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It is shown that a partially conserved AS =0 axial-vector current (8&J&,"= Cv ) implies consistency con-
ditions involving the strong interactions alone. The most interesting of these is a relation among the sym-
metric isotopic-spin pion-nucleon scattering amplitude A +(+), the pionic form factor of the nucleon E++~,
and the rationalized, renormalized pion-nucleon coupling constant g„:

g,'/iM'=A~~&+&(v=0 vs=0 k'=0)/X ~ (k'=0).

LM is the nucleon mass and —k' the (mass)' of the initial pion. The final pion is on mass shell; the energy
and momentum transfer variables i and ve are defined in the text. g By using experimental pion-nucleon
scattering data, we find that this relation is satisfied to within 10'%%u~. Consistency conditions involving the vn.

and the ~A scattering amplitudes are stated.

''N 1958 Goldberger and Treiman' proposed a re-
~ - markable formula for the charged pion decay
amplitude, which agrees with experiment to within
10% Subsequently, Nambu, Gell-Mann, and others'
suggested that the success of the Goldberger-Treiman
relation could be simply understood if it were postulated
that the strangeness-conserving axial-vector current is
partially conserved. The partial-conservation hypothe-
sis leads to a number of relations connecting the weak
and strong interactions, of which the Goldberger-
Treiman relation is the simplest. ' So far, only the rela-
tion for charged pion decay has been tested experi-
mentally.

We wish to point out in this paper that, in addition to
giving relations connecting the weak and strong inter-
actions, the partially conserved axial-vector current
hypothesis leads to coesisterIcy coeditioms ieeolvieg the

strong ieteractioes alod. 4 This comes about, as mill be
explained below, because under special circumstances
only the Born approximation contributes to matrix
elements of the divergence of the axial-vector current.
The most interesting consistency condition is a non-
trivial relation among the symmetric isotopic spin pion-
nucleon scattering amplitude 2 ~(+~, the pionic form
factor of the nucleon E~~, and the rationalized,
renormalized pion-nucleon coupling constant g„:

g,' A "&+&(i =0, iii=0, k'=0)

M E'~~~(k'=0)
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)Here M is the nucleon mass and —k' is the (mass)' of
the initial pion. The final pion is on mass shell; the
energy and momentum transfer variables ~ and v& are
defined in Eq. (15) below. ) By using experimental pion-
nucleon scattering data, we find that this relation is
satisfied to within 10%.

In Sec. I we define and discuss the concept of a
partially conserved axial-vector current. In Sec. II, we
derive the consistency condition relating the pion-
nucleon scattering amplitude to the pion-nucleon cou-
pling constant. In Sec. III, pion-nucleon dispersion rela-
tions and experimental pion-nucleon scattering data are
used to test whether the consistency condition is
satisfied. In Sec. IV, other consistency conditions on the
strong interactions are stated.

I. DEFINITION OF PARTIALLY CONSERVED
AXIAL-VECTOR CURRENT

Ke assume that the weak interactions between
leptons and strongly interacting particles are described
by a current-current eGective Lagrangian of the form

—Z, it= Jx(x)j&(x)+adjoint,
where

(2a)

jx(x) = (1/&2) Lit p i, (1+ps)iit „.+P,yg(1+Vs)P„,j (2b)

is the weak current of the leptons and where J~ is the
weak. current of the strongly interacting particles. Let,
Jq~ and Jq~ denote the- vector and the axial-vector
parts of the strangeness-conserving weak current

A(~s= o) =A'+A". —(2c)

Degnitiol: By partially conserved axial-vector cur-
rent (PCAC) we mean the hypothesis that

cixJx"= [iV2MM 'gg(0)/g E~~—~(0)jp +R (3)

Here M is the nucleon mass, M is the pion mass, g~(0)
is the P-decay axial-vector coupling constant (g~(0)
=1.2 10 '/M'j, g„ is the rationalized, renormalized
pion-nucleon coupling constant (g,s/4ir=14. 6), and q

i{)22
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is the renorrnalized field operator which creates the m+.

The quantity K~~~(0) is the pionic form factor of the
nucleon evaluated at zero virtual pion mass; E~~ is
normalized so that K» (—M ')=1. It is explained
below how the constant multiplying q in Eq. (3) is
chosen. In order to give content to the definition, we
must specify properties of the residual operator R. We
suppose that for states n and P for which (PI 00~In)WO,
and for momentum transfer near the one pion pole at
—M '

I say, for —M '& (pe —p )'&3II 2], the matrix
element of R is much smaller than the matrix element of
the pion operator term. In other words, we postulate
that if (pI q In)/0 and if

I (pe —p )'I &M'„', then

«1. (4)
LVZMM 2g&(0)/g„K» (0)jI(pI0 In)I

In what follows, we derive equalities which hold
rigorously if the residual operator R is zero. If R is not
zero, but satisfies the inequality of Eq. (4), the "equals"
signs should be replaced by "approximately equals"
signs. The magnitude of the squared momentum trans-
fer

I (pe —p )'I isunderstood to be always less thanM 2.

It is not actually necessary to specify the constant in
front of p in the definition of PCAC. If we simply
postulate that

the constant C may be determined as follows: Let us
consider the matrix element of 8),J),"between nucleon
states (E I

8&J&"IE). Let pi and pi be, respectively, the
four-momenta of the final and the initial nucleon, and
let us denote by k the momentum transfer Pi —Pi.
According to the usual invariance arguments, (X I Jq

I E)
has the form

(M M)'t2
(&IJ~'I &)= I I &(p2)Lg~(k'h»0

&P20 Pi0i

fg(k')a), „—k„y0 ih~(k')k»—0)r+u(Pi), (6)

where r+=2(ri+iri) is the isospin raising operator.
From Eq. (6), we find that

(vI a,J,'Ix) I, ,
= —ik,P I

J,~Ix) I,*,
(M Mq't2

=2Mg~(0)I I ii(p2)v, r+it(p, ). (t)
(P20 P10J

We also have

C
(EI(— +M 2)q IE)

k'+M. '

C C
(cv

I g. I Ã) = ig„vs"~ (k')
k2+M 2 k2+M 2

(MM
X I 22(p2) vir+&(pi), (g)

20 10

where K~~~(k2) is the pionic form factor of the nucleon.
From Eq. (8), we find

(IV
I
Cy. I N) I

0~ 0
—— ig„v2K~N (0)

M2

C= iV2MM—2gg(0)/g K~N (0) (10)

If we form the matrix element of BqJ),~ between the
one pion state and the vacuum, we find that

(2k0)'"(ir+
I BgJ),"I 0)

i&MM—2gg(0)/g K"~~(0), (11)

which is the Goldberger-Treiman relation for charged
pion decay. For general states p and n, such that
(PI 00 In)40, We find that

iVZM3II 'gg (0)
(p I

~~J~"In) = ——
g KNx~(0)

&& (2k 0)'t2 1'(ir++n ~ p) . (12)
k'+M '

Here 1'(ir++n ~P) is the transition amplitude for the
strong reaction ir+jn —+P, where the (mass)' of the
initial 2r+ is —k'= —(Ptt —P )'. Thus, we see that PCAC
leads to a whole class of relations connecting the weak
and the strong interactions.

