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The aspects of two-nucleon transfer reactions that depend on nuclear structure can be isolated in structure
amplitudes G, which do not depend on the kinematics or scattering states of the reaction. The calculation
of these amplitudes from microscopic nuclear models is illustrated in a number of examples. The structure
amplitudes measure the parentage and the degree to which a nuclear state possesses the particular corre-
lations predicated by the fact that the pair is transferred to or from a light nuclide which itself has definite
and simple correlations among its nucleons. Several specific nuclear reactions are considered in some de-
tail, and the structure amplitudes for many nuclear levels are given.

I. INTRODUCTION has that angular momentum in the nuclear state. But in
the second case, the angular momentum is carried by the
pair of nucleons, and many different configurations of
the two nucleons can contribute to a given angular-
momentum transfer. The resulting coherence can lead
to very strong transition to levels for which it is con-
structive. It is based on correlations introduced by the
angular-momentum coupling and the residual nucleon-
nucleon interaction. The residual interaction is responsi-
ble for configuration mixing in the wave functions and
consequently the two-nucleon-transfer reaction provides
a mechanism for studying the nuclear wave functions
in details not accessible to the single-transfer reaction.

General selection rules have been stated several
times. ' ' ' Certain additional rules, which hold under
special circumstances, are discussed in the Appendix.

In the next sections we define the ingredients of the
cross section and show ho v those that depend on the
nuclear wave functions can be constructed. A number
of different Tnod. el wave functions will be considered.
Our emphasis throughout is on the spectroscopy, but a
brief discussion of the angular-momentum-transfer
amplitude is included. Specific reactions are considered
in later sections and comparison with experiment is
made.

' "N an earlier paper the theory of direct two-nucleon-
- - transfer reactions was developed in such a way as to
give a central role to the structure of the nuclear states
involved. "The purpose of the present paper is twofold.
First, we discuss in more detail the form of the cross sec-
tion in order to show how the nulcear structure can in-
huence the intensity and multipolarity of the transi-
tions. Second, we show in detail how to extract from
nuclear wave functions, obtained froln. any particular
microscopic model of the nucleus, the information that
is relevant to the double-transfer reaction and thus to
expose these functions to an experimental test.

The general features of two-nucleon-transfer reactions
can be summarized as follows' '. Nuclei and levels not
easily studied by other means can be excited. The nuclei
can be removed by two nucleons from stable targets.
Levels having two nucleons excited can be formed
which cannot appear (in lowest order) in single-nucleon
transfer or inelastic reactions. The reaction is highly
selective, favoring, in stripping reactions, those states
having a large parentage based on the target in its
ground state.

Just as for single-nucleon transfer, the angular dis-
tribution for two-nucleon-transfer reactions is char-
acterized by the orbital angular momentum that is
transferred. In the first case, the angular momentum is
carried by a single nucleon, and the intensity of the re-
action is proportional to the probability that the nucleon

II. INGREDIENTS OF THE CROSS SECTION

It is well known that the cross section for single-
nucleon-transfer reactions can be factorized into two
parts: one contains the nuclear-structure information,
and the other depends on the kinematics. "' For tv o-
nucleon-transfer reactions such a factorization is not
possible in general. This is because of the coherence de-
scribed in the Introduction. However, the stripping
arrtp/itmde can still be factorized into a factor G that de-

pends upon details of the nuclear structure, and a
kinematic factor B. %e concentrate as much of the
structure information in G as is possible, thus leaving 8
to represent the probability amplitude for transferring

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'N. K. Glendenning, in Anntta/ Revere of 1Vnclear Science,
edited by E. Segre (Annual Reviews, Inc. , Palo Alto, California,
1963), Vol. 13; a preliminary report of some of the material con-
tained in the present paper was made at the Conference on Nuclear
Spectroscopy with Direct Reactions, edited by F. E. Throw,
Argonne National Laboratory Report ANL-6848, 1964 (unpub-
lished), p. 188.

2Developments similar in varying degrees to that of Ref. 1
have been independently proposed by: J. Janecke, Nucl. Phys,
48, 129 (1963); Ching Liang Lin and S. Yoshida, Theory of Tzvo
pincteon Stripping Reactions (Institute for Nuclear Study, Tokyo,
1964, to be published); E. M. Henley and D. V. L. Vu, Phys.
Rev. 133,B1445 (1964);B.Bayman, in Proceedings of Conferen
on Nuclear Spectroscopy with Direct Reactions, edited by F.
Throw, Argonne National Laboratory Report ANL-6848, 19
(unpublished).

' N. K. Glendenning, Nucl. Phys. 29, 109 (1962).

