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respect to transverse momentum and our reasoning
remains practically unaffected.

It may be amusing to note that in order to preserve
the factorization of the amplitude, one has much less
freedom for choosing invariants on which the = factors
may strongly depend than one may imagine. For
example, if - p; and ¢- p» are uncoupled, then arguments
similar to those we have used in our calculations lead
to an exponential damping of both of these variables.
This is clearly nonsense. The difficulty is removed if
¢-p1 and ¢-p. enter in 7 in the product form we have
used.

Note added in proof. In the case of finite masses, the
problem, of course, becomes more complicated. One can,
however, generalize our results by redefining what one
means by a soft vector particle [see, e.g., K. E. Erikson
and S. A. Yngstrom, Phys. Rev. 131, 2805 (1963)]. The
Low expansion is in fact an expansion with respect to
the momentum transfer to the vector particles. Thus,
one requires for the validity of the expansion, the small-
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ness of certain momentum transfers, rather than the
smallness of the energy of the emitted vector particles.

Our derivation of the transverse momentum distribu-
tion applies to particles carrying some charge. However,
the argument can be extended to those ‘“neutral” par-
ticles which belong to a multiplet containing a charged
particle, if the multiplet becomes fully degenerate
asymptotically, as can be expected. (We are indebted
to Dr. C. Bouchiat for a remark on this point.)
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We study three-body production and decay processes, A+B — a+b-+c and 4 — a+d+c. We assume
that the amplitudes are determined in both cases solely by the final-state interactions among pairs of a, b,
and ¢, and that the dynamics is given by single-variable dispersion terms in each two-body channel (that is,
a representation of the Khuri-Treiman type). Applying a method introduced by Anisovich, we obtain a linear
integral equation which gives the three-body amplitude in terms of the two-body one g. In an effective-
range approximation for g, the kernel can be easily evaluated; it is the sum of the discontinuities of the
triangle graph in perturbation theory, when considered as a function of an internal mass. In the S-wave case,
the resulting integral equation has a unique solution depending on one arbitrary parameter (a subtraction
constant). In the nonrelativistic limit, the equation coincides with Anisovich’s; this in turn is analogous to
the equation derived by Skornyakov and Ter-Martyrosyan for a three-body problem in potential theory,
with delta-function forces. It is suggested that the present theory is therefore a relativistic analog of a
potential model with short-range forces. As applications, we mention the determination of the final-state
pion spectra in K — 3r decay, and the possibility of studying the generation of resonances in the total

center-of-mass energy, induced by iterations of real particle exchange processes (the Peierls mechanism).

I. INTRODUCTION

T N this paper we shall discuss, by dispersion methods,
reactions of the types

K — mtmotms, (1a)
A4+B— mt-motms, (1b)

where, for simplicity, the “pions” =; are identical spin-
less isoscalar particles of unit mass. Reactions (1a), (1b)
are represented by Figs. 1(a), 1(b), respectively. The
two reactions are of the same type if we assume that in

decay:

production:

* Present address: Department of Applied Mathematics and
Theoretical Physics, Free School Lane, Cambridge, England.

both cases the amplitude F is determined entirely by the
final-state interactions (f.s.i.) among pairs of pions; the
only difference between them is then that the mass of
the “decaying state” (4-B) is not fixed. The aim is to
find an equation for F, given the two-body m-m
amplitudes.

Our starting point is the Khuri-Treiman (K-T) equa-
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F16. 1. (a) A decay process. (b) A production process.
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tion! for decay processes (Sec. ITTA). This equation has
come in for extensive study recently.?~® Our approach
is closely modeled on that of Anisovich.® In contrast to
the authors of Refs. 2-5, all of whom work with the
partial-wave projections of F, Anisovich obtained an
equation leading directly to F itself. The practical ad-
vantages of his method are twofold. First, the equations
for the amplitude are less singular, and so easier to
handle numerically, than those for the projections.
Secondly, even were the projections to be determined, a
difficult integral remains to be done in order to recover
the amplitude.
* Anisovich treated the case in which the 7-r amplitude
is given by a scattering length approximation, thereby
accounting for low-energy m- effects only. For this case,
the nonrelativistic kinematics he used were adequate.
By summing all connected rescattering graphs, he ob-
tained an equation similar to the K-T one. We apply
his techniques directly to the K-T equation (Sec. IIIB).
The result is especially simple if we assume an effective-
range form for g (Sec. IV). This enables us to treat r-r
resonances, as well as low-energy effects, while retaining
the symmetrical invariant vairables. What emerges
(Sec. V) is an integral equation of the type first studied
by Skornyakov and Ter-Martyrosyan,” in the potential
theory of the three-body problem, with §-function
forces. In the nonrelativistic limit it reduces exactly to
Anisovich’s equation (Sec. VI). With one subtraction,
the asymptotic properties are such that the work of
Danilov® ensures that it has a unique solution.

In Sec. VII we indicate briefly applications to the
determination of

(a) final-state energy spectra in three-particle decays
of resonances, and

(b) the three-particle mass distribution itself (a more
obvious three-body effect).

II. KINEMATICS AND BASIC APPROACH

We give as much of the standard treatment® as we
need to define the notation. If the four-momenta of the
three pions m; (1=1, 2, 3) are k;, we introduce invariant
variables s, ¢, # by

§= <k2+k3)2 , 1= (k3+k1)2 , U= (k1+k2)2 ,

IN. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960)

2 G. Bonnevay, Nuovo Cimento 30, 1325 (1963).

3]. B. Bronzan and C. Kacser, Phys. Rev. 132, 2703 (1963).

4C. Kacser, Phys. Rev. 132, 2712 (1963).

5 J. B. Bronzan, Phys. Rev. 134, B687 (1964).

8 V. V. Anisovich, Zh. Eksperim. i Teor. Fiz. 44, 1593 (1963)
[English transl.: Soviet Phys.—JETP 17, 1072 (1963)7]. The idea
of using Anisovich’s method directly on some form of the K-T
equation was suggested to me by C. Kacser.

7 G. V. Skornyakov and K. A. Ter-Martyorosyan, Zh. Eksperim.
i Teor. Fiz. 31, 775 (1956) [English transl.: Soviet Phys.—JETP
4, 658 (1957)7].

8G. S. Danilov, Zh. Eksperim. i Teor. Fiz. 40, 498 (1961)
[English transl.: Soviet Phys.—JETP 13, 349 (1961)].

® G. Bonnevay, Proc. Roy. Soc. (London) A266, 68 (1962).
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where

s+tt+u=3+m?. (2)

The pion mass is unity, and m is the mass of the decay-
ing state or the c.m. energy of the three-particle system.
If x is the angle between k; and k,, we have

t=(3+m—5)/2=2p(s)g(s)e,
()= {[s— (m—1)"|[s— (m—+1)2]}12/25172,
q(s)=(s—4)"%/2.

The physical region for the decay process (1) is then
4<s<(m—1)% and |x|<1; the second condition may
be written as

3)

T'(s,tu) =stu— (m?—1)2<0, 4)
or, using Eq. (2),
T(s,t)=st(3+m2—s—1)— (m?*—1)2<0. 4

I', the Kibble cubic, is drawn in Fig. 2(a) for the case
m>3; the decay region © is inside the loop, usually
called the Dalitz plot. We wish to calculate the ampli-
tudes for reaction (1) inside D.