The definition of PCAC which we have given is rot
the same as the definition which would be suggested by
a polology approach. This would be to define PCAC as
the hypothesis that the covariant amplitudes contribut-
ing to (PI 8&J&~ In) satisfy unsubtracted dispersion rela-
tions in the variable k2, and that these dispersion rela-
tions, for Ik'I &3II ' and for all values of the other
invariants formed from four-momenta in n and P, are
dominated by the one pion pole. It is easy to see that if
(PIcjiJ&~In) depends on invariants other than k', the
polology version of PCAC is ambiguous. Suppose that
A is a covariant amplitude contributing to (P I BiJ&,~ In),
and that A depends on two invariants, s and O2. Then
the polology version of PCAC implies that

A (s,k2) =A (s)/(k2+M '), (13)

where 2 is the residue of A at k2= —3f '. Let us now
define a new variable s'=s —ak2 and treat A as a func-
tion of independent variables s' and k2. To evaluate the
residue we set every explicit k' equal to —M '. We then
find from the polology version of PCAC that

A (s',k') =AL(s —ak')+a( —M ')) A fs' —aM.21
. (14)

k2+M 2 k2+M 2

(M M )"2
x

I I ~(p2bir+N(p, ), (9)
~P20 P10~

and comparing this with Eq. (7) gives
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N

p, + k-p~+

FiG. 1. Generalized Born approximation diagrams for
(rN

~

Ji"
~
X). The heavy dot marks the vertex where the operator

J),"acts.

Clearly, Eqs. (13) and (14) differ unless A has no de-
pendence on the variable s to begin with. In other
words, the polology de6nition of PCAC is inherently
ambiguous, since the value of the residue at k'= —3f '
depends on how the invariants other than k' are chosen.

This ambiguity is not present in the definition of
PCAC given in Eqs. (3) and (4). The reason is that k'
is at no point set equal to —M 2 but is kept at whatever
value it has in the weak matrix element (P ~

ciaJi"
~
cr). We

use the unambiguous version of PCAC in the remainder
of this paper. '

II. CONSISTENCY CONDITION ON PION-
NUCLEON SCATTERING

v= —(pi+ps) k/(2'),
vii=q k/(2M).

(15)

The matrix element can be decomposed into eight

' In a previous paper t S.L. Adler, Phys. Rev. 135, 8963 (1964)g
we used the polology version of PCAC. If, instead, the de6nition
of Eqs. (3) and (4) had been used, 5R(m++a —+P) in Theorem 2 of
the paper would simply have been the invariant matrix element
for s.++0.~P, with the initial ir+ of (mass)'= —k'.

In the previous section we saw, in Eq. (12), that
PCAC leads to relations between the strong and the
weak interactions. These allow one to predict the weak
interaction matrix element (P t ci&,Ji"~cr), if one knows the
strong interaction transition amplitude 1'(ir++n~ p).
The principal point we wish to make in this paper is
that there are cases in which only the Born approxima-
tion contributes to a covariant amplitude of (P ~

BiJi"
~
n),

for appropriately chosen values of the energy, mo-
mentum transfer and other invariants on which the
covariant amplitude depends, The Born approximation,
in turn, is known in terms of weak and strong inter-
action coupling constants. Using PCAC to eliminate the
weak interaction coupling constants leaves a con-
sistency condition involving the strong interactions
alone. In this section, we study the matrix element
(irk~ 8&J&"~E) and derive the consistency condition
sts, ted in Eq. (1). In Sec. IV, we discuss conditions
obtained from other matrix elements of 8),Jq".

Ke begin by writing down the structure of the
matrix element (7'~ Ji"~Ã). Let pi, ps, and q be, re-
spectively, the four-momenta of the initial nucleon, the
final nucleon, - and the final pion. The momentum
transfer k is given by k =ps+ q

—pi. We define invariants
s and s& by

covariant amplitudes A, (v, vii, ks) according to

P10 P20
2ko

i ( cVi Jg"i')

= ti(p, )s P 0, ~A, (v, vii, ks)u(P1) ~ (16)

The quantities 0," are given

Oi"= —', (qyg —ygq),
Os" ——(pi+ ps) g,

03 =gg,
04"=i 3')„

by'

Os"= s&(pi+ ps) i,
06' ——iraq)„,

Og" ——kg,

08"= iA,k), .
The amplitudes A;(v, vii, k') have been chosen so that
they have no kinematic singularities. 7

The isotopic spin structure of the amplitudes
A;(v, v&,k') is specified by writing

A, (v, vii, k') =Xg*iP *A, (v, vii, k').siPs+X;,

A j(v, vii)k'). a= A j +' (viv&, k')5~tj (18)
+A; & &(v, vs, k'—)-,'I r, rs) .

Here X; and Xf are, respectively, the isospinors of the
initial and final nucleon and iP is the isotopic spin wave
function of the final pion. Df the final pion is a ir+,
it =2—'"(1,+i, 0), While if it iS a ir0, iP = (0,0,1) .)
The quantity i4+ is defined by iPp+= is(l, i,0)s, so that
go+rs 7+. The pr——esence of its+ is just a reflection of the
fact that the weak current J&," transforms like Ii+iIs
under isotopic spin rotations.

Let us split each amplitude A;(v, vii, k') p into two
parts,

A;(v, vii, k').p
——2;v(v, vii, ks) p+A, (v, vii, ks) p. (19)

The part A; is defined as the sum of all po1e terms
contributing to A;, while 2, is simply everything that is
left over when the pole terms are removed from A, . The
amplitudes A;~ are calculated from the generalized
Born approximation diagrams shown in I'ig. 1.. In each
diagram, the heavy dot marks the vertex where the
operator J),~ acts. The nucleon vertex of Jz~ is given by

r+Lgg(ks)yips —fg(k')op, k„ys—ihg(ks)kiys]. (20)

Evaluation of the Born diagrams gives

8

~(ps)s 2 Oi "xx*~f-*A .-sVs'X.(pi)

=~(ps) Xx*4-*(sr-Vsg.L&/(P.+e s~)j-
)& r+rtgg(k')y) ys fg(k')oi, k„vs—ibad(k')kiysf-

