled in such a fashion as to eliminate divergent
integrals from the perturbation expansion. In general,
physical scattering states would be defined by a subspace
consisting of those eigenstates of the S matrix with
positive norm (determined exactly or approximately).

In this paper, we present such an indefinite metric
Lagrangian formulation of quantum electrodynamics. "
The purpose is to determine, by a detailed examination,
if such a theory as discussed above can be carried out
consistently. Quantum electrodynamics has been chosen
since there already exists a generally successful conven-
tional (Lagrangian) theory, whose solution by a per-
turbation expansion is marred by the appearance of
divergent integrals. We must show that we can eliminate
these divergences and still make predictions in agree-
ment with experimental knowledge.

In addition to a normal fermion field (electron) and
electromagnetic field, the formulation involves two
auxiliary fermion fields with different masses. These
fields are quantized using an indefinite metric, and are
so coupled to the electromagnetic field that no ultra-
violet divergences appear. The two extra mass param-
eters are then restricted in their values by comparison
of predictions with experiment, and by the requirement
of self-consistency for the perturbation expansion. Since
the theory is 6nite, all renormalizations involve 6nite,
analytic functions of bare parameters, and thus bare and
"physical" quantities can be related to one another. In
Secs. II and III, we construct the Lagrangian formalism
and appropriate perturbation expansion, and discuss
some new aspects of the fermion and electromagnetic
6eMs. The mass and charge renormalizations are carried
out in Sec. IV, in which we examine the allowed ranges
for the two auxiliary masses in order that the perturba-
tion expansion be self-consistent (i.e., that the higher

' H. J. Schnitzer and E. C. G. Sudarshan, Phys. Rev. 123,
2193 (1961).

"Reference 13, Sec. 7."Such a theory has been outlined for the four-fermion coupling
in weak interactions by one of us (E C. 6. S.) fNu. ovo Cimento
21, 7 (1961)g.

order corrections be truly small). In Secs. V and VI,
calculations are made for the anomalous magnetic
moment of the electron and for the cross sections for
Compton scattering. In Sec. VII, we summarize the
basic conditions on our auxiliary masses, and make a
few extra remarks. Some theoretical aspects of the
present model are considered in Sec. VIII. Appendix A
presents the method used for quantizing the electro-
magnetic field, and Appendix 8 exhibits a formal tech-
nique for mass renormalization.

II. THE FERMION FIELDS

The conventional theory of quantum electrodynamics
contains a Lagrangian density for the free fermion held
given by"

where grl„p=p(8„$) (rl„p)f,—with the anticommuta-
tion relations for the free field as

where S(x—x') is the usual invariant function. To this
are then added the Lagrangian density for the free elec-
tromagnetic field and an interaction Lagrangian density,

(II.3)

The theory is then solved by a perturbation expansion
of the S matrix in the interaction picture with the
propagator for the fermions in momentum space
given by

(II.4)

We now construct a scheme of coupled fermion fields
to yield a manifestly covariant and convergent quantum
electrodynamics. The basic program is as follows: We
construct a simple manifestly covariant Lagrangian
density in terms of a "normal" fermion field with a local
coupling, i.e., the Lagrangian density give in (II.1) and
(II.3); with the 'normal' fermion Geld we associate two
"auxiliary" fermion fields with all the quantum numbers
the same except the mass and satisfying the "wrong"-
sign anticommutation relations; we then couple a linear
superposition of the 'normal' fermion field with unit
weight and the two 'auxiliary' fermion fields with arbi-
trary weights (to be determined later by the convergence
conditions) to the electromagnetic Geld.

In particular, the free Lagrangian density (II.1) is

'~ We use the natural unit system, k=c=l, and the Lorentz
metric goo= —gIi= —g~2= —g33=+1. Strictly, we should further
antisymmetrize these bilinear expressions; we shall not explicitly
indicate this antisymmetrization.

I8 This propagator divers from the usual expression Le.g.,
S. Schweber, Introduction to Relativistic Quantum Field Theory
(Row, Peterson, Inc. , Zvanston, Illinois, 1961)g by a factor of
s/(2s)4; we shall use this definition throughout the paper. t Note
that now S(P) is the Fourier transform S(x) only to within a
multiplicative constant. )
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generalized to"

Zt ——Q 1V; L ', P;—( —iy&—it„)P; my/—;pc], (II.5)

. or defining

ci=—1, cs= (cs (
aild cs—=—[cs (

gl = 8%"y"O'A ~ ) (II.7)

with Ei= —1Vs ———1Vs=+1, where ft is the normal
fermion field, and Ps and Ps are the two auxiliary fermion
fields. These three fields satisfy the anticommutation
relations

(II,(x) It;(x') )= iN;—6;,S(x x', —m;) . (II.6)

The interaction Lagrangian density is generalized to

S(p) = Q c;(p m—;+is) (II..10)

In order to remove the ultraviolet divergences in
quantum electrodynamics, it is sufficient to make the
effective propagator decrease as fast as p ' for large
values of the momentum. It is readily seen that this can
be achieved by imposing two conditions on the c param-
eters. The two conditions are"

with 4=Pi+ cs'Ps+ cs'fs.
The indefinite sign for the anticommutator shows that

the metric is not positive definite, and thus an indefinite
metric is required for proper quantization. The appro-
priate metric is given by"

P, c;=0 and P; cm, =0.

SS] f83
C2 C3=

mg m2

m2 m3

Thus, with ci ——1,"
(II,11)

(II.12)

rt = exp iver dsxQ stps+fstps)

Here Pt is the adjoint" and It the Dirac adjoint of It.
From the anticommutation relations (II.6), it follows
that the propagators of the fermion fields in momentum
space are given by

S;(P)= jtt(;(P m~+ie)—' . (II.S)

The rules for the perturbation expansion of the S
matrix in the interaction picture appropriate to the new
Lagrangian can then be constructed in the usual
fashion. "We see that for every normal fermion line in
a Feynman diagram, we have the same diagram with a
fermion line corresponding to each auxiliary field in
place of it. In particular, since the internal line comes
from the contraction:p; It;: in the Wick expansion, we
can absorb the factors Ics'~' and ~cs'(' into the internal
lines from fields II s and ps, leaving the vertices identical.
Then, we can write one diagram with an effective propa-
gator for each internal fermion line to represent all
diagrams with the three different kinds of internal lines.
The effective fermion propagator is then"

S(p)=(p —m+z ) '—ic 'i'(p m+t )—-'
—

~

cs'
~
'(P —ms+is) —', (II.9)

"The negative sign of E2 and Eg then yields the desired
"wrong"-sign anticommutation relations (11.6) for |ps and tte after
canonical quantization is carried out."Compare, for example, S. N. Gupta, Proc. Phys. Soc.
(London) A63, 681 (1950).

"The term adjoint here is with respect to the indefinite metric;
the term "pseudo-Hermitian" adjoint is frequently used in the
literature.

"A similar procedure was first elaborated in a previous paper,
LE. C. G. Sudarshan, Nuovo Cimento 21, 7 (1961)j, for a theory
of leptons using an indefinite metric; a similar formulation has
also been used by H. Hofer, doctoral dissertation, University of
Bern, 1964 (unpublished), for computing higher order corrections
to muon decay.

"Hereafter, unless otherwise specified, the S(p) without index

Using (II.12), the effective fermion propagator can be
alternatively written in a form which shows the desired
asymptotic behavior, i.e.,

(mi —ms) (mi —ms)
S(p) =

m zE.

(II.13)

We now simply prove that the effective fermion
propagator is su'fficient to insure convergence of all
integrals in the theory. As Dyson" has done for primi-
tive divergences, an integral corresponding to a general
diagram can be written as

S
M= —d4k . d'k

D
(II.14)

where r is the number of independent internal four-
momenta, given by the relation

r=F;+I'; (n —1) . — (II.15)

i will denote the eJectiee fermion propagator. We note here the
fact that as tas, me ~ ~, S(p) becomes just the usual propagator
for the electron and the theory is identical with conventional
quantum electrodynamics. This is a convenient check on many of
our calculations.

'4We may note that formally this procedure resembles the
Pauli-Villars regularization (see Sec. I).Although we have pointed
out that the indefinite metric is involved in that technique, the
approach here is quite different. In the Pauli-Villars case, all
divergent integrals are separately regularized and the masses tend
to infinity at the end with no attempt to construct a physically
interpretable theory.

"We note the constants c2 and c3 do not have to be negative
(even though they have been set equal to —(cz'~' and —~ca'~').
Depending on our choice of m2 and m3, we can go back and adjust
the sign of the anticommutation relations for one of the auxiliary
fields to avoid any inconsistency. In this case, only one of the
auxiliary fields may involve an indefinite metric, but since we deal
only with the effective propagators, this has no eGect on the
equations in this paper."I'.Dyson, Phys. Rev. 75, 1736 (1949).
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Here Ii; and Ii, are the number of fermion internal and
external lines, P; and P, are the number of photon
internal and external lines and e is the number of
corners. The numerator E has no powers of k and the
denominator D has 2 powers for each photon propagator
and 3 for each fermion propagator (as opposed to 1 in
the usual theory). Thus

which implies that there is a conserved current,

82@ BZg

~(~A') ~(~A') ~
(III.2)

Substituting (II.S) into (III.2), the conserved current is

D= 3F,+2P;.