The essential ideas of the present approach to the
three-body processes (1), which was largely originated
by Bonnevay,? are worth emphasizing right at the start.
Consider first the decay process (1a). Evidently, it is
not fundamentally different from a two-body problem,
since, no matter how complicated the blob in Fig. 1(a)
may be, there are finally only four external lines, as in
any two-particle process, and, for m fixed, only two inde-
pendent invariants [cf. Eq. (2)]. In fact the physical
regions for the two-body reactions corresponding to
crossed channels of (1a) are also contained in Fig. 2.
For example, the region I (s>(m-+1)% (<0) is the
physical region for the s-channel reaction mwotm3—
K-+m;; the t and # channels, and regions IT and ITI, are
defined similarly. If m were actually less than 3, only
these scattering reactions would be physically possible,
and we could proceed to set up a dynamical model by
postulating some form of dispersion relation, using
physical two-body unitarity to evaluate the discon-
tinuities. What we do, therefore, is to assume a simple
relation for m2<9, and then, after doing all the manipu-
lations, we continue the resulting equation back in m?
to the physical “K”’ value, arriving finally at an equa-
tion valid for s in the decay region D.!!

Although for reaction (1a) only two of s, ¢, and « are
independent [by Eq. (2)], we shall for symmetry always
consider the amplitude F as a function of all three:
F=F(s,t,n). Following the procedure we have outlined,
then, we shall set up equations for F(s,;,%); that is, we
aim to predict the final-state energy spectra in reactions
of the type K — 3.

T, W. B. Kibble, Phys. Rev. 117, 1159 (1960).

11 R. C. Hwa, Phys. Rev. 134, B1086 (1964), has also considered
continuing production amplitudes between disconnected regions
by a similar technique, but with a rather different aim.
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F16. 2. (a) The curve I'=0; the physical regions are I,
II, 11T, and D. Case m>3 (b) the curve I'=0, as (a), but case
1<m <3

Consider now the production process (1b). Here also,
as mentioned in I, we asume that the amplitude is
determined entirely by the final-state interactions: that
is, it depends only on s, £, and #. But a general production
amplitude depends on five invariants; so our assumption
here amounts to ignoring the dependence on two vari-
ables (which would be of the momentum transfer, rather
than energy, type). Furthermore, Eq. (2) is still true,
and it implies that if we can determine the s, ¢, and %
dependence we thereby know some of the m? dependence
of the production amplitude. In fact, in our treatment,
the difference between the reactions (1a) and (1b) is just
simply that in the latter # is not fixed at a physical
value, but is a variable, namely, the total center-of-mass
energy;in our method, both amplitudes are given by the
same function F(s,,u). It is precisely this sort of de-
pendence, which is induced by ‘“‘simultaneous” effects in
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the two-body s, #, and % channels, that is appealed to
in the mechanism of Pelerls!? for the generation of
higher baryon resonances, and in its applications by
Pais and Nauenberg!® and others!4 to energy peaks in
multimeson systems. The variable w2 has an obvious
three-particle significance, and it is the m? distribution
which seems likely to be the most interesting con-
sequence of the present theory. We shall return to this
point in Sec. VII.

Finally, we remark that the possibility of doing, in
general, the m? continuation from the scattering to the
decay regions is something we do not go into; in the
special case we treat here, all that is required is
analyticity of the triangle graph in perturbation theory
as a function of an external mass, when that mass is in
the upper half-plane and near the real axis; we believe
that this is guaranteed by the work of Killén and
Wightman,15

III. DERIVATION OF THE INTEGRAL EQUATION
A. The Khuri-Treiman Representation

The simple dispersion relation that we shall assume is
a single-variable representation of the Khuri-Treiman
(K-T) type!

. F(stu)=G+2(s)+ () +2(u), (5)
where
g*(s")Fo(s")ds
Be)= (=) /(s ' 4)(s'—s5—i¢) ©

F(s) is the s-wave projection of F in the c.m. system of
pions 2 and 3, and g(s) is the 7-r amplitude. g=¢* sin,
where 6 is the s-wave phase shift. We assume that one
subtraction is enough for convergence (we have taken
it at threshold). In what follows we shall usually omit
the subtraction. The content of Eq. (5) is that in the
scattering channels (cf. the 7¢) unitarity is included
within the approximations:

(1) Only two-body intermediate states contribute.

(2) The two-body interactions occur in only one
partial wave (in our case, for simplicity, the s wave).
Notice that in this case crossing is violated.

In terms of graphs, Egs. (5) and (6) sum up diagrams
of the types shown in Fig. 3%45; that is, anticipating
the continuation in #? into the decay region, (a) no
final-state interaction (f.s.i.) (b) f.si. between only
2 pions (c) f.s.k. between all three pions, interacting in
pairs (pontoon graphs). We recall that the graphs of
type (c) have a simplifying feature: namely, they have

2 R. F. Peierls, Phys. Rev. Letters 6, 641 (1961); also S. F.
Tuan, Phys. Rev. 123, 1761 (1962); and I. P. G. Yuk and S. F.
Tuan, Nuovo Cimento 32, 227 (1964).

18 A, Pais and M. Nauenberg, Phys. Rev. Letters 8, 82 (1962).

4 R. J. Oakes, Phys. Rev. Letters 12, 134 (1964); and S. F
Tuan, Phys. Letters 11, 248 (1964).

15 G, Killén and A. S. Wightman, Kgl. Danske Videnskab.
Selskab, Mat. Fys. Skrifter 1, No. 6 (1958).



THREE-BODY PRODUCTION AND DECAY PROCESSES

@) (b) ©

F1c. 3. (a) A constant term in the K-T representation. (b) A
final-state interaction between one pair of particles. (c) Final-state
interactions between several pairs of particles successively.

no complex singularities on the physical sheet in the
decay region.®*

In the treatment of Eq. (5) in Refs. 2-5, one obtains
an integral equation for F, by projecting out on both
sides of Eq. (5):

2 0
Fols)=G+®(s)+— / AN (AR Fo(\?)
w™J 4

X[K (s, \2—ie)—K(4, \2—ie) ],
where
dx

1 1
K(s,)\z)z—/ _
2 J 1 N—1i(s,x)

K(s,\?) is very simply related to the discontinuity
o(s,\2) of the triangle graph of Fig. 4, around the singu-
larity s=4. In fact,'® for \2>4,

p(s:N) = 2mi)*(w/2)[(s—4)/s 2K (s\D) . (9)

Hence in Eq. (7) we have an integral equation for the
projection Fy(s), whose kernel involves the discon-
tinuity of the triangle graph for all internal masses
A2>4 (the limit onto the A\? axis being taken from below).

An examination of the kernel of Eq. (7) shows that
it has singularities of two types: From (8) it follows
that there are logarithmic singularities of K when
N={(s, #=1). The prescription for determining the
correct branch of the logarithm can be obtained,® but a
careful study shows that K develops in addition a
singularity in s, of the inverse-square-root type, for
4<N2<(m~+1). This is due to the emergence of the
non-Landau singularity!® at s=(m—1)2 onto the (un-
physical) edge of the physical sheet. This latter singu-
larity further complicates the numerical resolution of
Eq. (7), and even when that is done, there remains a
further singular integration to recover F(s,},%) by Egs.
(5) and (6).

For these reasons we now follow Anisovich® and look
for an equation for F itself, or rather for ®. As has been
remarked elsewhere,!” by means of the standard Omnes

8)

F1G. 4. Triangle graph in
perturbation theory.

16 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
171, J. R. Aitchison, Nuovo Cimento (to be published).

vl
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transformation!® Eq. (6) can be rewritten in the form

$= ‘1’1-{— 22 ) (10)
with

G1 gD 11 gDd
<I>1=———/————-dS', <1>2=——~/—-—.—ds', (11
DrnJ s'—s—ie Drn) s'—s—ie

where .

&(s)=[| dx d@(s,x)). (12)
-1
D is the usual denominator function!®
1 a(s")
D(s)=exp{——— f -——————ds’} R (13)
wJ) s’—s—ie

where § is the 7= phase shift: g=¢# sind. In Eqs. (11)
and (13) we have omitted the subtraction.