+r+It g~ (k')yips fg (k') iri.„k„ys—iha (k') keys j—
&&D/(p —~—s~)1s -~ g.}X.~(p ), (»)

from which the A, ~ are easily obtained. Since the
divergence of the terms proportional to f~(ks) vanishes

' The kinematic structure of the matrix element (i'�(J&,~ ~Ã)
has been discussed by N. Dombey, Phys. Rev. 127, 653 (1962) and
by P. Dennery, Phys. Rev. 127, 664 (1962).' A simple modification of the argument used by Ball LJ. S.
Ball, Phys. Rev. 124, 2014 (1961)$ can be used to show that the
amplitudes A; have no kinematical singularities.
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identically and since the divergence of the terms pro-
portional to k~(k') vanishes when k'=0, we write down

only the pole contributions proportional to gz(k'):

g,gg (k') —
( 1 1

244 k — +)
f 1 1

+
Pg P Vg V

g,gg (k') — 1 1 ) (22)
A3B——— f) p +

2M vB —v PB+vj
1 1

+l[ -, B7[-
P~ —V P~ V

The amplitudes A2 and A4, , As have no pole
contributions proportional to g~(k').

Let us now evaluate

(~&V [a,g, [X)=—ik,(~1lr[J„[X)
at k'=0. Using the decomposition of (~E[J),~ [Ã) into
covariants A;, splitting each A, into parts A, ~ and 2;,
and evaluating the A;B from Eq. (22), leads to the
result that

[ (p„/M) (p„/M) 2k,7' '(~cV
[ a,z,"[cV) [ .. .

=u(p2) xr*pa*Map (v2fp+) x,m(p, ), (23)
with

May= A (V)PB)a() 'ikB(v)PB)as )

A(v, vB) p
———{—2Mv(Ai+A2) p

+2MPBAaap+2g„gg(0)|)at)) )

2MAi B
—MA4 p+2MPAg p

(24)

ikB N(—v, vB, k'=0) B7
v2Mg~(0)

v v k'=0
g ItNN (0)a )u

g1
ikB N(V) VB, k—'=0) P iak ENNa(P)—

2M
f 1 1

X f')
p[

Vgg
—P V~ P

t'
+2[ r rB7[ ., +

VB—P VB+ V4

(25)

—2MvBA6 p+g„gg(0)
1 1

x a-tl
Vg —P Pgg V

1 1
+-,'[ r

P~ —P Pg P

According to the PCAC hypothesis, we can also evaluate
(irX[8)J)~[Ã) as (7rlV[Cq. [1V). This gives

v2Mgg (0)
M p= — [A N(v, vB k'=0) B

g
E'NNw (0)

The amplitudes AaN(v, vB, k'=0) and B (v, vB, k'=0)
describe pion-nucleon scattering with the initial pion a
virtual pion of (mass)'= —k'= 0 and with the final pion
a real pion of (mass)'= M '.' We have separated off the
pole terms of B (A has no pole terms); B denotes
everything which is left over after this separation is
made.

Comparing Eqs. (24) and (25), we see that the pole
terms proportional to

1 1 i 1 1
8 pl

— +,'fr. ,rp-7[ +
I

(26)
(PB V VB+V (VB P VB+Pl

are identical. This is consistent with the requirements of
PCAC. A remarkable fact emerges when we consider
the equation for the A amplitudes,

(1/v2) $ 2M v (A—i+A 2) ap+ 2MP BA3a8+ 2g rg 4 (0)f')a p7

=[v2Mgg(0)/g, E" ~(0)7Aa (v, PB, k'=0) p. (27)

Let us set P= vg=0. Since the A, have all pole terms
removed, and since they have no kinematic singu-
larities,

limv(A i+A, ) = lim vBA3 ——0.
v-+0 vgf —vo

(28)

gives

~N A aN(+)g +A wN( —)1Lr

g' A N(+'(v=p vB=O k'=0)

M ENNm (())

O=A N( )(v=p, vB=O, k'=0).

(30)

(31)

(32)

Equation (32) is automatically satisied by virtue of the
odd crossing symmetry of A N( ). Equation (31) is a
nontrivial consistency condition waich must be satisfied
if PCAC is true.

We saw above that the pole terms, which are the only
pion-nucleon scattering terms of second order in the
coupling constant g„, do not contribute to the amplitude
A ~'+'. The leading term in the perturbation series for
ENNa is 1. Consequently, if A~N(+)/ENN~ is expanded
in a renormalized perturbation series, no term of order
g„' will be present. Thus it is clear that the consistency
condition is not an identity in the coupling constant.
This makes it fundamentally different from relations
obtained from unitarity or from crossing symmetry,
which are always true order by order in perturbation
theory.

Pion-nucleon scattering with the initial pion virtual has been
discussed by E. Ferrari and F. Selleri, Nuovo Cimento 21, 1028
(1961) and by J. Iizuka and A. Klein, Progr. Theoret. Phys.
(Kyoto) 25, 1017 (1961).

Hence at V=V~ ——k'=0, all the unknown amplitudes
drop out. Equation (27) then becomes

g„' A N(v=p, vB=0, k'=0) ()

&.t —'= (29)
J1NNa(p)

Decomposing A p
~ into symmetric and antisymmetric

isotopic spin parts,
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J&,
' ——Cap D(x x') q. (x')&I'x', —

eik a
(35)

D(x) =— d4k,
(2s-)4k'

satisfies 8&J&'=Cp, by construction. But Jz' is not
local, and in the nucleon vertex of J&,', G(k')—=0 and
H(k')n1/k' so that (ii) is violated.

III. DISPERSION RELATIONS TEST OF
CONSISTENCY CONDITION

In this section, we use pion-nucleon dispersion rela-
tions and experimental pion-nucleon scattering data to
test whether Eq. (31) is satisfied in nature. By using
dispersion relations, the on-mass-shell amplitude
A ~&+&(v=O, vs ——0, k'= M') may be calcula—ted from
scattering data. However, Eq. (31) involves the oR-
mass-shell combination A N&+'(v=O, v»=0, k'=0)/

Note that a similar consistency condition cannot be
derived for the 8 amplitudes, since the presence of the
terms 2MAi —MA4 in Eq. (24) prevents the elimination
of the unknown amplitudes A~ and A4.