For the diagram to converge, we must have

(II.16)
7"=—~E &'4~% (III.3)

which is dearly not the current j„' coupled to the
electromagnetic field in (II.7):

4ryE&D, j~ = 8%"y~%'. (III.4)
oi

F;+2P;+4 (4n, (II.17)

which, using n=F;+sF, =2P;+P„becomes

2n+P, + ',F,&4.- (II.18)

Since we must have at least two corners in order to have
an integration, e&~ 2 gives

P,+,'F.&0,- (II.19)

which is true for all diagrams except vacuum diagrams
(of no interest in the present context), so the elimination
of the ultraviolet divergence for any Feynman diagram
is proved.

Z —17 2) 37 (III.1)

'7 See, for instance, F. C. Khanna and F. Rohrlich, Phys. Rev.
131, 2721 (1963). For a further discussion of this point, see J.
Schwinger, Phys. Rev. 128, 2425 (1962).

'8 ZE, the free electromagnetic Lagrangian given in Appendix A,
is, of course, independent of the P s and is irrelevant here.

III. THE ELECTROMAGNETIG FIELD

In this section, we shall discuss some aspects of the
electromagnetic field, A„(x), which is coupled to the
fermion fields via the interaction Lagrangian (II.7). The
basic problem is to insure that the field, A„(x), inter-
acting with the fermion fields will actually represent
photons as the observable physical quanta, i.e., zero-
mass particles of spin one, polarized perpendicular to
their space momenta. In the conventional quantum
electrodynamics, the free electromagnetic field is
quantized as a vector Geld of zero mass and the use of
gauge invariance, which implies a conserved current
interacting with the electromagnetic Geld, is sufhcient
to insure the zero mass and transversality of the physical
photons, provided perturbation theory is applicable. 27

In the present version of the theory, however, the
form of the interaction Lagrangian is such that it does
not have the property of gauge invariance, and the con-
served current is not the one that interacts with the
electromagnetic held. It is easily seen that the total
Lagrangian, Z~+2@+gr, 's is invariant under the gauge
transformation of the first kind:

kk i 1

k2 jks ~2 ~2k2

k„k„
(111.7)

and the last term seems to correspond to the propagator
of a longitudinal field of zero mass. Thus, if one can
superimpose such a 6eld on the usual massive vector
field, it will lead to the D„„ in (III.S). A method of
quantization of the electromagnetic field leading to the
true Landau gauge (III.5) and the proof of its covariant
transversality will be given in Appendix A.

We now assume the bare photon propagator is given

"The term Landau gauge is used to refer to a propagator in
momentum space proportional to g„„—k„k„/k'. The term Feynman
gauge refers to a propagator proportional to g„„."To avoid confusion in the ensuing work, we shall adopt the
following notation. A vector a„ is (a) transverse if k&u„=o; (b)
longitudinal if u„~k„; (c} perpendicular if a0=0, a k=o; (d}
3 longitudinal if a~4; and ie) scalar if a=0.

The conserved current j& corresponds to 'fermion' con-
servation in the usual way. The fact that the interacting
current is j„ implies the noninvariance of Zg under the
gauge transformation of the second kind.

This means that, in general, the physical photon mass
will be different from the bare mass, and there is no
u priori reason why only the transverse polarizations
will contribute in a physical scattering process. In con-
tradistinction to the conventional quantum electro-
dynamics, therefore, the zero mass and transverse
polarization properties of the photons must be sepa-
rately incorporated into the theory. We now assert that
we can obtain the desired physical quanta if the bare
photon propagator can be written in the true Landau
gauge" with a given bare mass p, chosen so that the
physical mass (pole ot the dressed photon propagator)
is zero, i.e.,

D (k) (g k k k—s)(ks ps+. ie) i (I—II 5)

The most important property of this propagator is that
it is transverse in the covariant sense, that is, perpen-
dicular to k„.3o It is to be noted that the above propaga-
tor is different from the one corresponding to the usual
transverse neutral vector 6eld of mass p given by

D"= (g..—krak. ~ ')(k' —~') ' ( 6)

Now (III.6) can be written as



FINITE QUANTUM ELECTRODYNAMICS B 1089

FIG. 1. Photon detection.

Now we can apply Feynman's argument directly. Using
k'+is for the denominator since we are interested in 3f
as k' —& 0 and since p,'= —C(0), (III.14) can be written
as

J o(~)J o J c(~)J z

M=

by (III.S). The dressed photon propagator D„„' is as
in the usual theory

D„„'=D„,+D„i,IP'D,„', (III.8)

i.e., the k„k, part of II„, drops out and the propagator
has retained its transverse form. Now since the pole of
the dressed propagator corresponds to the physical mass,
we can insure that the physical photon has zero mass by
requiring that

zs'= —C(k'= 0), (III.11)

which determines the parameter p'.
Next, we consider the detection of physical photons.

Following Feynman, "we note that any photon that is
detected will actually be absorbed in the process of
detection. %e consider a case in which a photon is
emitted by some process A and is absorbed by an elec-
tron (fermion of type 1) as shown in Fig. 1.

The amplitude for the process is proportional to M
where

where II" is the sum of all proper photon self-energy
diagrams having a general form

II„„=g„„C(k')+k„k„C'(k') . (III.9)

Here, C(k') and C'(k') are general functions of k' which,
in the conventional theory, are related to each other by
the requirement of gauge invariance. In this case, there
is no particular relationship between them. From (III.S)
and (III.9), we have

k„k. 1
D„„'=~g„„—,(111.10)

+ze k p C(k )+ze

J 2(~)J 2 J 3(r)J 3

(III.15)

where t.„(') and e„(') are the two perpendicular polariza-
tion vectors referred to in Ref. 55. The transverse con-
ditions of J&(') and J& in the coordinate system
chosen, i.e.,

u,J ('» —X,J ('»=O,

kp J~p —k3Jg'= 0,
(III.17)

gives the relation

s(r)J s (k 2/k 2)J Oiri J 0 (III.18)

Using (III.16) and (III.18), (III.15) becomes

J&o( iJ&o s (J&ir) ai~))(J .e(i))
(III.19)

which shows clearly that, as we approach the mass shell

(as k' —& 0), only the transverse part of (III.19) has a
pole and contributes to the amplitude, so that the only
real photons are those with perpendicular polarization.
Thus, by what has been stated in this section and in

Appendix A, we have demonstrated that the physical
photons in the present theory have the desired prop-
erties, namely, zero physical mass and transverse
polarization.

If we choose the coordinate system where ir is along the
3 axis, we can write

2

J@&ir)J&i+J&s(r)J&z —P (J iri. e(O)(J&.e(ii) (111 I{j)

M= Jp (k)D„„'(j)J&"(k), (III.12) IV. RENORMALIZATIONS AND THE CONSISTENCY
OF PERTURBATION EXPANSION

and J~" is the current that emits the photon of mo-
mentum k and J~' is the electron current which absorbs
it."Due to the transversality of D„„', only the pure
transverse projection of J&~ remains, i.e.,

J&eD '= J&I ( )D (III.13)

where J~&(') is the transverse part of J~& and using
(III.10), (III.12) becomes

M =g„„jgo' Jii'(k' Is' C(k')+ze'—) '.—(III.14)—
s' R. P. Feynman, The Theory of FNndamental Processes (W. A.

Benjamin, Inc. , New York, 1961),p. 95.
"Note that Jg& which is the general interacting current in our

theory is not conserved, but that Jz&, which is just an electron
without other interactions, is conserved (this fact is not necessary
to the proof).

The seven parameters that originally enter the present
formulation are the bare coupling constant, photon bare
mass, three fermion masses and two weight factors for
the auxiliary fermion fields. The last two, namely, c2

and c3, are determined by the two regulating conditions
as functions of the fermion masses as given in (II.12),
and the photon bare mass p' is fixed by (III.11) to give
zero mass for physical photons, leaving four parameters
t., m&, m2, and m3 thus far undetermined. The observed
mass and charge of a physical fermion particle (electron)
supply two conditions which may be considered to
determine the corresponding bare parameters m~ and e

via the mass and charge renormalizations. In conven-
tional quantum electrodynamics such renorm. alization
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procedures are inseparably associated with the sub-
traction of infinites and, as such, do not "determine"
bare parameters, but simply "re-express" them in terms
of the observed value. In the present theory, all re-
normalizations are 6nite functions of bare parameters
and will involve only Rnite shifts between bare and
renormalized parameters.

We have then two parameters, m2 and m3, at our
disposal. Allowed values (or ranges) of these parameters
can then be determined by comparing the predictions
of the theory with experimental data, such as the
anomalous magnetic moment of the electron and Comp-
ton scattering. However, since all radiative corrections
are now finite functions of bare parameters, we can erst
calculate some of these higher order corrections and
look for possible ranges of values for m2 and m3 for which
the higher order corrections are small. This test of the
self-consistency of the perturbation expansion will then
lead to some preliminary determination of m2 and m3 ~

5(p)= Z 5'(p),
i, j=1

(IV.1)

where 5;; stands for the bare propagator between two
vertices where particle i leaves one vertex and particle
j arrives at the other and is de6ned by

s;,= s,,s(i) (IV.2)

A. Mass Renormalization

Introducing a slightly more general notation, let us
write the effective fermion propagator (II.10) as the
following:

A formal method of mass renormalization is described
in Appendix 3 for the simple case of a single fermion
field. A technique of Taylor expansion in the mass
parameter is used to show the complete equivalence
between a perturbation expansion using bare masses
(without the counter term) and one using renormalized
masses (with the counter term). We may then effect
counter-term mass renormalization in our case by
writing the perturbation expansion in terms of bare
masses and then making a Taylor expansion of all
diagrams in the mass about the physical mass. For
generality, we shall outline the expansion of the dressed
propagator in a Taylor series in all three masses simul-
taneously, although for the purpose of calculation only
the expansion in ml will be used.