The first term of Eq. (10) is the usual solution to the
problem of one f.s.i.; the second expresses the fact that
there are also two interfering parallel channels. Eq. (10)
may be regarded as an integral equation for ®. However,
because of the double integral in the ®; term, a direct
numerical attack would seem very difficult. We there-
fore now use the technique of Anisovich to transform
this term into one involving only a single integral.

B. The Integral Equation for ®

The first step is to rewrite ®, as

11 % gD ds
¢2= lim “—/
Ao D Sy ' —s—1e 2p(s")q(s")
t+(s")
X / ar®(t), (14)
t—(s")

where we have used Eq. (3) to eliminate x for ¢, and

where
2

3+ s
ta(s)= ——-2———?2?(8)91(8) ; 3)
t,(s) are thus the interactions of I'=0 with lines of
fixed s=s".

Next, in accordance with our remarks in Sec. II, we
assume that ®(s) can be continued in ? in the upper-
half m? plane, and consider the situation 1<z <3. Then
for >4 no decay is possible. But from Fig. 2(b), which
shows the case 1<m< 3, we see at once that for 4<s<A?,
t.(s) vary in such a way that they are either both
complex or both real but negative; also |ii(s)| <A2
The one exceptional point is s'=4, but there the -inte-
gration path 7 shrinks to zero. In Fig. 5 we show the
evolution of 7 as s increases from 4, for 1<m<3.

18 R. Omnes, Nuovo Cimento 8, 316 (1958).
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4<s<ime)?
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s=(me? ‘: T )

3% 35-b- .

t=4
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F16. 5. The ¢ plane, showing the contour of integration
(t_(s),t4.(s)) dashed, for various values of s.

Noting now that ®(s) itself has a branch point at s=4
only, we can rewrite Eq. (14) as

11 % gD ds
NRLLY
Ao D), s'—s—1ie2pq
1 D(\2)d\?

t+(8’)
X / d— | ————, (15)
t—(s") 2 fod X"—t(s’,x)

where the contour C is shown in Fig. 6; the integration
over the large circle proceeds in such a way that
[A%| > A2, The point of the previous maneuver is now
clear: for m> 3, the points £.(s") overlap the A2 contour
C along the real axis [cf. Fig. 2(a)]. As we want to
invert the orders of integration in Eq. (15), we would
then have the tricky problem of determining the proper
branch of the various integrands. This task is much
easier when the contours do not intersect, as is the case
for m< 3; and in our particular case it is mainly for this
reason that we have wanted to assume the possibility
of continuation in 7?2
Equation (15) therefore becomes

1
. d)\zé()\2)2¢'(‘yy>‘2) ’

D(s) 2wt J ¢

2 oD 1t dy
L Vs f T

¢« S'—s—ie 2J)_1N—i( %)

<I>2(s) = (16)

where

1
#(s,\2) == lim
™

A2-500
1 A% eDK(s',\2)
i —_—ds’

=— lim
T A250 n

(18)

§s'—s—1e

using Eq. (8).

The third step in the transformation of ®, is to shrink
the contour C onto the real axis, thus picking up con-
tributions from the discontinuities around the A? singu-

F1G. 6. The A? plane, showing
the contour C.
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larities of ¢(s,\2). Thus we obtain

1 1
B(s) =Pi(s)+—— 2 — dr22d,(s,\2; m2)B(A2) ,
D(s) i )¢t

(19)

where Ci(m?) is a contour running along the cut associ-

ated with the 7th A2 singularity of ¢(s,\2), and d;(s,\?; m?)

is the discontinuity of ¢(s,\2) across that cut; the sum-

mation is over all singularities 7. We indicate explicitly
that both C; and d; depend on the value of m?.

Equation (19) is a linear integral equation for ®, and

the final step in Anisovich’s method is to continue it in

m? back into the decay region #>3. We thus get finally

2 1

4)(5') = @1(3‘)""_‘—' Z -

d}\2di(57)\2)q)(>\2) )
D(S) (W oN

(20)

the d; and C; being evaluated at the physical mass m > 3.

Once g is given, we can calculate D and hence &1, and,
in principle, find the singularities of ¢(s,\2) and the dis-
continuities across them, d;. Thus Egs. (20) and (5) give
F(s,t,u) directly in terms of the solution of a single linear
integral equation depending on the two-body param-
eters. In order to investigate the structure of Eq. (20)
further, we will now make some assumptions about g.

IV. A SIMPLIFYING CHOICE FOR g¢

Let us write

gD=Np, (21)

where, as usual,'? p is the phase-space factor [ (s—4)/s ]/?
and & is the numerator function with singularities only
for s<0. While we could proceed by making only general
assumptions about N, it is immediately clear from Eq.
(8), and the remarks following it, that our task becomes
routine if we take an effective range type of approxi-
mation for N. For consider the two cases:

N=a,
N=b/(s+s0),

where a, b and sy are constants (s,<0). In the first case,
o(s,\2) reduces simply to [cf. Eq. (9)].

a AT g — N2 K (5T 02)
o(s,\2)=— lim / ds’( >
4

T A2 s’ s'—s—1e

2a
7(2mi)?

flsN),  (22)

where f(s,\2?) is the triangle graph amplitude (Fig. 4).
In the second case, similarly, ¢(s,A\?) becomes
1
w(271)? s+ 50

¥ G. F. Chew, S-Matrix Theory of Strong Interactions (W. A.
Benjamin, Inc., New York, 1961).

b(s,\?) = LASA) = f(=s0, )], (22)
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Thus, in both cases, the determination of the A2 singu- obtain
larities and associated discontinuities of ¢(s,A\2) reduces 2
simply to the corresponding analysis for the triangle H(g*)=a*+-[q/(g*+1)V*] In[ ¢+ (g*+1)V2],
graph f(s,\?), and this is well known.3:16 ™
Before proceeding with that analysis, however, we

. where ¢ is a constant, while
first recall the consequences of these two choices for IV. ’

As Jackson and Kane?® have shown, the choice V= con- D=a[H—ig/ (@#+1)12],
stant leads to a scattering length approximation. Define
a function H by which can also be seen directly by integration of the
s standard equation for D (including a subtraction at
H=[g/(@+ D" coto=[o/ @+ DI ). S
From the once-subtracted dispersion relation for H we Then Eq. (11) for ®; becomes

{—=(@/ml¢*/(+1) 1 In[g+(¢*+1)"* ]+ig/ (¢*+ 1)1}
{a7+(2/m)[¢*/ (¢+1) ]2 In[g+(g*+ 1) "2 ]—ig/ (g*+1)'/%)
and for & we get, using Eq. (22),

1
&=&+2{a"'+(2/m)[g/(@+1)"* ] In[g+(+ 1) ]—ig/(@+ 1)) X - | [Ads;\)—Ai(42)J2(\)ar2. (23)

i T

@1(8) =G

The A;(s,\?) are the discontinuities around the A2 branch points of f(s,\?), multiplied by the factor (2/x)(2x)~2
[cf. Eq. (22)]. They will be evaluated below (Sec. V).

To compare with Anisovich, we neglect the logarithmic terms and set (¢>+1)/2=1, obtaining the nonrelativistic
scattering-length equation

1
®(s)=Giga/(1—iga)+[2a/(1—iga) ] 2 — | [Ails,\)—Ad(4N) JB(N\)dA2. (23)

i m)oe;
This scattering-length approximation—the s-wave Chew-Mandelstam solution!®—will not give resonance be-

havior. To obtain a resonance, it is conventionally thought necessary to go to p waves. However, to keep our model

simple, we can suppose that an s-wave m-7 resonance occurs. As in the work of Frazer and Fulco,?! this will result
from the second choice for N,

N=b/(s+s0).