In the next section, the condition of Eq. (31) is com-
pared with experiment. Before going on to do this, let
us summarize the properties of Jz~ that were actually
used in the derivation. Nowhere did we use the fact that
J),~ is the weak axial-vector current which couples to
the leptons. Clearly, the consistency condition may be
derived if the following two conditions are met:

(i) There exists a local axial-vector current J&„ the
divergence of which is proportional to the pion field,

(33)

(ii) In the nucleon vertex of J&„which apart from
isospln is

(1V
~
J&,

~
E)=u(p2)$G(k')y&, y5

—F(k') 0 &,„k„y5—zII (k') keg)u(p, ), (34)

the form factors G, Ii, and H are finite at k'=0, and fur-
thermore, G(0) is nonvanis&iing. In the matrix element
(~X~ Ji~S), the covariant amplitudes Ai, ... , s(v, vs, k')
are 6nite at v= v~ ——k'=0 once the poles which arise
from the Born-approximation (one-particle intermedi-
ate state) diagrams are subtracted oR. LExcept for the
requirement that G(0) be nonvanishing, these condi-
tions are necessarily satisfied if the form factors and
covariant amplitudes in the two matrix elements of Jq
satisfy the usual spectral conditions, that is, if their
singularities as functions of the complex variables k', v

and vs arise only from a,llowed intermediate states. ]
Condition (ii) and the requirement of locality are

essential for the derivation to go through. They are
very restrictive conditions, and it is easy to find axial-
vector currents which do not satisfy them but which
obey Eq. (33). For instance, the current J&,

' defined by

—A "&+&(v=0, v» ——0, k'= —M.'). (36)

We first give several alternative ways of using pion-
nucleon dispersion relations to calculate the on-mass-
shell amplitude. We then discuss a model for going off
mass shell in k', and summarize the 6nal results. In the
remainder of this section, we take the charged pion mass
to be unity. In these units the nucleon mass is M= 6.72
and'

g„'/M = 27.4&0.7. (37)

The equations used in making the calculations de-
scribed in this section are derived in th- Appendix.

A. Evaluation of A~"&+& (v=O, vs ——0, k'= —1)

We wish to evaluate the on-mass-shell amplitude
A ~&+&(0, 0, —1). Since the point v=vs=0 is not a
physical one, we must use pion-nucleon dispersion
relations to compute A ~&+&(0, 0, —1) from scattering
data. The fixed momentum transfer dispersion relation
satisfied by A~ &+ (v, v&&,

—1) is

A ~&+&(v, vs, —1)

X )IO+ Jf~

dv'ImA ~&+&(v', v», —1)

X +, vo ——1+1/(2M) . (38)
-v v v+v-

Since the integral in Eq. (38) probably does not con-
verge, it is necessary to introduce a subtraction.

I. Threshold SNbtruction

The usual procedure is to make a subtraction at
threshold. This gives

2 dv
A "&+&(0,0, —1)=A "&+&(v0, 0, —1)——

vo V

ImA ~&+&(v', 0, —1)v02

V 2~ V02

(39)

which has a strongly convergent integral. The integrand
can be calculated in terms of phase shifts. The integral

9 The coupling constant g,' is related to the coupling constant f'
by g„'=4+. 4M'f'. We use the value j'=0.081~0.002 quoted by
W. S. Woolcock, Proceedings of the Air-en-Provence International
Conference on Elementary Particles (Centre d'Etudes Nucleaires
de Saclay, Seine et Oise, 1961),Vol. I, p. 459.' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. NaInbu,
Phys. Rev. 106, 1337 (1957).

E~~ (k'=0), requiring us to use a model to calculate
the difference,

A ~~&+& (v = 0, vs = 0, k'= 0)



PARTIALLY CONSERVED AXIAL —VECTOR CURRENT 8 1027

2 "d v' ImA ~&+) (v', 0, —1)vp'

I /2 2X'
y0 P P —Pp

=7.4. (40)

We make no error estimate here since Roper gives no
error estimate for his phase shifts.

The threshold subtraction constant can be expressed
in terms of scattering lengths by

A~~&+'(vp, 0, —1)

(t+1)L2(&+1)j!=
~
1+ 2 Ls«+"'"+s«+""'j

2M &=p 2'+'L(t+1)!)'

—2M Q (-'sLa& &s/') —a&+&'/'))
l=l

l(2l)!
+1L&r& &t/&) g~&t/&)g) (41)

2'(l!)'

wa, s evaluated using the phase shift analysis of Roper"
up to a pion laboratory kinetic energy of T = 700 MeV,
where the integral was truncated. A convergence check
indicated that the truncation error is small. The result
is

where v )vp lies on the physical cut. Since F(v) ap-
proaches zero at v= ~, we can write an unsubtracted
dispersion relation

1 " AF(v') 1 1
F(v) =— dv' +

2i v' —v v'+ vt/
(45)

where M(w') =F (v'+pe) —F(v' —ie) is the discontinuity
of Ii across the cut from vo to ~.The square root in the
denominator has opposite signs on the opposite sides of
its cut from vp to v and has no cut from v to ~.
Consequently,

phase shifts. This suggests that it would be desirable to
perform the subtraction in a manner which does not
weight threshold behavior so heavily. We give a method
which electively smears the subtraction over a finite
segment of the real axis and has the additional ad-
vantage of containing a built-in consistency check on
the phase shift data used. Let us consider the function

A "&+&(v, v~ ——0, k'= —1)
F(v) = (44)

L(v —vo) (v+ vp) (v —v-) (v+ v-)1"'

where a~+(') is the scattering length in the channel with
isospin I, orbital angular momentum I, and total angular
momentum J=/&st. Equation (41) is rapidly conver-
gent and it sufFices to keep only the S-, P-, D-, and
F-wave scattering 1engths. Using the S- and P-wave
scattering lengths quoted by Woolcock'2 and obtaining
D- and F-wave scattering lengths from Roper's poly-
nomial and resonance fits to the phase shifts, gives

hF (v')

2i

hF (v')

2i

ReA ~&+)(v', 0, —1)

I:(v'—») (v'+») (v-—v') (v-+ v') 3"'

vp& v'( vm,
(46)

ImA ~&+'(v', 0, —1)

P(v' —») (v'+») (v' —v-) ("+v-) j'"
Pm(V Q~ )

A "&+)(vp, 0, —1)=40.7,
A~'v&+'(0, 0, —1)=33.3.

(43)

Z. Broad Area SNbtraction Method

There is a fairly large discrepancy between Woolcock's
scattering lengths and the threshold behavior of Roper's

"L.D. Roper, Phys. Rev. Letters 12, 340 (1964) and private
communication. Vile use Roper's l =3 phase shift 6t for pion
laboratory kinetic energy T in the range 0&T (700 MeV. In
terms of v and v~, T =v —v~ —vp.

"W. S. Woolcock, Ref. 9. Woolcock's results are quoted in J.
Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick, Phys. Rev.
128, 1881 {1962).The slightly different scattering lengths proposed
by Hamilton et al. give the same result for 3"+(+)(v0, 0, —1) as do
Woolcock's.

A ~&+)(vp, 0, —1)=37.3a0.7,
A~~&+'(0 0, —1)=29.9&0.7.

The threshold subtraction constant arises almost en-
tirely from the P-wave scattering lengths. The error
estimates take into account only the errors in the 5-
and P-wave scattering lengths quoted by Woolcock. .