As in Appendix 8, the dressed propagator (IV.7) is
expanded in Taylor series about the renormalized masses
mio defined as zeros of the inverse dressed propagator:

S =0 for p=m~p, m&p, mpp, (IV.S)

5' '=S—'(P; mg, mp, mp) Z(p;—mg, mp, mp)

8 85=S '(P;m, p, mpp, mpp)+P(m' mp) +
Bmio

3 BZ—&(P; mip, m2p, mpp) —P (m; —m;p)
mio

where m10 corresponds to physical electron mass and
m20 and m» have no direct physical significance and can
have complex values. We have

and (IV.&)

3 BS 8'5-'
g(—Sm;) +—g Sm;Sm, +
i=1 ~mi0 2t i,j 1 gmiojmjo3

S'= Q Sv', (IV.4)

5(i) =c;(p m;+i—p) (IV.3)
Sinces '(P;m;p) =Ofor p=mip, m„, mpp, (IV.8) becomes

Similarly, the effective dressed fermion propagator is
defined by

where S; is the dressed propagator consisting of particle
i leaving and of particle j arriving and is given by

BZ—Z(P; myp, mpp mpp)+Q pm +' ' '=0 (IV,10)
mio

3

5;,'=5;,+ Q 5;,Z,ps'
for p=P4p mpp mpp where 5m;=m'p —m;. From (IV.10)

(IV.S) and (B17) we f d in the lowest order:

and Z&& is the sum of proper fermion self-energy diagrams
connecting a propagator for a fermion of the type l to
one of type k, as shown in Fig. 2. Since, however, Z&&

is actually independent of k and l, (IV.4) becomes

5'=ps;, + Q S,i&sp, '

8m~"'=Z"'(p=m, p,'m, p, mpp, mpp),

(mgp —mpp)
~m, (

(mpp —mpp)

(IV.11a)

XZ"'(P=mup, mgp, mph', mpp), (IV.11b)

ol

i, j.,k, Z

=5+SZS', (IV.6)

(IV.7)

(m&p —
mph')

~m, (» =
m» m/0

XZ~»(P=mpp& myp& mpp& mpp). (IV.11c)
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In. 2. ZII, ,

Since only mio (the electron physical mass) is input, it
will be convenient to use the above procedure only for
the normal fermion field (electron) and use the bare
masses m2 and m3 for the auxilia, ry fields. Thus, we shall
use the physical electron mass which we now call mo
(rather than mio, for convenience) in all subsequent
expressions, and all terms dictated by the Taylor ex-
pansion in mi must be used to the order (in the coupling
constant) desired. To the lowest order, we ca,lculate
(IV.11a) with

hami ——P(P=mo, mo, ms, ms), (IV.12)

where the superscript (1), signifying lowest order in ~r,

has been suppressed.
The second-order electron self-energy function is

given by

d4k ypS(p k)y"D„,(—k), (IV.13)

where no eo'/47r (we u——se the renormalized value of
1/137; see charge renormalization below). In S(p—k),
m& is replaced by mo, but nz2 and m3 are retained, and
D„„(k) is as given in (III.S) but to this order we use the
renormalized photon mass of zero. Evaluating on the
mass shell, we have a finite expression for Z(p), namely,

Z(P=m, ) =(3~,/4 )m, P e,Z, , (IV.14a)

with

0.005—

"0.005—

FIG. 3. bm/mo near p =50, o = —50.

mi/mo = 1 (&(P=mo)/mo) ~ (IV.17)

Computation of 5mi/mo and mi/mo for various values
of p and o- is carried out with an IBM 7074. Since all
expressions are symmetric under the interchange of p
and o-, we conhne ourselves to values for which p —o &~ 0.
Some values of 5mi/mo are shown in Table I.The table
is just presented to give an idea of how hami/mo varies
in the p-o plane.

Ke see that along the p= —o- line, it grows less fast
than elsewhere and it changes sign as we cross the
p= —o- line, passing through zero somewhere below that
line. This may be seen more explicitly if we write the
expression forremi/mo for p=+o and p= —o when

~ p~

is large ()20):

From (IV.12), we have

hami/ms = (mo mi—)/mo= Z(P =mo)/mo, (IV.16)

Kg=0,

ps
Zs ——p' ln —

i

—p ln(p' —1),
ps j

p +ir
I pl )20' bmi/ms= (3&o/4ir)

X (3—2p —1/p+lnp ) (IV.16a)

(IV.14b) p= —o,
~ p ( )20: 8mi/mo= (3no/4r)(1+lnp') .

where
Zs ——Zs(p —+ ~),

p =ms/mo and ir =ms/mo . (IV.15)

We see that for p=+o the dominant term is linear
in p, but for p= —o. it is only logarithmic in p. Figure 3
gives a closer view of hami/mo in a typical neighborhood
of this p= —o- line.

TAsiz I. hm/mo in p-o plane. (Note: Because of p-o symmetry, the values in the upper left have been left out
as they would only duplicate those given above. )

1000
500
200
100
40

5—5—40—100—200—500—1000

—1000 —500 —200 —100

0.370
0.721 0.506

1.77 1.09 0.726
3.51 2.44 1.43 0.918

0.029
0.158 0.057
0.233 0.073
0.302 0.087
0.407 0.105
0.494 0.119

—0.007
0.007—0.019—0.033—0.043—0.053—0.066

40

—0.121—0.026
0.046
0.015—0.074—0.167—0.303—0.406

100

—0.327—0.193—0.037
0.067
0.108
0.018—0.142—0.445—0.704

200

—0.673—0.461—0.259—0.046
0.083
0.206
0.181
0.020—0.434—0.910

500

—1.72—1.04—0.676—0.386—0.058
0,103
0.349
0.490
0.479
0.023—0.780

1000

—3.46—2.39—1.38—0.865—0.441—0.067
0.118
0.457
0.755
0.960
0.830
0.026
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0' IDDEN
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-IOO ~ g IOO 200 300 40& — -500
//XV/& tt

+50
100
500

i000

—60
—iii.i
—5i4.3

—i015.6

Tmz. z II. Typical values (approximate) of p and o
for which m/ms =mneutron/myrotou

3. Charge Renormalization

.(NOTE: THERE IS SYMMETRY ABOUT THE p= + LINE)

Fzo. 4. Allowed region for Sm/mp in p-a plane.

f80—
Sory tPS ~

—m~
8m /mo=-

mp mu

= —0.0014. (IV.18)

We can apply various criteria for 5mz/mp. First, we
cannot allow it to be greater than unity if we are to have
any confidence in our perturbation expansion. "In fact,
if we require &nz/mp(s, the expansion is somewhat
more acceptable. In a heuristic way, we would hope that
if the lowest order term in bmz/mp is of this magriitude
or less, the succeeding terms should contribute less than
10%%u~ to mp. (We realize, of course, that it is possible to
make Bmz/mp much smaller than —,'.) In Fig. 4 we show
the approximate region in the p-0 plane for which

~8mz/mp~ &-', . It still allows considerable variation of

p and o.
We may consider more strict criteria. If we unrealisti-

cally assume that the proton-neutron mass difference is
such an electromagnetic self-energy effect, '4 then

In the usual theory, the bare coupling constant is a
meaningless quantity, owing to the infinities encountered
in renormalization, and the perturbation expansion must
be in terms of the renormalized coupling constant. In
the present theory, since all renormalizations are finite,
it is our approach that the perturbation expansion is
originally in the bare coupling constant, with the option
of readjusting the series so as to use the renormalized
coupling constant. We consider the renormalized cou-
pling constant (= 1/137) to be input from which the bare
coupling constant can be determined. For any process
calculated to a particular order, we may expand in the
bare charge and include all diagrams that contribute to
that order, or alternatively, we may expand in the re-
normalized constant, leaving out those terms that have
already contributed to charge renormalization. Because
we insist that both approaches must lead to compatible
results (i.e., equal to within the order of n involved), a
condition on our model is that the bare charge must also
be small, and, in fact, close in value to the renormalized
charge. To determine the effect of this condition, we
briefly summarize the different contributions to charge
renormalization (to lowest order).

The contribution of the fermion seU-energy to charge
renormalization is defined, as in the usual theory, as the
residue of the pole in the dressed propagator at the
physical mass, i.e.,

From the Table I we see that there is a whole line (just
below p= —o line) for which this is satisfied. Some
typical values are given in Table II.

S'=

+(terms which are regular at P=mp). (IV.19)

"Of course, in the usual theory, bm is infinite and the series is
considered to be somehow legitimate as a rearranged asymptotic
expansion. /See S. Schweber, Irttrodlctioa to Retatipe Qttarttttm
Field Theory (Row Peterson Inc. , Evanston, Illinois, 1961),p. 644,
and F. Dyson, Phys. Rev. 8S, 631 (1932).g We could allow Sm&/mo
to be greater than unity and hope that the formal expansion is
still useful. However, since the primary purpose of this model is
to remove the divergences, our spirit is to avoid these arguments,
if possible. We still have no proof of the convergence of the pertur-
bation expansion, but we can avoid any explicit contradiction to
its summability.