In this case no subtraction is necessary, and an exactly analogous calculation shows that

D=14-bg*[h(g*) — h(—qo*) 1/ (¢*+¢o*) = ibg/[4(g*+1)"*(¢*+ o)) ], (29
where
hg*)=[H(¢")—a'1/4¢,
So= 4""‘ 4QQ2 B
leading to the solution for ®;, representing a resonance,
| 4q,2+4vg?/b
1(5)=G —— : (25)
{49 —4¢*[1—h(g*) ]—16(¢*)vq/ (¢*+1)'/?}
where
7 =v90/b,
and
v=b/[bh(—g¢*)—1]. (26)
Using Eq. (22’), Eq. (20) for & now reduces to
1
B(s)=21(s)+2v{4¢*— 4’ [1 —vA(¢*) ]—ivg/(+ DV} = | [Ad(sN)— Ai(—s50,0) JB(AH)AN?, (27)
i

wJ ¢;
exactly analogous to (23).

2 J. F. Jackson and G. L. Kane, Nuovo Cimento 23, 444 (1962).
2 W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1960).
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F16. 7. (a) Reduced diagram giving the singularity A= (m—1)2
(square root). (b) Reduced diagram giving the singularity A2=0
(square root). (c) Reduced diagram giving the singularity A2=0
(logarithm).

We now have to evaluate the A; and specify the
contours C;.

V. EVALUATION OF THE DISCONTINUITIES A;(s,\%)

Cutkosky has given rules for calculating the discon-
tinuities around all singularities of any Feynman
graph'®; the only novel feature here is that we are con-
sidering singularities of f(s,\2) in the internal mass A2,
rather than an external one such as s.

In fact, an analysis of the A? singularities of f(s,\%)
was made in some detail by Bronzan and Kacser?® for
fixed real s>4, and extended to all 5, A2 by Kacser and
the present author.2? We first of all list the results for
the physical sheet singularities of f(s,\?), labeled by
the index <.

i=1, N=(m—1)2. This arises from the normal
threshold in the m? channel, i.e., the reduced Landau
diagram of Fig. 7(a). It is a square-root branch point.

i=2, N=0. This is a square-root branch point
associated with the reduced graph of Fig. 7(b). In
general the singularity would not be at zero, but rather,
analogously to the case 7=1, at the point \2= (M1 — M>)?,
where M, and M, are the internal and external masses
at the vertex from which particle r; leaves. It is at zero
only accidentally, because we have chosen an equal-
mass example.

1=3, A2=0. This comes from the reduced graph of
Fig. 7(c). A logarithmic singularity, it is the one unusual
feature of the present analysis.®

i=4, N¥=X\_2(s). This is also logarithmic in nature,
and comes from the uncontracted diagram Fig. 4 itself.
2_%(s) is one root of I'=0 [ cf. Eq. (4)]. This singularity
appears on the (unphysical) boundary of the physical
sheet for s>3%(m?—1).

Following Cutkosky’s rules, it is simple to calculate
the discontinuities A; and A;. We find

Ay(s\) =Y (s,m2,1) In[(R— U2)/(R+-TU2) ],

where

(28)

R=—mi+m(s+N)+(N—1)(s—1),
Ute=k(s,m?, D)e(\2m?1) ,

‘221, J. R. Aitchison and C. Kacser, Phys. Rev. 133, B1239

1964).

( | anke this opportunity to apologize to those readers of Ref. 22
who penetrated into Appendix B of it and were puzzled. There
are actually two singularities superimposed at A2=0: one a square
root, the other a logarithm. The coincidence in position is acci-
dental, as explained above. Hence any crossing of the real A? axis
below A?=0 would involve crossing t/ree cuts.

R. AITCHISON

k(a*b?,c") = {[a*— (b—c)*La>— (b+4-c)? T},
symmetric in ¢, b, and ¢,
and

Ag(s,\?) =k (s,;m*,1) In[(R'= U2 /(R'+-U")], (29)

where

R'=— 24w s\ (2= 1) (m2—s)
Ur=k(s,m?1)k(N\2,1,1).

The calculation of A; is not quite so straightforward,
and is discussed in Appendix A. The result, Eq. (A8), is
rather complicated and will not be repeated here.
Finally, A4 is just the discontinuity across a singularity
of the logarithm in Eq. (28), i.e., #=2mi/k(s;m21). In
Appendix B, we show that A4 in fact need not enter
explicitly into the final equation.

To each singularity A= (m—1)%, A\2=0 (twice) we
attach a cut going along the real A\? axis to — . The
physical boundary of f(s,\? )is the limit onto the real
A? axis from below [cf. the remarks after Eq. (9)], so
that the contours C; are conveniently taken as lines
running just under the real axis, as shown in Fig. 8.
Only Cy depends on m?; it is the singularity \2= (m—1)?
which, as we increase m? to the decay region m?>9,
overlaps the right-hand cut of ®. To resolve the ambi-
guity, we give m? a small positive imaginary part,
according to our analyticity assumptions; this shifts the
cut C; to lie just about the real \? axis (Fig. 8).

Returning now to our basic equation, (23) or (27), we
recall that the physical region in s is 4<s<(m—1)2
The left-hand sides of these equations express &(s) in
this range as integrals over A? of ®(\?) again, but now
for all < (m—1)2; with the choice of contours C; of
Fig. 8, only real values of A2 enter. Thus in order to be
able to solve these equations, we must specify the
branches of the various logarithms in the kernels
Ay(s,\2), for all real s, N2<(m—1)? (not just for s in
4<s<(m—1)2).24

The details of this specification are relegated to
Appendix B. We give here only a brief discussion of the
answer. We start by defining the logarithms to be on
their principal branch when A? is large and negative, and
when s is in the range 4<s<(m—1)2 They leave their
principal branches at singularities of the A;(s,\2); and
these we know in general'® lie only at the Landau singu-
larities of the triangle graph amplitude f(s\2). As an
illustration of this, we see that the logarithm in A;(s,\2)

a(m-1)2 ®
5
X2=4 \cl N2+

-0 «— —_—,
N,
2o 2
C3
F16. 8. The A2 plane, showing the cuts (double lines)
and contours (single lines).

#T am grateful to Dr. C. Kacser for pointing this out to me.
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is singular when

R=+(U)2, or R=U. (30)
Equation (30) can be rewritten as
4m?T(s,\2)=0 (30)

[see Eq. (4')]. Thus the branch points of A; are at the
points A2=2_2%(s), the intersections of I'=0 with a line
of fixed real s:

A (s)= (34-m*—5)/ 2 (25)""k(s,m* Dk(s,1,1) . (31)

I'=0 is exactly the Landau surface of singularities
corresponding to the uncontracted triangle graph.’
The integration contour C; being chosen along the
real \? axis, N2<(m—1)?, only real intersections A 2%(s)
interest us. They can be immediately read off Fig. 2(a):
they lie in regions ITI and D only. In Appendix B we
show that the correct definition of the logarithm in A,
is that it acquires an 4w for s, A? in D, and a —ir for
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s, A2 in II1. That is,

Ar=A;=k"s,m?1) In|(R—UY2) /(R+TUY2)|,
for s, A\? not in D or III
=A+irk(s;m21) fors, \2in ©

=A;—iwk~Y(s,m%1) for s, A2 in III. (32)

In the same way, the branch points of the logarithm
in A, occur when

R'=4(U'?), or 4I'=0.
This time, however, the contour C; is over real \2<0;
thus only the intersections A, %(s) in region III are
relevant. In Appendix B, we show that A, acquires an
imaginary part 44wk~*(s,m?1) in III; hence in III the
imaginary parts of A; and A, just cancel. Finally, we
find that Az has an imaginary part +inrk=(s,m2,1) in III.
Assembling these results from Appendix B, we obtain
finally, for all real s<(m—1)? and m2>9:

2k (m—1)?
B(s)=®y(s)+—"1(s,m2,1)D7(s) {/ AN2®(\2) In| (R—UY2)/(R+UY?)|

0 C 0
+ / AN®(N?) In| (R’ — U2 /(R'+U'12) |+ / dw(v)!&]}

2k
— 1 (s,;m*1)D7X(s)

™

_+_

k
2 s D) /

Equation (33) is the main result of this paper, and we
make the following comments on it.