Alternatively, we can obtain all scattering lengths
from the threshold behavior of Roper's its to the phase
shifts, giving

gtvlng

A s'&+&(0, 0, —1)

ReA ~&+&(v', 0, —1)vpv„vm dv'

v' L(v' —vp) (v'+vp) (v„—v') (v„+v')g'/'

2 "dv' ImA ~&+)(v', 0, —1)vpv

v' f(v' —vp)(v'+vp)(v' —v„)(v'+v )]' '

(47)

This equation involves ReA ~(+& over a segment of
6nite length, not just at threshold. In the limit as v

approaches vp, Eq. (47) becomes identical with Eq. (39)
for the threshold subtraction. The fact that Eq. (47)
involves no principal value integrals makes numerical
evaluation easy.

If the exact values of ReA ~|:+) and ImA~~(+& were
used to evaluate the integrals, Eq. (47) would clearly
give the same answer for all values of v bete een vp and
~.Thus, by varying v we can check the consistency of
the phase shifts used to evaluate A ~~&+&(v', 0, —1).

Using the phase shift data of Roper and integrating
up to a pion laboratory kinetic energy of 700 MeV gives
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TABLE I. A ~N(+) versus length of the square-root cut, as calculated by using 6xed momentum transfer dispersion relations. The upper
end of the square-root cut lies at pion-nucleon center-of-mass energy 8' =3II+co . At threshold, u =1, and at the peak of the (3,3)
resonance, co =2.1. In terms of ar, v is given by v =v»+co +a& '/2M'.

g mN(+) (0 0 j)
(vi& =0)

A ~&+&(0, —1/23', —1)
(vi& = —1/2M)

1.7

29.70

26.73

2.97

1.8

29.43

26.54

2.89

1.9

29.16

26.36

2.80

2.0

28.90

26.17

2.73

2.1

28.66

26.00

2.66

2.2

28.44

25.83

2.61

2.3

28.23

25.67

2.56

2.4

28.02

25.51

2.51

2.5

27.83

25.36

2.47

the results shown in Table I. It is convenient to intro-
duce a parameter co, such that the upper end of the
square-root cut lies at pion-nucleon center-of-mass
energy W =M+o& . In terms of o&, the paranieter v

is given by v = vi&+o& +o&„'/2M. In changing o& from
1.7 to 2.5, we move the upper end of the square-root cut
across the peak of the (3,3) resonance, thus considerably
altering the distribution of the integral between the
two terms in Eq. (47). Still, the total varies by less than
10'P&„ indicating that Roper's phase shifts are reasonably
consistent with dispersion relations in the (3,3) reso-
nance region. The end of the cut was not taken greater
than co =2.5 to avoid introducing a large truncation
error from extending the integrals onjy to 700 MeV. A
convergence check indicated that in all cases shown in
Table I the truncation error is small.

The result of this analysis may be stated as

We now add back A ~~&+&(0, —1/2M, —1) evaluated
by an independent method. Let us recall that vi& ———1/
(2M) corresponds to forward pion-nucleon scattering.
Since the even isotopic spin forward scattering ampli-
tude is given by

F&+&(v) =A~~&+&(v, —1/2M, —1)
+vB ~ +&(&,v—1/2M, —1), (51)

we have
F&+&(0)=A~~&+&(0, —1/2M, —1). (52)

Thus, we can use ordinary forward dispersion relations"
to evaluate A ~&+&(0, —1/2M, —1). Making a broad
area subtraction gives

A~~&+&(0, —1/2M, —1)

g2.
2

A~~&+&(0, 0, —1)=28.7&0.9, (48) M t (v„'—1/4M') (1—1/4M')]'&'

where we have taken as the error estimate the variation
of A~~&+& as o& is moved across the peak of the (3,3)
resonance.

3. Alternative Broad-Area SNbtraction Method

ReF'+& (v') v

v' L(v' —1)(v'+1) (v —v') (v„+v')]'&'

ImF '+' (v') v„2 Zp

„„v' [(v' 1)(v'+—1)(v' v)( v—+ v)]' '&

As a further check, we have used an alternative
method to evaluate A ~&+&(0, 0, —1). Let us write

We recall that
(53)

A '+'(0) 0, —1)=D+A '+'(v=0, vi&= —1/2M, —1), 4n-

D=A~~&+&(v=0, vi&=0, —1) (49) ReF&+&(v')= —$2Mv'+M'+1]'Is Re(fr&+&+fs&+&)', (54)
—A ~&+&(v=0, vi& ———1/2M, —1).

D=2.65~0.3. (50)

In other words, we add and subtract the quantity
A~~&+&(0, —1/2M, —1). In the difference term D, we
evaluate A ~&+&(0, —1/2M, —1) by using the fixed
momentum transfer dispersion relation for A ~&+&. (See
Eq. (38)]with a broad area subtraction. This is just the
method used above to evaluate A ~&+&(0, 0, —1). The
results are shown in Table I. Clearly, in forming the
difference D of the amplitudes for different values of
momentum transfer v~, much of the variation of the
result with cv cancels out. This is probably not acci-
dental. If we take as error estimate the variation of D
as o& is moved across the (3,3) resonance peak, we find

where fi'+& and fs&+& are the usual center-of-mass
Lisospin (+)] pion-nucleon scattering amplitudes.
Furthermore, "

ImF&+'(v') = —,'(v"—1)'"t &r~(v')+0 (v')], (55)

where o+(v') and o (v') are, respectively, the total s.+p
and s. p cross sections. To evaluate the integrals, we
used Roper's phase shifts for laboratory pion kinetic
energies below 700 MeV. Above 700 MeV, we used the
tabulation of o-+ and o:given by Amblard et al. '4 and the

"For example, see the article by J. D. Jackson in Dispersion
Re4tions, edited by G. R. Screaton (Interscience Publishers, Inc. ,
New York, 1961),p, 38."B.Amblard et al. , Phys. Letters 10, 138 (1964).
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Tmz.z II. A~~(+) versus 1ength of the square root cut, as calcu-
lated by using forward scattering dispersion relations.

1.5 2.1 2.7 3.3 3.9

A ~&r&+& (0, —1/2M, —1) 26.33 26.23 26.15 26.09 26.07

asymptotic region 6t of Von Dardel et cl."The results,
shown in Table II, give

A~s'&+&(0, —1/2M, —1)=26.15&0.2,
A~~&+&(0, 0, —1)= 28.8&0.4,

(56)

where we have taken as the error estimate the variation
of A ~&+&(0, —1/2M, —1) as o& is varied from 1.5 to
3.9. We have not included in the error estimate the
error in the factor g„'/M appearing in Eq. (53), since
when we divide by g„'/M to compare the left- and right-
hand sides of Eq. (31) this error drops out.