+ Of course, both the neutron and the proton have eGectively
smeared-out charge distributions, and their mass difference will
depend on strong interaction e8ects nontrivially through the form
factors. Thus (IV.18) and Table II are not to be taken very
seriously.

Thus, near p=mp,

5'—z=Zs—'(P —mp) . (IV.20)

"M. E. Arons, thesis, University of Rochester, 1964 (un-
published).

Expanding 5 ' and Z of (IV.7) about P=mp a,nd com-
paring with (IV.20), the expression of Zs to lowest order
is shown to be"

1
Zs ——1+8+25mz + —,(IV.21)

1Ãp —102 $20—553
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8= (3np/2s. )Q c;8; (IV.22)

'dx
7

p S

as= —p»n[(ps —I)/ps]

I~ =~.(p--),

where 8mt is as given in (IV.16) and 8 is given by"

( k„k„Zs
(IV.31)

This quantity is, as previously expected, 6nite as

m;, m,™-+~,because of the Landau gauge.
Expanding C(k') of (III.9) about the physical photon

mass of k'=0, the denominator of D„„' of (III.10)
becomes

k' —p' —C(0)—C'(0)k'+-', (k')'C" (0)+ . , (IV30)

where the primes denote the derivatives with respect
to O'. Near k'=0, writing D„„' in the form

or, for large values of p and o. (leaving out the infrared
term), we 6ndsr

8= (3o!p/2') [—1—
s (1/p+ 1/o —1/po') ]. (IV.23)

The vertex function is

and using (IV.30) and (III.11), we have

Z '=1—C'(0)

It can be shown that C'(0) is given by"

(IV.32)

I'.(Ps P~) =V&+A.(ps, pt) (IV 24)

where the A„ function is given (to second order) by

Z(Xp

A.(ps Pr) = — — ~'k V "~(ps k)—
4x'

C'(0) = (ne'/m) dt(Jtt/A') (IV33)

vrhere

f) = (p-1)(~—1),

If we write
Xy„S(pr—k)y D,.(k) . (IV.25) A (t~1)(t+P,)(t+~,)

(P2 pl) 7 L+A (ps pl) (IV 26) tV= tI'[u —I e+t(eA —ai )]

with
F„=Zg '7„,

Zt ' ——1+L.
The expression of L is then shown to be"

(IV.27)
with

(IV.28)

b=p+o+po. ,

where A„,—+ 0 as Ps——P&
——mp, then, on the mass shell, t2d

+—[3(1—dr)+2t(d~ —I )],
3

Q' 1

L= — P c;c, dx dy
4m. i, ~=& p p

Lt " Ls Ls
X —+ ds + i

(IV.29)

C= pa,

d=t —b,

with

Lt —2(mp —m;) (mp —m;——)
+3mpx[ms(2 —x)—(m~+m, )],

L,=mp'y'(mp+m;)(mp+m, ),
Ls= (mp —m;) (mp —m, ),
A'= mpsx'+(m' —mp')x+(m' —m')y

A"=ms'y'+(m' —mps)y+(m' —m')s.
P' The quantity J'p'(dg/g) is the usual infrared term which is

cancelled by the contribution from the vertex function and is
discussed in Schweber (Ref. 18) and Jauch and Rohrlich, Ref. 40.
Although it is not exhibited explicitly here, expression (Dt".29)
for I.can be shown to contain the same infrared term as in B.

"We see that B does not diverge as p and 0 -+ ~. This is a
consequence of the fact that, in the conventional theory, the
contributions of the electron self energy and vertex diagrams are
finite to second order because of the Landau gauge LSchweber
(Ref. 18), p. 539; H. M. Fried and D. R. Yennie, Phys. Rev. 112,
1391 (1958)3.

+- +
t+1 t+p' t+ '

—+ —+
(t+ 1)2 (t+ps)2 (t+&2)2

(I+1)(t+P') (I+1)(t+~') (t+P')(1+~')

The renormalized coupling constant np(=ep'/47r) is
then

Ap=Zy Z2 Z3&. (IV.34)

If the perturbation expansion is really good and self-
consistent, all of the Z's should be quite close to unity,
and the charges ep and e should be almost equal. We

~s M. Y. Han, thesis, University of Rochester, 1963 (un-
published).
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FIG. 5. Second-order correction to
electron scattering from an external
6eld (vertex contribution).

end, we shall consider the lowest order correction to the
electron scattering from an external field, in particular,
the second-order anomalous magnetic moment. As in the
usual theory, it can be shown" that the only contribu-
tion to the magnetic moment comes from the second-
order vertex diagram sh, own in Fig. 5. The vertex func-
tion is given by

could actually calculate the bare coupling constant for
various values of p and o using (IV.34) and the Z's given
in (IU.22), (IV.28), and (IV.32), but, since we are only
interested in restrictions on p and o-, we shall not, in
general, exhibit values of a for various p and 0.. With the
value of n =21/137, computations have been made on
the IBM 7074 and the results show that over the range
of p and 0. from 10—' I-.o 10', n differs from no by no more
than 5%. Thus, the charge renormalizations (at least
to second order)" give essentially no new restriction on

p and 0., and we can expand equally well in the bare or
renormalized charge.

As a result of this section, we have the allowed region
of p and o- as shown in Fig. 4. For the computation of the
succeeding sections, we shaH use the value of ne ——1/137
for the coupling constant (making sure to exclude
diagrams that have already contributed to charge
renormalization) .

it II(pkpt)
Zoo

d4/ q~s(P2 —i)
3

y „S(p, i) D—„.(t). (V.1)

The extraction of the magnetic moment term from (V.1)
follows the standard technique" of evaluating (V.1) on
the mass shell, i.e., p22 and p12= 22222, and retaining only
terms proportional to o-„„k",where

(V.2)

and

1 r'

2

EV'N%&

V&Vp) ' (V.3)

A straightforward, but quite lengthy, calculation yields
the ma, gnetic moment part of A„(P2——P1——2222), denoted

by M„:

V. THE ANOMALOUS MAGNETIC MOMENT

One of the most signihcant and precise numerical pre-
dictions of the conventional quantum electrodynamics
is the magnetic moment of the electron. We now examine
the prediction of the present formulation to determine
whether it is consistent with experimental evidence for
some choice of the auxiliary mass parameters. To this

with

where

1 ao
M„=g„„k'- — —J,

2520 2'

3

J= P ccJ,;,

(V.4)

(V.S)

(P2—1
J11 1 J22 6 5p+P(5P —1)(p 1)»—

~

— J22= J22(p ~ o),

5 p' p
J12(=J2,)=-;p' —2(p —1)—— ——2p ln(p' —1)——(2p' —6p+1)ln, J12(=J2,) =J„(p~ a),

(p' —1)- 3 3 p2

17 1+pa 1 11 1+pe p' —1

J23( J22) p +-.,("+")+——2(.+-)—--
6 2(p+~) 6 2(p+o) o' —1

1 p" p(1—p') p' 1-
— p' 1 lp+ lp' — —+(p—'+2p —1) 1

p' ~2 — 2 2(p+~) p2 j

o.(1—o') a-' —1—o' 1——',a.+-'o' —-'o' — +p(o'+2o- —1) ln
2(p+~) 0'

~%'hile higher (than second) order contributions to the charge renormalizations may become large for large p and 0 (the Landau
gauge no longer helps), there should be no significant change in the allowed region for p and 0 because of the factors of a~ or higher.

4' J. Jauch and F.Rohrlich, The Theory of Photons and F/ectrons, (Addison-Wesley Publishing Company, Inc. , Reading, Massachusetts,
1955), p. 342.
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TAnLE III. 6J in p-0 plane. (Note: Because of p-0 symmetry, the values in the upper left have been omitted. )

—100 000 —10 000 —1000 —100 +100 +1000 +10000 +100000

+100000
+10000

+1000
+100—100—1000—10 000—100 000 0.0018

0.014
0.0083

0.11
0.063
0.058

0.71
0.44
0.41
0.40

—0.69
0.0055—0.35—0.38—0.38

—0.11—0.42
0.36
0.000018—0.052—0.057

—0.014—0.063—0.39
0,40
0.052
0.000001—0,0069

—0.0018—0.0083—0.058—0.38
0.40
0.057
0.0068
0.0000001

For the special case of p= +o, and
~ p( =

~

o )))1, the
expression for J simplifies to

4 1
J= 1——[2 ln(p' —1)—1j+—14 ln(p' —1)—98/9

p p

calculation and that of the usual theory be not greater
than the experimental uncertainty. A recent experi-
mental result" gives

(ns/2s )J=0.0011609&0.0000024.

Thus, we require that

for p=o., and

1—[68 ln(p' —1)—651, (V.6)
3p

(np/2s) iAJi &2.4X10 ',
or, using ns 1/137, ——

(V.9)

1
J= 1+—6 ln(p' —1)—2/9

p2

+—[2 ln(p' —1)—17/6]
p2

(V.7)

for p= —o-.

We see immediately that the dominant term for the
case p=o is lnp/p and for p= —o is lnp/p', thus again
illustrating the greater convergence for p= —0..