Remark 1. The extra 1w terms enter precisely in regions
which have a physical significance: 9D is the physical
region for the actual decay under consideration, and III
is that for the crossed reaction of scattering in the u
channel. The in’s are dictated by the 7e attached to s—
that is, by the unitarity prescription in the s channel.
It may be verified that the answer is the same if we
allow the small imaginary part of m? to dominate: that
is, if we invoked unitarity in the “three-particle” m?
channel. This equivalence of the two prescriptions was
first noted by Bronzan and Kacser® for the triangle
amplitude f(s,\?) itself; it has recently been discussed
by Hwa,!! for a situation rather similar to ours, but with
reference to the principle of maximum analyticity.

Remark 2. The three integrals in braces in Eq. (33)
have singular kernels. We have defined how to pass
these branch points, but clearly their presence will
complicate the numerical inversion of Eq. (33). None-
theless, we have no second-type singularity, which
makes the corresponding equation for Fy(s) even worse

M+2(3) b}
A\ d(N?)  for s,A\%in D
A=%(s)

o) (33

AN¥m®(N?)  for s, A2 in III

(see above, IIB). In fact, Danilov,® and Danilov and
Lebedev,?® have shown that an equation of the form (33)
has a unique solution, thanks to its asymptotic behavior.
We shall take up this point again in Sec. VI when we
consider the nonrelativistic limit of Eq. (33).

Remark 3. Since Eq. (33) is evidently fairly difficult
to resolve numerically, we might ask if any important
properties of the solution can be read off immediately.
In particular, we may look for the second-sheet singu-
larities of ®(s), near the physical region. Returning to
Eq. (16) with ¢(s,\?) replaced by f(s,\2?), it is clear that
the question is simply answered if we know the A2
properties of f(s,\?) as s is continued across the s>4 cut,
down into the second sheet These have been given
elsewhere.”? As s is continued into sheet two in the
region 4<s<(m+1), a \? singularity of f(s,\?) appears
[in fact, Ay 2(s)] for N2> (m+-1)?, forcing a distortion of
the A% contour C in Eq. (16) downward into the lower
half-N? plane. If, then, ®(\?) has a second-sheet pole at

% G. S. Danilov and V. I. Lebedev, Zh. Eksperim. i Teor. Fiz.
??66135)%9 (1963) [English transl.: Soviet Phys.—JETP 11, 1015
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A\2=1TI2, say, (a resonance of mass /) as in the model of
Eq. (25), we will find a singularity in s when \,%(s) hits
I2, provided I* is suitably placed?: The contribution to
the amplitude near the singularity will then be propor-

tional to
DY) f(s,1%),

where f(s,[2) is the triangle graph with a complex in-
ternal mass. Such graphs have been studied,?" and
found to give, characteristically, effects near certain
low-energy boundaries of the Dalitz plot. Their effect
seems likely to be small. Since this is the nearest singu-
larity, it would appear that the final-state energy spectra
are likely to be fitted pretty well by the usual Breit-
Wigner terms D~'(s) alone, in agreement with the
analysis of Bouchiat and Flamand.?®

The situation may be quite different, however, for the
m? spectrum. We are unable to real off nearby singu-
larities in 2, and it could well be that many apparently
unimportant effects in s, £, % could conspire to give a
big effect in 72. A numerical resolution of Eq. (33) seems
well worthwhile, therefore, in view of the evident rich-
ness of three-particle systems now being found
experimentally.

VI. THE EQUATION IN THE NONRELATIVISTIC LIMIT

In order to compare our result with the work of
Anisovich, and with potential theory, we now examine
the nonrelativistic limit of Eq. (33). We write

s=dt4g?, N=4+4p>, m=3+«,

and take first-order terms in ¢2, $? and k2 In this limit
the integrals beginning at \*=0 or p?=—1 may be
neglected. The nonrelativistic limit of Ai(s,\?) is then
—A(g%,p?), where

A7) =4 =g T
[:%(K2__P2)1/2 - (K2_92)1/212_ %PZ
n { [3(k2— p2)1 /24 (k2 — g2) 10— 3p? '

For the scattering-length model of Eq. (23), we thus
obtain for ®

®(¢?) = Giga/(1—iga)+2a/(1—iga)w

X / TR~ A0S0 (34)

Equation (34) is identical with Eqgs. (20) and (23) of
Anisovich.
The nonrelativistic limit of I'=0 is

gk PP+ pi— e — g+ (9/16)4=0

2 The possibility of such a nearby singularity, and the condi-
tions under which it occurs, were first pointed out by G. Bonnevay,
Ref. 2. See also Refs. 5, 22, and 27.

271, J. R. Aitchison, Phys. Rev. 133, B257 (1964).

28 C, Bouchiat and G. Elamand, Nuovo Cimento 23, 13 (1962).
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which gives an ellipse in the (¢%,p2) plane for the Dalitz
region ©. The definition of A(¢%p?) is, as before, that
the logarithm acquires an imaginary part of « inside D;
otherwise A is real.

What appears to be the most interesting feature of
Eq. (34) is that its kernel is of exactly the same type as
arises in the potential theory of three-particle scattering,
using zero range (8-function) forces. This theory was
developed by Skornyakov and Ter-Martyrosyan,” and
applied to the neutron-deuteron problem. It turned out
that the equation analogous to Eq. (34) converged with-
out a subtraction in the quartet spin case, so that no
information additional to the two-body parameters was
needed to calculate, for example, the scattering length
as2; and the agreement with experiment was good. For
the doublet case, however, the calculation was not so
successful. A careful investigation by Danilov® showed
that the reason was that a subtraction was needed in
this case, due essentially to the possibility of a bound
state (the triton). Introducing the triton binding energy
as an extra parameter, Danilov and Lebedev?® were
able to get satisfactory agreement for ay/2 too.

This analogy with potential theory encourages us to
hope that the dispersion model, Eq. (33), may be a good
one for the relativistic three-body problem.

VII. CONCLUSION

First we summarize what has been done. We treated
three-particle production and decay processes in an
identical way, by assuming that in both cases the ampli-
tude was determined entirely by the final state inter-
actions (f.s.1.) among pairs of the three particles. The
dynamical model chosen was a single variable dispersion
representation of the Khuri-Treiman! type; this satisfies
two-body unitarity in each two-body channel, within
the approximation that only one partial wave is domi-
nant. However, it violates crossing symmetry. The
“right-hand cut” of the resulting equation was first
factored out by the Omnes transformation. The equa-
tion then involved two parts, of which one, representing
f.s.i. in only one channel, was immediately solved. The
other represented the effects of f.s.i. in two or three
parallel channels. This second term was then trans-
formed by the technique of Anisovich,® and we obtained
finally a linear, single variable, integral equation which
determined the amplitude. The kernel of this equation
involved only the two-body amplitude g, and assumed
a particularly simple form if we took an effective range
type of approximation for g. This approximation, how-
ever, still enables us to treat both low-energy (effective-
range) effects, and phenomena associated with several
final-state resonances. In both cases, the final equation
bears a close resemblance to an equation derived by
Skornyakov and Ter-Martyrosyan,” for the three-body
problem in potential theory, using short-range forces.
It would thus appear to be a relativistic analog of their
potential-theory model.
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Let us now turn to applications. The most obvious
application of Eq. (33) would be to try to explain the
pion spectra in K — 3 decay, in terms of the w-r data.
To do this one has to include isotopic spin, obtaining
then two coupled equations for the J=7=0,J=0, =2
amplitudes.® (There are in general, as many amplitudes
as there are different channels.) But, while we may
reasonably assume that the 7= 0 amplitude is dominant,
so that the equations decouple, the experimental situa-
tion at present is such that unless a 7'=J =0 =-r reso-
nance occurs, no test of the theory is possible. The
reason is that, with no such resonance, two subtractions
will be needed in Eq. (33). It follows that only the
quadratic dependence on s will be free of unknown con-
stants, whereas, unfortunately, only linear terms can be
measured with any accuracy at the moment.?® None-
theless, there is a fair amount of evidence in favor of
such a 7’=J/=0 7-r resonance (the ¢ meson),* and, in
any case, the problem of investigating the effect on the
density of points in the Dalitz plot due to two or three
simultaneous final-state interactions is well worth in-
vestigating numerically, using Eq. (33) as a model.