The values of A ~&+&(0, —1/2M, —1) obtained by
using fixed momentum transfer dispersion relations
(Table I) and forward scattering dispersion relations
(Table II) are in excellent agreement. When fixed mo-
mentum transfer dispersion relations are used, the total
result for A ~~&+&(0, —1/2M, —1) comes from the inte-
gration over the physical cut. By contrast, when forward
scattering dispersion relations are used, nearly all of the
total comes from the pole term in the dispersion rela-
tions, which leads to the term (g„'/M)& L(&

'—1/4Ms)
X (1—1/4M') j '" in Eq. (53). Thus, the two methods
"sample" pion-nucleon scattering in very different
ways. Their agreement gives us confidence that the
numbers obtained from the dispersion relations calcula-
tions are reliable.

00

A "&+&
(& 0, —1)=— d&' ImA "&+&(&', 0, —1)

X + . (58)
-P P P+V-

Let us proceed as if no subtractions were necessary. We
evaluate the integral by keeping only the resonant (3,3)
state in the integrand and going to the static limit. This
gives

32 1 " Imfs s
A "&+'(0, 0, —1)=—M7r — do&

3 w, [qf'
's G. von Dardel et o/ , Phys. Rev. Letters .8, 173 (1962).

(59)

B. Model for Going Off Mass Shell in A'

In order to compare the consistency condition with
experiment we must calcula, te the difference

PA~~&+&(0,0,0)/E~~ (0)3—A~~&+&(0, 0, —1). (57)

To motivate the model which we use, let us return for a
moment to the fixed momentum transfer dispersion
relation for A ~&+&(v, 0, —1),

where ~q~ is the pion center-of-mass momentum and
where fs s is the resonant (3,3) partial wave amplitude.
According to Chew et a/. ,

" in the narrow resonance
approximation one finds that

giving

1 " Imfss g„'
d&e

(q~ 12 M
(6o)

—A s s
"&+&(v', 0, —1), (62)

where the subscript 3, 3 indicates that only the resonant
partial wave is to be retained. "

The integral in Eq. (62) can be evaluated once the
off-mass-shell partial wave amplitude fs s(&', k'=0) is
known. It turns out that in the (3,3) resonance region, a
very good estimate of fs s(& ', k'= 0) is given by

fs, P(&', k'=0)
fs, s(v', ks=0) =fs, s(v', ks= —1),(63)

fs, sn(&', ks= —1)

where f, P denotes the (3,3) projection of the Born
approximation. ' Roughly speaking, the reasons for the
validity of Eq. (63) are:

(i) Equation (63) gives fs s(p', k'=0) the phase of the
(3,3) on-mass-shell amplitude, as is required by
unitarity.

(ii) The left hand, or "potential" singularity of
fs s(&',ks) nearest to the physical cut is determined
entirely by fs, s (»',k'). Multiplying fs s(v', —1) by
fs, P(v', 0)/fs P(v', —1) gives the right-hand side of
Eq. (63) approximately the correct nearly potential
singularity structure for fs s(v', 0). A detailed numerical
analysis" indicates that the error involved in using Eq.

"A justification for this model would be provided if one could
prove that h(v) ~A ~~&+&(v0 0)/E~~~(0) A~~&+&(v, 0, —1) satis-—
fies an unsubtracted dispersion relation in the variable v. Then
6 (0) could be expressed as an integral of Imh (v) over the physical
cut. Since only the (3,3) phase shift is appreciable at low energy,
it would be reasonable to keep only the (3,3) partial wave in
Ima(~).

'7 E. Ferrari and F. Selleri, Nuovo Cimento 21, 1028 (1961)."S.L. Adler (to be published).

A ~&+& (0, 0, —1)= (8/9) (g '/M) =24.4. (61)

This number is in good agreement with those obtained
above by the proper procedure of using subtracted
dispersion relations. The fact that a, (3,3) dominant,
unsubtracted dispersion relation calculation gives a
reasonable result for A ~&+&(0, 0, —1) suggests that
such a calculation may also give a reasonable estimate
of the change in A ~(+' produced by going off mass
shell. Thus, as our model for going off mass shell in k',
we take

g= [A w&v&+& (Q P 0)/It NNw(P) j A wN&+& (Q P 1)

2 "d&' As, s ~&+&(&',0,0)
IIIl
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0 5 (64)

Hence the model we have used indicates that extrapo-
lation off mass shell has only a small effect, of order 2%
of g„s/M. This figure corresponds to the fact that the
two terms in the integrand of Eq. (62) cancel up to
small terms of order M '/M', which is about 2%. The
need to use a model is unfortunate, and the extrapola-
tion o6 mass shell is the least certain aspect of the
comparison of Eq. (31) with experiment. However, the
apparent smallness of 6 indicates that the model would
have to fail very badly for there to be an appreciable
effect on the numerical results.

(63) for fs s(s', 0), in the (3,3) resonance region, may be
as small as half a percent.

Since f„.sn(p', 0) is proportional to E~~»(0), the
pionic form factor of the nucleon drops out of the
calculation. Substituting Eq. (63) into Eq. (62) and
doing the integration numerically gives the result

momenta and isospin indices of the initial pions, and

(ps, rr'), (p4,p') the four-momenta and isospin indices of
the final pions. W'e take all four-momenta to be in-

corning, so that the condition of energy-momentum
conservation reads

pi+ ps+ ps+ p4= 0. (65)

The isospin structure of the pion-pion scattering matrix
element is

(16pispsppspp4p)' '(srsr'""Isrsr")

=iP, *Pp™(s,t,u) p p.'P,gp. (67)

We introduce the standard Mandelstam variables s, t, e
by

S 1 2 3 4 p

t= (Pi+P.)'= (Ps+Ps)',
u= (pi+ ps)'= (ps+ p4)',

s+t+u= pi'+ ps'+ ps'+p4'.

TAnLE III.Final results for A ~&+& (0,0,0}M/X~~ (0}g„s.The error
estimates are obtained as indicated in the text.

Method

Threshold subtraction, using Woolcock's
S- and E-wave scattering lengths. ,

Threshold subtraction, using Roper's phase
shift 6ts for all scattering lengths.

Broad area subtraction, using axed mo-
mentum transfer dispersion relations.

Alternative broad area subtraction method,
using forward scattering dispersion
relations.

Result

1.07

Error
estimate

&0.04

1.03 &0.04

1.03 &0.015

used for going off mass shell is badly in error, the con-
sistency condition of Eq. (31) is satisfied to within 10%,
and quite possibly to within 5%. This fact, together
with the success of the Goldberger-Treiman relation,
suggests that the PCAC hypothesis deserves further
study.