Let us write
(V.8)

(V.10)

The expression for 6J as a function of p and 0 was
computed on an IBM 7074 computer and some typical
values are given in Table III. For the case where p=o,
we find that we must have

~ p ~
)9X104, but for the case

where p= —o., ~ p
~

)200 is sufficient to satisfy (V.10).
Actually, the value of 6J changes sign below the p= —0.

line. For p=50, this is shown in Fig. 6. The general
regions of the p-o. plane for which d,J satisfies (V.10) is

shown in Fig. 7. An enlarged view of the region around
the p= —~ line is shown in Fig. 8.

so that 6J is the term added by the present model which

goes to zero as the auxiliary masses go to in6nity. What
condition must be put on 6J? We know that the second-

and fourth-order contributions to the anomalous mag-
netic moment in the usual theory agree with the experi-
mental value within the experimental uncertainty. In
order that our model not contradict experiment, we

insist that, to second order, the deviation between our
-lo000

IOOOOO—

ALLO

1 I

000 200.000
~~~~tlffll(/

0.02-

00.000

O.ol—

FIG. 6. hJ near @=50,
a = —50. 0 I

-51 -200,000—

(NOTEl THERE IS SYNIMKTRY ABOUT THE P ' O' LINE

FIG. 7. Allowed region )or hJ in p-. cr plane.

-O.OR—
"A. A. Schupp, R. W. Pidd, and H. R. Crane, Phys. Rev. 121,

1 (1961).
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20

ALLOW

ioOEN and the conventional ones is that 5(p) in (VI.2) repre-
sents the effective fermion propagator. As in the usual
calculation, we choose the rest frame of Pl as our co-
ordinate system, so that Pl ——(mo, 0,0,0). Since we are
only interested in perpendicular polarizations for the
photon, we have

IO
FIG. 8. Allowed region

for 6J near p = —0. pl 'Ei p2 o2 kl' oi k2 E2 0 I

PI~1 &1Pl yl

Pl&2 ~2 1.

(VI.3)

-lo

-20

VI. COMPTON SCATTERING

Using (VI.3), the vanishing of the physical photon mass,
and the fact that p12c"(pi) =mole" (pi), we find

22(m4 —mo+ki) ei
OR=+ c; —-

2moooi+mo2 m,.

Now, we examine the predictions of our model for
Compton scattering. To th, e lowest order, the two dia-
grams that contribute to the matrix element are shown
in Fig. 9. The initial state consists of an electron of
momentum p, and spin si and a photon of momentum ki
and polarization XI, whereas P2, s2, k2, and X2 are the
corresponding labels for the final state. The matrix
element corresponding to these diagrams is given by

ei(m; —m o
—A2) e2—

(VI.4)
2moloi+mo —m4

where &oi(=kio) and co2(=koo) are the photon energies.
Following the usual procedure, 4' we sum and average,
respectively, over the final and the initial spins and
polarizations, and arrive at the following expression for
the differential cross section:

pep' d a/dQ = ro'(co2/4ol)
'mo'F, - (VI.S)

RI;= — b(p2+k2 —pl —kl)
2(22r)' where ro ——eo'/42rmo (the classical electron radius) and

where

PALS p

X Ic"(p2)SLIc"(p,), (VI.1)
[~(p )~(p.)]'" F= tr[(p2+mo) O—R(pi+mo) BR ] (VI.6)

8mp'

all:= eP'(pl+ki) el+ el~(pl —ko) 22 (VI 2)

the m's are the spinors for the incoming and outgoing
electrons, e~„and &» are the photon polarizations corre-
sponding to e„'"» and &„&~», respectively, and the b

function represents over-all energy-momentum con-
servation. The only difference between these expressions

4

mo'F=-', Pc;c, P F;,~'I, (VI.7)

where

with 5R'= ypOR~yp.

The function F is given by the rather lengthy expression

F,,I'& = 24ol&o2[2(a;a, +b,b,)+(1+&oi—co2) sino' (a,b;+ alb;)]+4 sin'4'(ooi ajaj 402 be)
F,;&2& = (2—m;—m, )[2 sino@(4oioa;a+4o22b~b;)+2(&oi+M2) (a,a, —b;b, )+4oilo2 cosp, (1+cos'Q) (a~b+ a b;)]
F,;&2& = sino'((m; —1)[(2&op ooi oo2) a,b,+—(24op—+oil+ 4o2) b;a,]+(m, —1)[(24op+ 4oi+&o2), a;b+ (2ol22 oil oo2)bla;] }, — —
F;;I4I = (m;—1)(m, —1)(2+4o1—4o2) [2a,a;+2b;b;—sino&(a;b, —a,b;)],
with

co2
——col[1+col(1—cosp)] ', a4= (24ol+1 —m 2) ', and b;= (—24o2+1 —m, 2)

(In the above expressions, 4ol, co2, and m; are all in units
of mo. ) This is to be contrasted to the usual result
(Klein-Nishina formula) 42

which is the limit of (VI.7) as m2 and m, ~~ . The total
cross section is defined as

rso F= 2 (4oi/4o2+4o2/401 slil Q), (VI.S)

"Schweber, Ref. 18, p. 487.
43 W. Heitler, The Qgaetgns Theory of Radiatioe (Oxford Uni-

versity Press, London, 1954), 3rd ed. , p. 219.

do
o-z ——2~ —sinPdP.

dQ
(VI.9)

Actually it will be convenient to calculate 0-& in units
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FIG.. 9. Lowest order contributions to Compton scattering.

of the Thompson cross section o &
——(Srr/3)re', 4' which is

the limit of the usual result for nii/ms«1. For the
purposes of calculation, the differential cross section
was computed on an IBM 7074 digital computer and
the total cross section was calculated by Simpson's rule
numerical integration using poig. ts at every five degrees
between 0' and 180'. In all cases, both the conventional
formula (VI.S) and the result of our model (VI.7) were
calculated and compared for particular values of p and
0 and coi/les (incident photon energy). It is, however,
only required that the predictions of our model corre-
spond to the Klein-Nishina predictions to the extent
that the latter is in accord with experiment. In practice,
there seems to be only a limited range of photon energies
for which experimental data for Compton scattering are
available. The basic difhculty seems to be the fact that
the experiments are done with atomic electrons in such
elements as carbon, copper, aluminum, and lead. For
high energies, pair production dominates the photon
scattering and effectively overwhelms the Compton
contributions. In the case of total cross section, the
experimentally measured quantity is the absorption or
attenuation coefficient in various metals. The absorption
is essentially due to the combined effect of photoelectric
absorption, Compton scattering and pair production.
Although there is considerable variation from metal to
metal, the photoelectric effect is important below about
0.05—0.5 MeV (0.1—1 electron masses); Compton scatter-
ing dominates from there until about 5—15 MeV
(10-30 ms), and pair production above that range. "

We shall only calculate Compton scattering for those
values of the parameters p and 0 for which the previous
criteria concerning Snab and the magnetic moment have
been satisfied. Examination of Figs. 4, 7, and 8 reveals
that the allowed region is in the neighborhood of the
p= —0- line extending out farther than p= 250000. For
small values of p, the allowed region corresponds to that
shown in Fig. 8. We shall choose for calculations a
typical point in the narrowest part of the allowed region
(small p), where the allowed region is essentially a line

(p =+10, 0 = —10.1) and two typical points in the wider
area (p=+300, 0= —300 and p=+1000, 0= —1015).

The differential cross sections for these values of p
and 0 were calculated as a function of p for an energy
of cur/ms ——0.173; an energy for which experimental data
is given in Heitler. "For p=+10, 0 = —10.1 there are

44 Heitler, Ref. 43, p. 363. See also National Bureau of Standards
Circular 583, 1957 (unpublished).

4'See also Ml. Friedrich and G. Goldhaber, Z. Physik 44,
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Fxo. 10. Total cross section for Compton scattering.

v-= EZo-z, (VI.10)

where i' is the number of atoms per cm', Z is the number
of electrons per atom, and 0-~ is the total scattering cross
section. If we consider that the only contribution to
attenuation is from Compton scattering in aluminum at
1.076 MeV ((oi/tsp= 2.11) and copper at 1.51 MeV
((oi/tss= 2.96) we can make a comparison with experi-
ment. Table IV lists the experimental value, the con-
ventional prediction from the Klein-Nishina formula,
and the prediction of the indefinite metric model (IM

700 (1927l, and G. E. M. Janncy and G. G. Harvey, Phys. Rev.
37, 698 (j.931). The Klein-Xishina formula agrees exactly with
the experimental data within experimental error.

4' Heitler, Ref. 43, p. 222.

small deviations from the conventional result but these
are less than 1'% and smaller than the experimental
error given. For the other two cases, there is no observa-
ble difference between our prediction and the conven-
tional one.

The total cross section as a function of incident photon
energy up to 20ms (10 MeV) was plotted by the com-
puter for the values of p and 0- mentioned above and
these results are shown in Fig. 10 (the cases for p=300,
cr= —300, and p=1000, 0= —1015 gave identical re-
sults). Both the prediction of our indefinite metric (IM)
model and that of the conventional theory are shown.

It is clear that the deviation from the conventional
result for p= +10, 0 = —10.1 is significant. Since in this
energy region, the conventional result is considered to
have excellent agreement with experiment, our predic-
tion seems to clearly violate the known situation. On
the other hand, the other two choices of parameters
again yield predictions that coincide with the conven-
tional theory. It might be fruitful to consider compari-
sons with experimental data in greater detail. The
absorption coeKcient r(cm ') is given4':
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TABLE IV, Absorption coefBcient v (per cm)
for aluminum and copper.

Photon
energy Experi- Conven- p =10 p =300 p =1000

Metal (Mev) mentala tional o = —10.1 e = -300 e = —1015