F16.9. The decay region
D plotted in triangular
coordinates, showing reso-
nance bands at s, and #%,.

7R

As remarked in Sec. IT, though, the dependence on the
final-state energies is not all that can be got from Eq.
(33). We first recall Eq. (2):

stidu=34+m?, (2)

where m is the total c.m. energy of the three-particle
system. The three variables s, ¢, # can be exhibited more
symmetrically than we have done in Figs. 2(a) and 2(b)
by using triangular coordinates.!® The Dalitz plot, or
decay region D, then takes the form shown in Fig. 9.
Suppose now that there are strong resonances in the
s and # channels: that is, most of the events fall along
the bands s=s,, #=1u,. Then, for most events, Eq. (2)

becomes
t+s+u,=3+m?. 2)

Consider now the effect of a third resonance, in ¢, at
t=t,. By Eq. (2), this will appear as a resonance in m?2,
at m?*=m,*=({,+s,+u,—3). And, vice versa, a reso-

2 This remark is due to Dr. C. Kacser, to whom I am indebted
for discussions on this point.

¥ L. M. Brown and P. Singer, Phys. Rev. Letters 8, 460 (1962);
Phys. Rev. 133, B812 (1964). Also A. N. Mitra and S. Ray, ibid.
135, B146 (1964), and A. O. Barut and W. S. Au, Phys. Rev.
Letters 13, 165 (1964), and experimental references cited therein.
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Fi1G. 10. A real particle S
exchange process. 1 2

2 ur |

nance in m?* at m.,?, will appear as one in ¢, at £,.3! Thus,
in so far as the m* dependence is determined entirely by
the final-state interactions, three simultaneous (i.e., all
physically realizable) resonances in the final state may
lead to an apparent resonance in the total c.m. energy
variable (and vice versa).

But for such an effect it is perhaps not necessary to
have three final-state resonances at once; two may, in
themselves, be enough to induce a nearby singularity
in m? This phenomenon was first discussed in a rather
different context by Peierls.’? To see how it comes about,
let us fix s at the resonance value s,, and consider the
resonance pole in #, (4—u,)~. This term is represented
by Fig. 10. The integrated effect of this pole on the
amplitude is then, using Egs. (2), (3), and (3'),

t+(8r)
/ At(3+m?—s,—u,—1)"1.
12

—(sr)

Thus it will lead to logarithmic singularities in 2 at
the points
mi2=sf-|—u7—3+li(sr) . (35)

Recalling that #,(s) are the intersections of © with a
line of fixed s, we see that (35) implies an effect in #?
whenever the bands #=u,, s=s, cross on the boundary
of D27

Now, of course, Fig. 10 is not what happens experi-
mentally; rather, one has to couple it to an initial state
consisting of less than three particles, and here is where
the doubts about this enhancement mechanism start.
The simplest graph involving Fig. 11 and a two-particle
initial state, Fig. 11, can be shown to lead to an effect
in 7? only in very special cases; even then, it is unlikely
to be very striking.!”2":82 A discussion of some possible
examples where the effect of Fig. 11 might be seen has
been given by Chang and Tuan,? and by Kacser,** for
strange particle reactions, and by Kacser and the author
for some nuclear physics reactions.?

The possibility remains, however, that repeated itera-
tions of Fig. 10, of the type implied in Fig. 3(c) and

F1G. 11. Triangle graph involving m
resonance internally.

3 Indeed it appears that the major part of the effect in the
KKr system reported by R. Armenteros, e al. at the Sienna
International Conference, 1963 (unpublished), could be the
result of three strong interactions: K* K*, and (KK).

# C. J. Goebel, Phys. Rev. Letters 13, 143 (1964).

#Y.F. Chang and S. F. Tuan, Purdue University report, 1964
(unpublished).

3 C. Kacser, Phys. Letters 12, 269 (1964).

% 1. J. R. Aitchison and C. Kacser (to be published).
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APPENDIX A

We give here the calculation of A;(s,\2), the discontinuity around the branch point \?=0 associated with the
reduced graph Fig. 7(c). Following Cutkosky'® we have

(A1)

2(2ri) @k 5(ke—k2—\?)
Aa(&)‘z): / (P 2 Zp
1 1

7 (2mi)? R —1)(p2—2pa- b R2—M2)

where 2= (ko,k), p1, p2 are the four-momenta involved in the uncontracted graph (Fig. 9). In Eq. (A1) we have
introduced the mass M of the internal particle at the vertex 1 in order to avoid confusion between the (normal
threshold) branch point at A2= (M —1)? (cf. Sec. V; this is the singularity = 2), and the present singularity A2=0.
We shall take M — 1 later. Since Eq. (A1) is invariant we may evaluate it in the frame p,= (,0), obtaining

~i/ |k|d|k|dko 6(k02—k2->\2)1 {M2~1+k02—~k2—2p0k0+2p|k!
n

Ag(s\2) =— ,
(o) wp ) (mr—2mhothi—ki—1)  MP—14k?—K—2poko—2p| k|

where p= [p2|, po=p20. The two-dimensional integration has to be done subject to the constraint ko®—k2=22,
expressed by the § function. In the (|k|,k) plane this is a hyperbola, Fig. 14. We see at this point that Eq. (A2)
is not a complete definition of As; we need to specify more precisely the area of integration. The correct prescription
for obtaining discontinuities from Cutkosky’s rules in general® is to integrate over some closed cycle that vanishes
as we approach the Landau singularity in question. In the present case, the singularity being \?=0, it is clear from
Fig. 14 that we have to integrate over the complex part of the hyperbola, shown dashed in Fig. 14; or, putting
| k| =1a, over the circle k¢®+a?=\2 Introducing polar variables

(A2)

a=rsinf, ko=rcosh, dadko=rdrd cosb,
Eq. (A2) becomes

2 sinfdfdr25(ri—\%) | 72— 27 pag cos0+2ip 7 sinf+ M2—1

A3(S,)\2) = n R . (AS)
2rp Jo (m2—2mr cosO+r2—1)  r®—2rpso cosd—2ip r sing+M2—1
The 72 integration is done by means of the é function, leaving
A3(S,)\2) = Zg(S,)\)—f—Zg(S, —*7\) ) (A4)

FiG. 13. Triangle graph in perturbation theory.

3 I, J. R. Aitchison, Nuovo Cimento 34, 508 (1964).

37 See references cited in Refs. 13 and 14. )

38 We remark that our treatment refers only to inelastic reactions; the coupling back to the initial state, necessary for describing an
elastic reaction in our terms, is something we have not dealt with at all. It was actually this case that was first discussed by Peierls
(Ref. 11). ‘

#® F, Pham (private communication).
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Fi16. 14. The (ko,|%|) plane, showing the hyper- \/’1‘\ %
bola @— |£|2=XZ?; the complex part is dashed. %\\ | ,\
A +A

with

I\ /" sin6d6 {)&-— 2\po cosO-+2ip sinf+ M2 — 1} (45)
0 (m2 .