IV. OTHER CONSISTENCY CONDITIONS

The consistency condition on pion-nucleon scattering
is not the only condition on the strong interactions
which is implied by PCAC. In this section, we discuss
briefly the conditions connected with several other
scattering amplitudes.

A. Condition on Pion-Pion Scattering

Let us consider the pion-pion scattering reaction
illustrated in Fig. 2." Let (pi, tr), (ps,p) be the four-

"G.F, Chew and S, Mandelstam, Phys. Rev. 119, 467 (1960}.

C. Summary

Adding the —0.5 obtained from going o6 mass shell
to the results of Subsection A gives the 6nal results
shown in Table III. They indicate that unless the model

Defining Mandelstarn variables as above, we find that
the amplitude M(s, t,u) p p" is given by

M(s, t,u).p, .p "

=LAi(sit, u)(ps+p4))+As(sit, u)(ps —p4)i
+As(s I

t u) pi)gb»p8». p. +LA, (t I u,s) (pi+ ps)i
+A, (tlu s)(p, p,)„+A,(tlu s)—p4,&b...bpp,

+LA i(u It s) (pi+p4)i+As(u It,s) (pi —p4)i
+As(ult, s)pg, jb p bp ~, (70)

where Ai(s I t,u) and As(sl t,u) are symmetric functions
and As(sit, u) is an antisymmetric function of the
variables t and N.

There are no pole terms which contribute to the
amplitudes A i, As, and A 2 of Eq. (70). Thus, when

p2' pl p2' ps —p2' p4 —0
y (71)

From the requirement that the scattering amplitude be
symmetric under interchange of the pions, we find that

(s tl&u)»p»'pi =A (s I t u)$»pg»ipi+A (t Iu&s)$»»'$ppe

+A(u»l»t, s)8 p bp, (68)

where A»(s
I t,u) is a symmetric function of t and u. A

also depends on Pis, P22, Pss, and P4'. It is easy to see that
at the symmetric point s= t=u= (P,'+Ps'+Ps'+P4')/3,
A is left invariant by the interchange pis ~ p22, by the
interchange pss~ p4', and by the simultaneous inter-
changes Pi'~ Ps', Ps' ~P,'.

Let us now consider the axial-vector matrix element
(srsr

I
Ji"

I 2r). Let ps =—k be the momentum transfer and p
the isospin index associated with the current Jq", while

We take (pi, n), (ps, tr'), and (p4,P') tO be the fOur-

momenta and isospin indices of the three pions. The
isospin structure of the axial-vector matrix element is

(gpiopsop«)'"(~~I Ji"l~)
*ltp. *M(s,t,u) p, .p.Q imp+. (69)
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we have ps',M(s, t,u) z z
" 0——, in other words,

Equation (71) implies that we are at the symmetric
point

Since s+t+u= —3M '+k', we see that Eq. (73) can be
satisfied when k'=0, giving the result that(z z.

~
Box~

~

z.)
vanishes when k'=0 and s=t=N= —M '. The PCAC
hypothesis allows us to write

(z7r[rlxJg" [z-)=C(vrz.
) y. [rr). (74)

B. Condition on Pion-Lambda Scattering"

The derivation in this case closely parallels the
derivation given in Sec. II for the condition on mX
scattering. The generalized Born approximation dia-
grams for (z.A~ Ji~~A.) are shown in Fig. 3. In the
derivation of Sec. II, we make the replacements

ig, iprrys~4'~ y~~igxz(ipz~spx+ip&ysipz+) q ~+ (77)

to define the AZm strong vertex";

gA4'Nyi'75T lpga ~
g~"(0'zWns4x+ tPxvn@4-)+ (78)

to define the AZ weak vertex; and

A pN iItB p
~~ (A x ikB —~)b p

—(79)

n%
a'X

/
lp.

/ pi
/

FIG. 2. Four-momenta and isospin
indices for 21.7r scattering.

/
/

pi)l
/

"References dealing with m.A. scattering are given by T. L.
Trueman, Phys. Rev. 127, 2240 (1962)."M. Gell-Mann, Phys. Rev. 106, 1296 (1957).

Consequently, PCAC implies that

(s= —M '~i= —M ' u= —M '~k'=0)=0 (75)

where —k' is the (mass)s of one of the four pions and
where the other three pions are on mass shell.

Comparison of Eq. (75) with experiment will be
difBcult, since the effect of one of the pions being oft
mass shell is very likely to be important. In particular,
the negative of the pion-pion amplitude at the on-mass-
shell symmetric point,

—A (s= —-'M '~ t= —4aM ', u= —-'M '~ k'= —M ')
(76)

is just the effective pion-pion coupling constant" and is
not zero.

q «~r+

P&
—

q.
- Pz-. ~

Fro. 3. Generalized Born approximation diagrams for (s.A
~
J&,"( i'.

to delne the z.A scattering amplitudes. Equation (27)
becomes

2M—v(Ai+As)+2MI BA3+2gj zg~' (0)

1 1
X

2 vz —v+o. vii+v+o

gg~z (0) (Mg+Mz)
A ~ (v, vz, k' =0), (80)

Eh z (0)

where o = (Mz' —Mx')/(2M~), v= —(pi+ps) k/(2M'),
vn =

g k/(2M'), and where E~z is the form factor of the
AZz vertex, normalized so that E~z(—M ') = 1.Setting
~= v& =0 gives the consistency condition

O=A (v=O) vs=0 k'=0)

This is a null condition and thus differs greatly from the
condition derived for mÃ scattering. The difference
arises from the fact that the intermediate state baryon
in the generalized Born approximation for (z.A

~
Ji,"

~
A)

is a Z, which has a mass unequal to that of the external
h. This makes the quantity o in Eq. (80) different from
zero, with the result that the coe%cient of 2gxzg~~z(0)
vanishes when v and v& are set equal to zero. In the case
of m-Ã scattering, 0. is zero, and a nonnull condition on
2 ~ is obtained. It would be an interesting problem to
try to determine from a study of mh. scattering whether
Eq. (81) is satisfied.

C. Other Reactions

The space-spin structures of (7rE
~
J&,"

~ E) and
(z.(Z, ) ~

Ji,~~ (Z, )) are similar to the space-spin struc-
tures of (z.z.

~

Jx"~z-) and (zX~ Jz"~Ã), respectively.
Consequently, there will be consistency conditions on
the mE, the xZ, and the m. scattering amplitudes. Since
(7r(&,")

~

Jq"
~
(Z, )) has a generalized Born approxima-

tion diagram with an intermediate (Z, ), the consist-
ency condition will be a nonnull condition, like Eq. (31)
for +S scattering, rather than a null condition, like Eq.
(81) for z.A. scattering.