Al 1.076 0.1606 0.1594 0.1636 0.1594 0.1594
CU 1.51 0.422 0.417 0.438 0.417 0.417

' J.J.Wyard, Phys. Rev. 8'7, 165 (1952); and Proc. Phys. Soc. (London)
A66, 382 (1953).

model) for several values of p and 0.."In both cases, the
conventional result (and IM model for p =300, 0 = —300,
p=1000, and o = —1015) agreed with the experimental
value within about 1%and is slightly small, perhaps due
to a sma, ll amount of pair production. (The experimental
accuracy of the above figures is 0.5—1%.) I'or the case
p=+10, 0 = —10.1, the prediction is 2% too high for
Al and 4% too high, for Cu, clearly in contra, diction with
experiment.

We see then'that values of our auxiliary masses that
are small in magnitude seem to be ruled out by the
Compton data. Values such as p=+300 and 0 = —300
give excellent agreement with the usual prediction and
experiment. Further calculation and comparison with
more experiments could fix th, is transition more precisely.

VII. REVIEW AND FURTHER REMARKS ON THE
AUXILIARY MASSES

In the preceding sections, we have presented an in-
definite metric theory (IM theory) of quantum electro-
dynamics for which all quantities are finite, and which
allows us to calculate various scattering processes. In
general, we have imposed two cond. itions on the theory.

The erst is that we wish the theory to correspond to
the actual interactions of electrons and the electromag-
netic Geld, i.e., it must be able to reproduce the existing
experimental data in this area. The "photon existence"
has been built in by the method of quantization used.
The remaining experimental data may be considered
to be of two kinds. On one hand, there are two very
precisely known constants, namely the magnetic
moment and the Lamb shift, and, on the other hand,
there are a great variety of scattering processes for
which cross sections and angular distributions are known
to some degree of accuracy, e.g., Compton scattering,
Mgller scattering, and pair production. A typical case
of each of these kinds of data has been calculated in
Secs. V and VI.

The second condition is one relating, in a sense, to the
spirit of our approach. Since the model has been specifi-
cally introduced to avoid the ultraviolet divergences of
the conventional theory, we should insist that the re-
normalization effects be truly small. In other words,
while we cannot explicitly prove the convergence of the
perturbation expansion, we will try to insist that any

' For aluminum, according to Heitler (Ref. 43, p. 422),
&&00=0.521, where o0 is the Thompson cross section. For copper,
EZo p =1.63.

~(p) =
p mp

(p+m, )—(m2+ ma)
(VII.1)

(p —mp) (p—mg)

we see that for large m2 and ms, the second term goes as
1/m2, s for m2+ma/0, and as 1/m2, 3' for ms+m8=0
Thus, the greater "convergence" with regard to the
auxiliary masses near the p= —cr line could have been
anticipated. The form of the second term also makes
plausible the change in sign of the auxiliary mass con-
tributions near the p= —0 line, since mm+mq in the
numerator changes sign as that line is crossed.

Even though we have not exhausted experimental
tests of the present theory, the foregoing analysis leads
us to believe that for any further calculations, such as
the Lamb shift, and other scattering processes, the
allowed region will not undegro any startling changes,

term to a particular ord.er in the coupling constant be
smaller than lower order terms. Thus, the renormaliza-
tion constants, the Z's should all be close to unity and
the perturbation expansion is equally good in o. or clp.

Also the mass corrections should be small (since they
are at least first order in n). These conditions have been
considered in Sec. IV.

Since the physical photon mass, physical electron
mass, and the renormalized coupling constant are con-
sidered to be input information in the theory, we have
determined allowed ranges of the two auxiliary masses
for which the theory satisfies these two conditions.

From Fig. 4 and Fig. 8 we see that there is an area
around the p= —0- line for which the magnetic moment
and mass renormalization criteria can be both satisfied.
As we have seen in Sec. IV, the charge renormalization
does not put any restriction on this area. The criterion
for the mass renormalization is not as precise as for the
magnetic moment. In fact, the condition that the second-
order mass correction be less than about 4 is, in a sense,
arbitrary, but seems reasonable and allows us to proceed
in a quantitative manner. Adjustments in this value
would slightly alter the boundaries of the allowed region.

For the magnetic moment case, the allowed region
near the line p= —o. is narrow (essentially a line) for
small values of p and broadens indefinitely as p becomes
large. On the other hand, for the mass renormalization
condition, the allowed region is broader for small values
of p, and computations show that it narrows for large
values. Thus, in the neighborhood of the p= —0 line,
the 'net' allowed region is lower bounded by the mag-
netic moment and upperbounded by the mass renormali-
zation (for example, at p = 10', 0 is limited from —p+ 120
to —p —170). As we have seen, the lower part of this
'net' area is further restricted by the Compton scatter-
ing data.

We have observed that the various criteria seem to
be more easily satis6ed in the neighborhood of the
p= —a line.

Rewriting the effective fermion propagator as
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i.e., there will remain a neighborhood of the p= —0 line
for which the predictions of the IM theory will be con-
sistent with experiment.

VIII. DISCUSSION

We have described, in some detail, a Lagrangian
formulation of quantum electrodynamics which is local
and manifestly covariant, yet 6nite, with the aid of
auxiliary 6elds with an underlying inde6nite metric.
Here we shall make some theoretical remarks concerning
the model.

One question concerns the arbitrariness of the ap-
proach. It may appear that certain features of the theory
seem somewhat ad hoc. Actually, we feel that, given the
goal of eliminating the ultraviolet divergences in a con-
sistent manner and. reproducing quantum electrody-
namics using an inde6nite metric, many aspects of the
model have developed within a spirit of "minimal
arbitrariness. " The number of auxiliary fields is just
sufhcient to insure that all diagrams are finite. The
method chosen for the quantization of the electromag-
netic 6eM is necessary to insure that the physical spin-1
quanta are photons, in the absence of gauge invariance.
The criteria of a meaningful perturbation expansion and
agreement with experiment have provided some restric-
tions of the auxiliary mass parameters. Even within
these criteria, there seems to be a certain amount of
nonuniqueness in the choice of these masses, i.e., a
range of these masses discussed previously seems to
achieve the desired results. While this nonuniqueness is
unsatisfying in a certain sense, in another way it is quite
useful. The fact that there is, so far, this range of per-
missible values for the auxiliary masses, helps convince
us that further comparisons with experiment will not
lead to difhculty. 4'

Another theoretical question is that of the quantiza-
tion of the electromagnetic field and the question of
gauge invariance. We do not have gauge invariance
explicitly in the theory, and the current interacting with
the electromagnetic 6eld is not locally conserved. On the
other hand, gauge invariance is designed to insure that
the electromagnetic 6eld is truly represented by the
tb, eory, i.e., that the physical quanta are photons (zero-
mass transverse quanta). The existence of photons can
be insured. , as we have shown, by quantizing the vector
6eld in a fashion so that the propagator has the form of
the Landau gauge. This propagator acts as a projection
operator that leaves only the transverse (conserved)
part of the interacting current. A difficulty with this
procedure is the Lagrangian prescription for quantiza-
tion. We have shown in Appendix A that we can write
a series of Lagrangians as a function of a continuous
parameter X that yields the desired result uniquely as
X ~ 0; yet, at X=0 a local Lagrangian cannot be written

"See Sec. VII.

down. It would be preferable to avoid this procedure,
but it seems necessary to insure the desired gauge. "

Another theoretical point concerns the problem, men-
tioned in Sec. I, of constructing a subsidiary condition
to rule out negative norm states due to the auxiliary
6elds. Such a construction is dificult and far from trivial
for theories which cannot be solved exactly. The general
procedure, involving diagonalization of the S matrix in
order to project out positive norm states in an invariant
way, strictly speaking, requires a knowledge of the com-
plete solutions of the theory. Whereas solutions are
readily obtainable in the case of some simple models,
they are practically inaccessable in a realistic theory
which has to rely on perturbation approximations.
However, as discussed elsewhere, "if the coupling con-
stant is small enough, the physical states would be
identi6able (after approximate diagonalization of the
S matrix) by their containing only a "small" admixture
of auxiliary 6eld. This procedure can be avoided in our
case, as long as the values of the auxiliary masses are