53(8,)\) = In .
27p —2m cosf+A2—1)  (N2—2\py cosf—2:pA sinf+M2—1
Making the substitution ¢=tani6 leads to
® tdt

As(s,\)= ——ﬁ In [
mp J_ (B+D) (1) [(m+)N)—1]

22— 1N+ 2po\) — diphi+ (M2 — 1+N2— 2po)) a6
22— 1+X2+2po>\)+4ip>\t+(M2—-1+)\2—2po>\)} ’

(m—N)2—1-1/2
= |
(m+n)2—1
and we have used the fact that the integrand is an even function of ¢. The logarithm has branch points at

te= (M2— 14N+ 2p\) " 2L [{ (M +1)2—N2}{ (M —1)2—N2} ]2}  for the numerator
and (A7)
ts,a= (M2—1+-NH2po\) Y — 2piN=[{ (M +1)2— N2} {(M —1)2—72} ]2} for the denominator.

It is clear from (A7) that in order to decide in which half-plane the ¢; are, it is necessary to choose a determination
of the various square roots which enter. The roots A?= (M 4=1)? correspond, as we mentioned earlier, to thresholds
at the vertex 1; the definition which is appropriate is that {{(M+1)2—AZJ[(M —1)2—A2]}!/2 is positive for
N< (M —1)2 [Fig. 17(b)]. The other definition we need is that of \ itself, since Az is to be evaluated for \2<0.,
The definition chosen is illustrated in Fig. 17(c). To make the task simpler, however, we know that we need only
evaluate Az in the neighborhood of A2=0; since there are no other singularities below A?=0, the answer will be true
for all A\2<0. In that case, #; and ¢; are located in the upper half-\? plane, while £, and ¢, are in the lower. The integral
in Eq. (A6) can now be done, by splitting the denominator up into a sum of poles, and by closing the A\? contour
in the half-plane opposite each #;, thereby picking up only the pole contributions. The locations of the poles and
branch points are shown in Fig. 15. We find, then,

- 1 (i+t)(tp—12)
As(s\)=— ln[————]} .
2pm (i—12)(tp+11)
Eventually, after some algebra, this leads, taking the limit M — 1, to
[(—N)2— (4= \)VZ T 4(pot )2 Ruk (N2, 1)+ Rok(s,m%, 1)+ Reb (% 1,1)
[(—A)V2— (4—N) V224 (po— p2) Rik(N2m2,1) — Rok(s,m2,1)+ Rk (N2,1,1))

where

As(s,\2)=Fk"1(s,m?,1) In { A8)

where
Ri=4p®—N\2, Ro=2[N—(po/m)(m>*+N—1)], Rz=34m>—2s—\2,

In the frame p;=0, we have
p=k(s,m21)/2m, po=(m?+1—5)/2m.

We observe that (A8) is an even function of p, or k(s,m?2,1), as it should be from Eq. (A2).

: ®
t
te p.la

120 .f4

Fic. 15. The ¢ plane, showing the poles at {= 2,44,
and the branch points at t=#y, #3, {3 and 44,
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APPENDIX B

Here we explain the choice of the branch of the
logarithm in A;(s,\?), Eq. (32) of the text. From
Cutkosky’s rules,'® we find at once that the discontinuity
around the A\2= (7 —1)2 branch point is

1
AI(S:)\Z) = k—l(symzyl) T T (B 1)
_12—R/UY?
where

R=—m*+m*(s-+\)+\—-1)(s—1), (B2)

U=k(s,m?,1)k(\2m2,1) .
This discontinuity is just the same as that around the
identical, but more familiar, branch point m?=(A-+1)?,

We now follow the method of Bronzan and Kacser?® in
determining the phase of the integral in (B1). Write

1 dz R-U2
L=/ ln‘

= +i(phase of ).
1z2—R/U2 R4-U2

It is clear that L has branch points in A2 for fixed s when
R=4U"? or R?=U. This can be written as

4m?T=0,
which has roots

N2=\2(s) = (3+m?—s)/24=(1/25)k(s,m?1)k(s,1,1).

I'=0 is drawn in Fig. 2(a); as explained in Sec. V, we
are interested only in the regions ITI and D. M\, (s) are
the intersections of A2 with a line of fixed s, the real s
axis being approached, in the physical limit, from above.
Let us first get the positions of Ay %(s) clear. The regions
III and ® are drawn again in Fig. 16(a), with the two
arcs corresponding to the two roots \;2(s), A_2(s)indi-
cated separately; in Fig. 16(b) we draw the motion of
A.(s) in the A2 plane, as s increases from — o to 4o,
for the case m>>3. This latter figure is obtained from
Fig. 2(a) by considering its intersections with lines of
fixed s, with small positive imaginary part [cf. Eq. (6)].

From each of A\2(s), \_%(s) we draw a cut running
along the real A2 axis to — . We define L to be on its
principal branch when A? is large and negative, and s is
in 4<s<(m—1)2. Finally, we define U'/? to be positive

R. AITCHISON

for 4<N2< (m—1)? and s< (m—1)2; this choice for U/2
is illustrated in Fig. 17(a).

It remains to continue L by increasing \? and decreas-
ing s. As we do this we eventually come upon the branch
points A\ %(s). To understand what happens then, we
first plot R in the s—\? plane, Fig. 18. We have shaded
the integration region, which is the real \? axis for
A< (m—1)% and the region in s in which A; must be
defined, — o <s<(m—1)2.

In the A2 plane, for a given s, R is a straight line. As
we change s, this line changes its slope and position.
The points A\, 2(s) are the intersections of R with the
curves &= U2 [ the sign of the square roots being deter-
mined from Fig. 17(a)]. From Fig. 18 we see that three
distinct situations arise.

A, s<I1—m?

R vanishes for A2<1—m?, on the integration path. A
schematic picture of R and U2 for this case is given in
Fig. 19(a). Itis clear that there is a root A\_2in region IIT,
corresponding to R=— U2, Hence we may rewrite L
as (compare Ref. 27).

L=2In(R—U"2)—In(R*—U)),
where R— U2 is regular at \_2(s); or using Eq. (30) as
L=regular function—In[A2—2_2%(s)]. (B3)

Referring to Fig. 16(b) where the roots are displaced
from the real axis according to the small positive imagi-
nary part of s, we see that for s<1—m? the phase of L
is — for s, A2 in ITI and zero otherwise.

As s increases from 1—m? to 4, R now vanishes for
A2> (m—1)? outside the integration contours. However
Fig. 19(a) remains substantially unchanged; all that
happens is that the line R passes through zero slope at
s=1—m? to positive slope for s>1—m?; the phase of
L is still — for s\? in III.

B. 4<s<(m+1)

R vanishes for (m—1)2<A2<(m—1)? outside the
integration region. In Fig. 19(b) we plot R and U2 for
fixed s. It is clear that only the root R=—U!2 is

Fic. 16. (a) The regions
D and III of I'=0. (b) The
motion of the roots A2.(s)
in the A2 plane as s varies.
The dashed curve is A2, (s),

)2
X ={m-1?
‘@‘ 22 (s)
y

3=4

2=

A2=0 l[ s
h.——xz_(s)

s=0s=4 s=(m-l)2

(a)

the solid A2_(s). The values
of s are in brackets.
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+ -i - + ~i - + —i =
(m-1)2 (m+1)2 (M-1)2 (M+1)2 0 4

(a) (b) (c)
Fic. 17. (a) The definition of [(\2— (m—1))(\2— (m+4-1)H)]12,

(b) The definition of [(A\2— (M —1)?)(\2— (M +1))]2. (c) The
definition of [A2(\2—4)]/2,

possible, for both A\;2(s) and A_2(s). Hence we may
rewrite L as

L=21n(R—UY2)—In(R*—-U),
where R— U2 is regular at A\ ,.2(s); or using Eq. (30) as
L=regular function—In[(A—2\;2(s))(A—2A_2(s))].(B4)

Referring to Fig. 16(b), where the roots are displaced
from the real axis according to the positive imaginary
part of s, we see at once that for 4<s<(m+1), the
phase of L is 7 for \_2(s) <A2<\;2(s) and zero otherwise.