We have not studied reactions with more than two
particles in the 6nal state. It would be interesting, for
example, to determine from a study of (z7rN~ Jx"~X)
whether PCAC implies a consistency condition in-
volving the amplitudes for z.+S—+ z.+z.+X.
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APPENDIX

Q mN gj' ~ gmN

L(p,p+M) (p20+M) j'&2 2W 42 2W 4x
(AS)

f —1A~~ W+MB ~

L(p, p
—M)(p, (&

—M) j' ' 2W 42r 2W 42r

spinors. (We suppress isospin structure. ) The trans-
formation relating the amplitudes fi, f2 to the ampli-
tudes'~~ 8 ~is

We derive here the equations used in the numerical
calculations described in Sec. fIf. Let us consider the h p 'a a Pa ' f' a d f' ' g'

reaction 2r(k)+N(pi) —&2r((J)+N(p2), where the four-
momenta of the particles are indicated in parentheses.
We take the nucleons and the Anal pion to be on mass
shell,

p2 p2 M2 q2 M2 (A1)

but keep &&,
2 arbitrary. Let k= —yi and q= —p2 be, re-

spectively, the momenta of the initial and final pion in
the center-of-mass frame of the reaction, and let kp pip,

'

q„P20 be the center-of-mass particIe energies. We
denote by 8' the total center-of-mass energy

f2= & (f&= f&+P'&'(y),
l 1

1

f&+ dye f2~ (+i (y)+fi~ & (y) j
2 —1

(A9)

1

f(
2 —1

~0+Pip (Ip+P20 p

kp ——(W' —3P—k2)/2W

gp= (W' 3P+M ')—/2W,

pip
——(W2+3P+k2)/2W,

p2(&= (W2+M2 M2)/2W. —

a[f2&( i(y)+ -fi&((y)],

(A2) where f(~ is the amplitude for the partial wave with
orbital angular momentum / and total angular mo-
mentum J=/~-,'. The symmetric isospin amplitude
f&+(+& is given in terms of the isotopic spin 2 and 22

amplitudes byWe denote by p the center-of-mass scattering angle be-
tween the final and initial pion, so that

p—=cos(p= Q"'k
q (A3)

(A10)

Finally, we need the inverse of Eq. (AS) for the ampli-
tude A~~,

(W+M) fi

(A4) 42r L(pM+M) (p,p+M)]'('

where jand k are unit vectors along the directions of the
final and initial pion, respectively. The magnitudes

l q l

and
l
k

l
are clearly given by

lql = (qp' —M ')'~, lkl = (kp+k')'".

The quantities v and u& are related to 8' and cosq by

v —v~ = (W2 —M')/2M,

»= (1/2M)LI qllklcosp —(Ip&pj
(AS)

The variable co, frequently used in going to the static
limit, is defined by

(A6)

Let us introduce center-of-ma, ss amplitudes fi and f2
by writing

(W M)f2—
(A11)

I (pio —M)(p« —M) j'"

A. Equations for Threshold Subtraction
and Static Limit

Let us first consider the case when O'= —M ' and
derive the equations used in the threshold subtraction
and the static limit treatments of the dispersion rela-
tions. Below the two-pion threshold,

u(p2)(A " ikB ")N—(p,) f&~ ' ——expl il&&+'r'j sin(&&~ r'/l ql, (A12)

$]x (A7)
where h&~(r& is the phase shift. The scattering length
a&~(r& is delned by

where A ~ and 8 ~ are the covariant amplitudes used
in the text and where X,f and X„are the nucleon

f&
(r&

a~+&I'= lim
[2[~0 lql2(

(A13)
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Using the facts that

cosy = [(2M»+M-')/I ql'7+1

and that the leading term of Pi'(y) for large y is

we find that, at threshold,

[f (+)7,—Q [Pg (3/2)+1@ (1/2)7

lM

(t+ 1)[2(1+1)7'
X —[2Mvs+M '7'

2"'I (t+ 1) '7'

4m 2
Imh(v, k') = —Imfp, p

3 (W+M) qp'

ppp+M

B. Equations for Extrapolation off Mass Shell

(A14) Now let us consider k'4 —M ' and derive the equa-
tions used for going off mass shell in O'. According to our
model, we wish to calculate

(A15) Imh(v k')=[ImAp p~~+)(v 0 k')/K ~(k')7
—ImAp p ~(+)(v, 0, —1) (A19)

at k'=0. From Eqs. (A9—A11) and Eq. (63) of the text,
Imh(v, k') is given by

2(+)

p[@) (p/p) g ~(p/p) 7
(A16)

with

+(p(p»+M) (I—1), (A20)

fp, P(v, k')
+ ) [g i 0/p)) g )~o/p) 7)

t(2t)!
X [2Mvt&+M '7' ',

2&(t))2

A~&/(+)7 ( 1 ) -fp(+)-
=I 1+ l[f, +7T —2M

4~ & 2M'

When vt&=0, this is just the result stated in Eq. (41) of
the text.

The static limit of 2 ~&+) is easily derived. According
to Eqs. (A9—A11), when all partial wave amplitudes
excePt fp p

=—f)+(P/') are neglected, A ~(+) is given by

A~~(+) W+M 2Mvg+qpP
3

4s pmp+M

(W—M)(p»+M) 2
-fp, p. (A17)

In the static limit, vrhen v~=0, this is

16 Mme)
A ~/)/(+) f

Since in the static limit (when vt&=0) v= p) and vp=1,
we have

K~~ (k') f s(v, k'= —M ') Ikl

3 (W+M)!7pkp
„+~[(p»+M)(p»+M) 7"

[(p)p+M)(ppp+M)7'"
X

3 (W+M) qp'

+~(p»+M)
p2p+M

(A21)

The Born approximations are computed by substituting
the isospin ~3 part of the Born approximation

(8/ ) g
K&)/xm. (k )/ I qllgl (y+g)

(A22)o= (2pppkp+k')/2
I qlll I,

into Eq. (AS) to calculate f) (P/') and fp~(P/'). The J= Pp

projection is then done by using Eq. (A9). The result is

f, P(v, k') Iql X
(A23)

K""~(k') f,ps(v, k'= —M ') lkl lV'

iV =pp[(p) p+ M) (p»+M) 7&/pA (())

+ (W+M) [(p)p—M) (p» —M) 7'/'C(a),

/V'=(p(p»+M)A (a')+ (W+M) (p» —M)C(a'),

where

o'= (2p»qp —M-')/'2
I
ql'

2 dS—ImA~~(+)(v', 0, —1)
7l yp P

32 1 " Imfpp=—Mn- — d(p (A 18)
Iql'

A (a) = 1——ln[(a+1)/(a —1)7,
2

1 //1 —3u'i /'a+ 1
C(~) =—3~+I

2 E 2 I %u—1

(A24)