high enough so that the processes considered are below
threshold for these particles. Under that condition, the
'physical' state is pure electron (type I fermion). If
processes involving energies signi6cantly above thresh-
old are to be calculated, some sort of diagonalization
should be attempted.

Finally, after all the discussion, we wish to emphasize
that we have demonstrated that there exist values for
the parameters in our theory which can completely re-
produce the successful predictions of conventional
quantum electrodynamics, with a 6nite theory. This
statement, we feel, is a nontrivial one. It was not at all
certain, a priori, that such a model couid be constructed
in a self-consistent fashion. Although this result would
not necessarily lead to a replacement of the usual theory
by the present one, it has shown that such a model can
work for the most well known and successful application
of field theory. "For other theories, such as four-fermion
interactions, where no successful theory exists, this
approach may be promising.

' In fact, an attempt to use the usual Feynman gauge method
of quantizing the electromagnetic field in this model has been
carried out in great detail (Ref. 38). There were two major
difBculties. If one started with a zero mass bare propagator in that
gauge, and attempted to maintain the same mass and gauge in
the dressed propagator, it turned out that the conditions on the
parameters of the theory were impossible to satisfy without a
coupling constant so large that the perturbation expansion was
meaningless. Secondly, it was not possible to prove that this
gauge propagator would guarantee photons in the theory.' Actually, one could take a diferent point of view, and try to
push the IM model as far as possible. While existing data can be
explained with the ranges of the parameters indicated, we could
attempt to calculate processes for which the experimental evidence
is unknown or unclear. In these processes, there may be consider-
able deviation of our model from the usual one for various choices
of parameters (allowed by the previous criteria). It is conceivable
that the conventional model will not give good predictions for
some of these processes, in which case, if an experiment can be
done, we could, perhaps, make a test between the conventional
theory and the IM model. We concede that this possibility seems
remote however.
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The appearance of infinities inherent in many of the
existing 6eld theories may stem from the perhaps
dubious assumption of point interactions. If this is the
case, one may be led to attempt formulations of ele-

mentary particle theories that may involve nonlocal
interactions. We have already mentioned the point of
view" that a local inde6nite-metric theory may be
equivalent to a nonlocal positive-de6nite theory, i.e., the
former may be considered a manifestly covariant ca-
nonical way of introducing the latter into a 6eld theo-
retic formalism. Thus, it may be interesting to determine
if there is such a nonlocal theory, equivalent to the one
presented here, and to investigate its form. "This could
lead to further insight into the physical foundations and
structure of the inde6nite metric theory, and perhaps
aid in extensions to systems other than the electron and
photon.
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APPENDIX A: QUANTIZATION OF THE FREE
ELECTROMAGNETIC FIELD

In this appendix, we shall present the quantization of
the free electromagnetic 6eld as a massive vector 6eld
with a true Landau gauge propagator. "The covariant
transversality of this propagator will be demonstrated.

Although th, e notation is not identical, we are dealing
with a special case of a technique developed in a recent
paper by Feldman and Matthews. "As mentioned in
Sec. III, we intend to superimpose a neutral vector 6eld
of mass p, with a zero mass longitudinal field. We shall
first take the mass of the longitudinal 6eld to be P and
then investigate the limit as X —+ 0.

We consider the 6eld A~ to be split into a transverse
and a longitudinal part as follows":

where

so that
c)'D(x—y) = 8(x—y),

a~r, „(x,y) =0

By virtue of these defining relations, the fields A„'(x)
and A „'(x) satisfy the equations

8~A„'(r) =0

r."(xX)A.'()') = 0

c)„A„'(x)= t)„A „'(x) .

(A4a)

(A4b)

(A4c)

As Feldman and Matthews show, a Lagrangian can be
written down.

S=—-'(8 A BsA" 8A—a~A")

p+ (A—„A& X'—c)„A"8 A") (A5)
2

which yields the following equation of motion for 3„:
8"(B„A„c)„A„)—+li'(g„"+)i '8„8")A„=O. (A6)

It can be easily seen that using Eqs. (A4), the above
gives the desired equations of motion for A„and A„'.

(8'+p')A„'(x) =0

(8'+))A~s„'( )=x0

(A7a)

(A7b)

by (A7a) and (A4a), we have

(k' p') f.(k) =o—

k~f„(k) =0. (A9)

Now, we can proceed to examine the solutions of (A7)
in momentum space. Writing the Fourier transform of
A „'(x),

A '(x)=(2s-) ' ' d'k e 's'f (k)

where
A„(x)=A„'(x)+A„'(x), (A1) For a fixed value of ir, there are three independent

solutions of (A9) which can be written in the form"

A „'(x)= r„"(x,y) A „(y) (transverse part),
A2

A '(x)=A (x)—A '(x) (longitudinal part).

The transverse projection operator v-„„ is defined as

r„.(x,y) =g„,b(x y) B„B„D(x —y), — —(A3)

"A version of nonlocal Rnite quantum electrodynamics by
M. Levy (to be published) has come to the attention of the
authors. Also, an asymptotic hnite theory of quantum electro-
dynamics has recently appeared PR. E. Pugh, Ann. Phys. (N. Y.)
23, 335 (1963)j.

~' G. Feldman and P. T. Matthews, Phys. Rev. 130, 1633 (1963)."Integration over the repeated variable y is assumed.

f '"i(k) =&2e 'l"i8(k' —p')a„(k), r=1 2, 3 (A10)

where the a, (k) are arbitrary (the W2 is just for con-
venience in later equations), and the properties of the

~ These equations are, of course, the usual equations for the
massive neutral vector meson 6eld with its three polarizations.
We deviate at this point from Feldman and Matthews (Ref. 52)
who define four f„&")proportional to g„„—k 2k„k„ for r =0, 1, 2, 3,
of which three are independent. Their method is, of course,
covariant but obscures the situation in our case and results in
nondiagonal commutation relations and Hamiltonian. The trans-
formation from their set of f„(')'s to our set of f„(")'scan easily
be written as f„(")=2, c«)"f„('), where c(,)"=—e"&"). All equations
can then be transformed from one set to another.
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g '") are
k &~()=O,

&
( ) &v(~)— t'S y

Q e„'"'e,'"'= —(g„,-k„k,k-') .

(A11)

where d„(k) must satisfy

(k' —X')d„(k) =0,
(g„.—k„k.k ')d„(k) =0. (A13)

A„'(x)=(2a) ' ' d'k e '"*d„(k), (A12)

The latter relation is, of course, the closure relation for
this set of polarizations. 55

Following the same procedure for A„'(x), we have
[using (A4b) and (A7b)],

This has the solution

d„(k) =&2k„5(k'—),')a(k),

with. a(k) arbitra. ry.
Combining these results, we can write A„(x) in terms

of these plane-wave solutions as"

A„(x)=(2)'"(2a) '" d'k 8(ks) fQ e„&"&(k)&I(k-'—li')[a„(k)e—'"'+u, t(k)e"*1

+k„&i(k'—X')[u(k)e—"*+a'(k)e&" j), (AIS)

where we have used the fact that u„t(k) =a„(—k) and at(k) = —&i(—k). It will also be convenient to have the
above expression for A„(x) integrated over ks.

A (x)= (2) ' '(2') ' '

where

d'k—Q e '&(k)[a, (k)&,"
—"' +a„"(k)e'" j

+(k2+ 2)»2 ko
d'k

k„[a(k)e '" +at(k)e'"*], (A16)
0=+(k'+) ~)»' ko

u, (k)=a„(k) for ks=+(k'+p')' ' u(k)=a(k) for ks ——+(k'+X')'i' (A17)

e can now proceed to the quantum 6eld theory by applying the equal-time canonical commutation relations:

where s.„(x)=—BZ/BA" From . (AS),
[A „(x),~,(x')j„=„=ig„,|(x—x'), (A18)

vr„(x) = —[BeA„(x)—B„Aa(x)+p'X 'g„sB„A"(x)j,
or, in terms of the plane-wave solutions,

(A19)

tr„(x)=j(2) &is(2a )
d'k

Q (k e &v) k e &vl)(&i e—isv g t&,&ss)

0=+(~'+~') '" ko

+gvOP
d'k

(&ia
ifcv gteikx) —(A20)

0=+( '+)')»' ko

& (~)&p(~') —g»'
3

and Z e„(»~„(')gl"=g„,.
p r &r=0

Using (A20) and (A18), we derive the commutation
relations

[&i„(k),a„ (k')j =ksb„„.5(k —k'), r, r' = 1, 2, 3,
[&i(k),&it(k')j= —ks«I '8(k —k'),

and all the other commutators vanish.

"It may be instructive to look at a particular set of e„(").If we
let k = (k0,k'), and choose

h that""'"""'"".„&»=typal [([I ~,k.ig~l ~)

we find that relations (A11) are satisfied for e„("), r=1, 2, 3.
Actually, if we define e„&'&=0,/~I&~, and let e„&"~=a„&",v=O, then
we complete an orthonormal set in Lorentz space and the set has
the properties:

The Hamiltonian is given by

P'= d x T" (A22)

where'~

T'00 —g gv~ g

= ——,
' P [ci„A„(x)B„A"(x)—B„A„(x)8"A„(x)

+p'X—'B„A„(x)&I"A„(x)7——',y'A (x)A &(x) (A23)

~ The ut will represent complex conjugate for the classical
c-number case, and adjoint in the operator case.

3" Z (A„A„)=AOAO+A A as opposed to A„A"=AOAo —A &.
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which yields (with appropriate symmetrization) We can write

Po= d'k g a„t(k)a„(k)— d'k p'at(k) a(k) . (A24)

Now, we shall examine the special limiting case as
X —& 0, the case we shall need. The only equations above
that exhibit any diKculty when X —&0 are the La-
grangian (A5), the equation of motion (A6), the ca-
nonical momentum density (A19), and the energy tensor
(A23). All other expressions, particularly the solutions
A „(x) to the field equations, the commutation relations,