C. im+1)<s<(m—1)*

Now R vanishes for (m+1)<N\2<(m—1)? on the
integration contour, and the plot of R and U2 looks
like Fig. 20. We see that A_2(s) still corresponds to
R=—U1"2 but \2(s) is now reached when R= —!—U”2
Thus near \;2(s) we write

L=—2In(R+U'2)+In(R2—U)
=regular function+In(A\2—N\;2(s)),

while near A_%(s) we write Eq. (B2) as before.

Referring now to Fig. 16(b), we see that two further
cases arise.

1. (m+1)<s< (m2—1). For this range in s, A_2(s)
remains (infinitesimally) below the real A? axis, and the
phase of L can be immediately read off; it is = in
A_2(s) <N2<N,2(s) as before, and zero otherwise.

tm?—1)<s<(m—1)% As soon as s gets larger

X
3 =(m+n)>
2
¥e(m-1
R>0
X (m+)
R=0
2
A= [_mZ s
/
®<0
¥ R<0
4 R>0
K //
s=l-m s=m+| s=(m-1)?
s=l-m

Fic. 18. The function R in the (s,\2) plane.
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2(s)
v ®
N_I)Z /
(m+l) »
2 (s /o

X(ﬂ"

2 (s)
e L

(2)

£\

F1c. 19. (2) R and U2 in the A? plane for s <1 —m?.
(b) R and U~ in the A2 plane for 4 <s < (m+1).

than 1(m?—1), though, the root \_%(s) crosses the \?
axis; that is, the small positive imaginary part of s
instructs us to pass #nder the branch point A_2(s). But
we have to remember that the contour of integration
itself, C, runs just below the real axis (see Fig. 8).
Hence as N\_%(s) tries to cross the \? axis, we have to
deform C, upwards out of its way, to make the analytic

F1G. 20. R and U'” in the A? plane for (M +41) <s < (m—1)

continuation (see Fig. 21). What has happened, in fact,
is that the singularity A_%(s) has emerged onto the
physical sheet of the triangle graph (although on the
unphysical edge of the \? cut). Thus when, at Eq. (19)
of the text, we shrink the large \* contour C back onto
the real axis, we have to include A_2(s) as one of the
singularities of f(s,\?), and we can draw the resulting

:’;‘—,:—.——.—'—«» (m-1)2
t ")
X _(s) Ve,

F1G. 21. The motion of the root A2_(s) for 4 (m?2—1) s (m—1)?
causing a deformation of the contour C; upwards onto the second
sheet (das%xed) with respect to the square root cut attached to
A= (m—1)2
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part of C as in Fig. 21. This singularity is just what we
called 7=4 in III, and our result at this point coincides
with that of Bronzan and Kacser.? In Fig. 21 the dis-
torted part of C, is shown dashed to indicate that it is

(m—1)?2
/ DN2A(sA)D(N?)

o0

(m—1)2 A+2(8) i
— { f ANEa(s N2+ d>\2[ (s A+ ——
A+2(s) A-2(s)

k(s,m? 1)

A=2(s)
+/ dV[A;(s >\2)+~
4

(m—1)2 “A+2(8)
= { / dN2A,(s,\2)+ d>\2|: (s A+
A

JA+3(s) A="(s)

where

k(s,m?,1)

R. AITCHISON

on the second sheet of the branch cut drawn from
N=(m—1)%

Assembling these results, we see that for (m?—1)
<s<(m—1)2,

¢ _ 27
B[ afamor ]
A=2(s) k(s,m*1)

]+ / T B+ / dml(sm] (V) (BS)

k(s m?,1) 4

A-2(s)
]+ / ANEy(s, v)] B(\),

(B6)

Ai(s\2)=F"1(s,m*1) L.

With regard to Eq. (B5), we notice that two of the
integrals along the contour between \_%(s) and 4 cancel;
this is because the first and second sheets of U'/? are
actually the same in this region [Fig. 17(a)]. Secondly,
as we move around A_%(s) and return to A2=4, the phase
of L decreases by 2xi from Eq. (B2), so that for
A2<\_2(s) the phase is zero. This discontinuity of L
around \_2(s) is just As, the jump across the logarithm.
We see that it only serves to cancel the accrued phase
of L, and never appears explicitly in the final equation.

Another, perhaps simpler, way of seeing this result is
to note that for 1 (m?—1) <s<(m—1)2, the branch point
A_%(s) crosses the A? contour Ci. The phase of all points
to the left of A\_%(s) changes by 2w¢; hence to make the
continuation analytic we have to subtract 2z¢ from the
logarithm at these points. Since the phase of the
logarithm is already 2, it therefore returns to zero.

An exactly similar analysis, which we do not need to
give, can be made for As(s\?), Eq. (29) of the text.
Now, though, only region ITI matters, since the \? inte-
gration stops at A\?=0, and there are no other real inter-
sections of I'=0 for real s. We find that in IIT A,
develops an imaginary part im/k(s,m?1); elsewhere it is

“real. It follows that, as stated in Sec. V, the imaginary
parts of A; and A; in region III just cancel.

It remains to define the branches of Aj; Eq. (A8).
First, the definition of £(\%,1,1) = [\?(\2—4)]!/2is shown
in Fig. 17(c). It is clear that the only branch points of
the logarithm in Eq. (A8) are at

Rik(2m2,1)+ Rs(\2,1,1) = 2= Rok(s,m2,1).

It may be verified that the roots of this equation are
again \2=X\_2(s). As for A,, only region III interests us.
We easily see that in this region R; and R; are always
positive; R, on the other hand, is just R(s,\?)/m?, where
R is given by Eq. (B2), and drawn in Fig. 18. A dis-

cussion similar to that for A; then shows that in III,
Az acquires an imaginary part r/k(s,m?,1).

Note added in proof. The link with the Skornyakov-
Ter-Martyrosyan’ (STM) equation has been pointed
out in the text (Sec. VI). There is, in fact, a wider con-
nection with more general potential models, and with
the model of R. D. Amado [Phys. Rev. 132, 485 (1963)].

It is easy to see that Eq. (23) and Eq. (27) may both
be written in a form in which the integral term is similar
to that appearing in Amado’s equation (loc. cit.) for the
scattering of a particle from the bound state of two
other similar particles. The inhomogeneous terms are
naturally different, simply because the initial states are:
In one case, as in K — 37 decay, a single particle; in
the other, a state of particle+two-body bound state.
Our equations have the advantage of not using non-
relativistic variables from the start, but are less general
in at least two respects: Firstly, the amplitude ®(s)
depends on only one variable (because we treated the
s-wave case). Secondly, the form factors in Amado’s
work are reduced to constants. With these simplifica-
tions, the integral terms are actually identical in the two
models, being both the same as in the STM equation.

Amado’s model has been derived from potential
theory by L. Rosenberg [ Phys. Rev. 134, B937 (1964)],
and the connection with the STM equation was also
pointed out by him. Recently, Amado and co-workers
have published very encouraging results of numerical
calculations using his model, both for the spinless case
[R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev.
136, B650 (1964) ], and for a more realistic three nucleon
case [R. Aaron, R. D. Amado, and Y. Y. Yam, Phys.
Rev. 13, 574 (1964)7].

At the time this article was written, the author was
insufficiently aware of the above work, and he regrets
that no reference was made to it in the text.