and the Hamiltonian, written in terms of creation and
destruction operators, exhibit no diAiculty in the case
when X=O. In all of the former expressions, P enters in
the form

(A25)

For the transverse part A„'(x), f}"A„'vanishes for all )
so (A25) is zero for all )i/0 and the limit as ) ~ 0 is
also zero. For the case of the longitudinal field A„'(x),
(A25) is equivalent to taking i) 'k" times k„8(k'—),') in
momentum space, which gives a finite result at X=O.
This fact, tha, t expression (A25) is unique and well
defined a.t X=O when evaluated for solutions A„(x) of
the equations of motion, is what allows us to proceed
and is the reason that all expressions that were written
in terms of creation and destruction operators exhibited
no dif6culty as X went to 0.

Actually, at P =0, the Lagrangian is nonlocal
() 'c}"~ c) 't}",which is a nonlocal operator) a,nd should
not be used, but since 2 is local for any small but 6nite
value of X, and all results exist and are unique at X=O,
we conclude that in the limiting case as P tends to zero,
we have a uniquely dehned theory from a Lagrangian
prescription. In all further work, we will take 'A=O.

It can then be shown that the propagator can be
written

= —j2(2zr) —4 dzk e "&* »D „(k) — (A26)

26
dzk f(k')k. (A28)

k'+is k' fz—' i—c'

Completing the contour in the lower half of the ko plane
(ignoring numerical factors), we get

k„ef(k')
d'k lim

e s (ks) 1/s

k.e'f(k')
dsk lim . (A29)

z'~o (ks+ps)ils

The second term clearly gives no contribution since its
integrand vanishes as e' ~ 0 for any value of k. For the
first term, the integrand is zero for any k/0 as e —+ 0,
and cannot become infinitely large as k —+ 0 and e ~ 0,
so it will not contribute" and expression (A28) vanishes
as desired.

APPENDIX 8: A FORMAL PRESCRIPTION FOR
MASS RENORMALIZATION

In this Appendix, we shall discuss a formal method
for treating mass renormalization by utilizing a Taylor
expansion in the mass. For simplicity, the method is
illustrated for the case of fermions in the conventional
quantum electrodynamics. Its generalization to the
present theory is then straightforward and is presented
in Sec. IV.

Dealing with internal lines, we shall show that the
method of Taylor expansion in the mass can be used to
provide a "formal" proof of the equivalence of the
dressed fermion propagator when the perturbation ex-
pansion is in terms of the bare mass, and when it is in
terms of the physical mass (with a counter term in the
Lagrangian).

In the first case, of the expansion in terms of the bare
mass, the relevant Lagrangian densities are (II.1) and

"This can be seen in another way. For simplicity, we can
where, in complex ks space, the integration is along the consider the first term of (A28) to be equivalent to the one-

dimensional integral
real axis from —~ to +~, and where

dx hm[zx/(x —zz)],

(A27) which can be rewritten as

with the limits e, e'~ 0 taken after the ko integration.
This is the desired Landau gauge propagator and we
shall examine its transversality.

The question we ask is whether J'f(k')kl'D„„(k)d'k
will always vanish Lassuming f(k') is a well-behaved
function). If it does, the (A27) is covariantly transverse.

Now

dx lim[zxz/(xz+ zz) ]+z dx lim[zzx/(xz+ e')]~p ~0

hm[e/(xz+zz)] B(x)

so that the erst term is J'x'b(x)dx which clearlv vanishes. Also the
integrand for the second term contains lim[zz/(xz+ez)] which
will be smaller than 8 (x), so the second term will always be smaller
in magnitude than j'xS(x)dx which is zero.
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Fro. 13. Z&'&(p, mp) lowest order
self-energy term.

Z(p, rn) = + 0Q%
fA pressed as

S'(p)—'= S(p,mp)
—'—Z'(p, m, )

=p —mp —Z'(p, m p),

Fro. 11.Proper self-energy Z(p, m) showing explicit dependence
of fermion propagators on m.

(II.3), namely

(II.1)

(II.3)

where m is the mechanical (or bare) mass of the fermion
The bare propagator (II.4) will then be written as

S(p,m)=(p —m+ie) ', (II.4)

where the explicit dependence of 5 on the mechanical
mass m is written for clarity and the dressed fermion
propagator is then

S'(p)-'= p —m —Z(p, m) (81)

where Z(p, m) is the sum of all proper fermion self-energy
diagrams with all internal fermion lines in terms of the
bare mass m. Z(p, m) is, of course, a series in the coupling
constant, the lowest diagrams of which are shown in
Fig. 11.

The physical mass, mo, is considered to correspond to
a pole of the dressed propagator S'(p), i.e.,

p —m —Z(p, m) =0 for p =mp. (82)

In the second case, where the expansion involves a
counterterm, the Lagrangians are rearranged to be

where S(p,mp) is the bare propagator (II.4) with the
bare mass m replaced by the physical mass mo, and
Z'(p, mp) is the new sum of fermion proper self-energy
diagrams (with all fermion propagators in terms of mp),
the lowest order terms of which are shown in Fig. 12.

The equation for the pole of S'(p) is then

p —mp —Z'(p, mp) =0 for p=ms. (86)

We shall now proceed to show the equivalence of the
two expansions. In particular, we shall demonstrate that
expressions (81) and (85) for the dressed propagator,
S'(p), are truly equivalent.

Let us examine Z'(p, mp) as shown in Fig. 12 more
carefully. We see that this consists of the same terms as
in Z(p, m) with mp replacing m (called Z(p, mp)) with the
addition of terms where —bm has replaced every second-
order self-energy term in Z(p, mp). In other words, if, in
any diagram in Z(p, mp), we have Z&»(p, mp) shown in
Fig. 13, then we add the same diagram with Z('& re-
placed by —8m. Now, it is also true that for any diagram
to a particular order (of &x) in Z(p, mp), there will be a
higher order diagram in Z(p, mp) where an internal
fermion line has had Z&"(p,mp) inserted in the line. This
means that for any diagram in p(p, mp), Z'(p, mp) con-
tains also all diagrams with —8m s inserted into internal
fermion lines in all possible ways.

We note that, formally, the term,

(83)

(84)
corresponds to

where bm=mo —m. The dressed propagator is now ex-

—8m
0

mp
(8&)

—(—bm)
P mp P mp

&I ( 1
= —bm

i

— — — (88)
amp &P—m,

or, symbolically,

+
Q

+
—5m
0

This means, for example, that the term in Z'(p, mp),

FIG. 12. Self-energy Z'(p, mo) with counterterms, showing explicit
dependence of fermion propagators on mo.

FIG. 14. Typical term in Z (p, tnp).
:Sm-Se &
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shown in Fig. 14, can be written as

—,'(—8m)' (Fig. 13) .
~mo2

Now looking carefully at Fig. 12, we can write

(89)

course, a Taylor expansion in mp of any diagram becomes
just a Taylor expansion of all its fermion propagators.
We can also write an unambiguous perturbation pro-
cedure for evaluating bm in any required order. From
Eq. (82) we have

mo —m —Z(p=mo, m) =0
or

hm=mo —m=Z(P=mo, m). (815)Z'(p, mo) =&(p,mo) —5m —8m Z(p, m o)+
8mp

(—8m)" ci"
+

But, using the Taylor expansion of Z(p, m) in the form
of Eq. (813), we get an expression involving only the

&(P)mo)+' ' ' (810) physical mass.
Bmp

If we write Z(p, m) in a Taylor series around the mass
Bmp

mp, we have
8

Z(p, m) =Z(p, m,)+(m m—) Z(p m)
~m m=mp

(—bm)" ci"
Z(P=mo, mo)+ . . (816)

et Bmp"

(m —mo)" ci"
+— —-Z(p, m)

~z! Bm" m =m,0

+
Now this is not in closed form for bm; however, it is
ideal for a power series solution. If we write bm and

Z(p, mo) as power series in a,

8—Z(p, m)
Bm

so (811) becomes

Z(p, mo)
m=mp ~mo

But m —mp= —bm, and

(812)

8m= )1m&"+8m&"+
Z(p, mo) =Z&'&(p)mo)+Z&'&(p)mo)+

(817)

where the superscripts refer to the power of o., we get
the following set of equations:

)1m&'i=Z&'i(P=mo mo),

Z(p, m) =Z(p, mo) bm —Z(p, mo)+
Bmp

8m"'=Z"'(p=mo) mo) bm"—' Z"'(p=mo) mo) )
~mo

(—8m)" 8"
8m'"=Z ' (P=mo mo) —)1m" 2&"(p=mo, mo),

~mo

If we now compare (810) and (813), we find that

Z'(p, mo) =Z(p, m) —8m

=Z(p, m)+m —m. . (814)

This equation is the final one needed to prove our
result as it relates the fermion proper self-energy in-
cluding all the counterterms (in terms of the physical
mass) to the self-energy without counterterins (in terms
of the bare mass). Substituting (814) into the expression
for S'(p) in (85) yields (81), thus proving the formal
equivalence of the two procedures.

From our viewpoint, the important thing about this
equivalence is that we can use the Taylor expansion
procedure rather than the counterterm procedure which
is cumbersome in our case. We then write all diagrams
as in the perturbation series with the bare mass, but use
the phy'sical mass in the fermion propagators and add
all diagrams involved in the Taylor expansion. Of

—8m&'& Z&'i(p=mo, mo)
Bmo

Z&'&(p= mo, mo), etc. (818)
Bmp

These equations (818) provide a consistent approxi-
mation procedure for bm to any order in o..

A similar procedure for carrying out mass renormali-
zations for the external lines can be written down. This
procedure involving squared matrix elements and a
similar Taylor expansion was used to eliminate all but
the vertex contribution to the second order anomalous
magnetic moment. The reader is referred to the thesis
of one of the authors (M. E. A.) for further details. "

"See Ref. 35. The procedure of writing down squared matrix
elements diagrammatically is similar to that outlined by Thirring
fW. E. Thirring, PrcnccP/es of Quantum Electrodynamics (Aca-
demic Press Inc. , New York, 1958), p. 147$.