H. C. Newns, Proc. Phys. Soc. (London) A76, 489 (1960).
5 J. B. French, in ÃNclear Spectroscopy, edited by F. Ajzenberg-

64 Selove (Academic Press Inc. , New York, 1960).
'M. H. MacFarlane and J. B. French, Rev. Mod. Phys. 32,

567 (1960).
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a structureless nuclide into the orbital state V, I. in a
structureless nucleus. This represents a complete separa-
tion of the nuclear-structure calculation from the spec-
troscopically uninteresting calculation of the transfer
amplitude and the attendant distorted-wave method.

The differential cross section is found' to be an inco-
herent sum over I., S, J, and T of

0.2

O. I

Psr~gzr GNLsJr&NL (k,4) ~') (2.1)

+LSJ(+) QN +NLSJNNL(R) ~ (2.2)

(This plays the role of the so-called, form factor in the
distorted-wave calculation of B.) Suppose as an ex-
ample that three radial states %=1, 2, 3 are required
for a description of the center-of-mass motion of the
transferred pair. The functions slNL have signs (—)N+'

at large radius. Therefore, if the nuclear wave function
yields G~'s that have the same sign, then I will be small
in the nuclear surface, and large in the interior as illus-
trated in I'ig. 1; whereas, if the GN's had turned out to
have alternating signs, u would be concentrated at the
nuclear surface. Because of the expected importance of
the surface region, especially in reactions that have com-
plex outgoing particles, such effects should show up in

where L, S, J are the orbital, spin, and total angular
momenta of the pair of transferred nucleons, and T is
their isospin. The several radial states, characterized by
X, contribute coherently to the cross section. The rela-
tive weights with which they contribute are determined
by the structure factors G. These themselves are very
sensitive to the correlations induced by the residual in-
teraction that manifests itself in G by a sum over con-
6guration amplitudes. The amplitude 8~I. is com-
pletely analogous to the similarly denoted amplitude
in the theory of (d,P) reactions. 'r' lt contains the
radial wave function uNL(E) for the center of mass of
the pair, in place of the neutron radial function N„l(r).
But whereas in single stripping, only one principal quan-
tum number n is relevant, in two-nucleon stripping,
almost always several radial functions are required to
describe the center-of-mass motion of the transferred
pair. '

It is easy to show that through the coherence, the de-
tails of the nuclear structure as manifested in the G's
can have a marked effect on the cross section. Accord-
ing to Kq. (2.1), the cross section could be rewritten in
terms of a transfer amplitude that contains projected
wave functions

—O. I

0

FIG. 1. Three s states of the center-of-mass motion of a pair of
nucleons in ¹2are shown. Curve (a) shows the projected wave
function LEq. (2.2)g corresponding to structure factors GN—= 1,
and curve (b) corresponds to GN= (—)N+'.

the cross section. It can infiuence the multipolarity of
the transition when several L's are otherwise allowed.

The structure factor G is a product of three overlap
integrals:

GNLSJr=g pq prLSJro (n0, 1VL; L~nrlr, nsls,' L,). (2.3)

The first overlap P is of the same form as appears in
the theory of (d,p) reactions, and its square is pro-
portional to the spectroscopic factor. It measures the
parentage of the nucleus (A+2) based on the nucleus (A)
and having two nucleons in the state y(=—nrlrnsls ),
I, S, J, T. In the next section we discuss at length this
parentage factor, since it contains the information about
the nuclear-coupling scheme.

The spatial part of the wave function for the two
nucleons in the state y, referred to above, can be trans-
formed to the relative and center-of-mass coordinates
r and Rby

j)f)n)l)(rl)4)n2l2(r2))L

= p (nX,XA. ; L
( n, l„nsl2, L)Lp &(r)p»(R) jL, (2.4)

2 W. Tobocman, Phys. Rev. 94, 1655 (1954).
R. Huby, M. Y. Rafai, and G. R. Satchler, Nucl. Phys. 9,

94 (1958).
'Consider two balls moving with di6erent angular velocities

in opposite directions around a circle. While their individual mo-
tion with respect to the center of the circle is very simple, the
motion of their center of mass is evidently more complicated. In
fact, it traces a many-petaled Qower pattern that is periodic if
the ratio of angular velocities is a rational fraction X/M and has
g+M petals.

where the square bracket denotes vector coupling. Here
) and A are the orbital angular momenta of the rela-
tive and center-of-mass motions, while e and E are
their respective principal quantum numbers. The co-
ordinates r and R are the most suitable for treating
double-transfer reactions. The relative motion which, in
the nucleus is described by g l,(r), has to overlap with
the motion of the pair in the light nuclide from which
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TABLE I. The rms radius and size parameter for the light
nuclides (unit of length is 10 "crn).

(r2)1/ 2

He4

1.61
0.233

He'

1.97
0.206

H'

1.68
0.242

2(n+X)+X= 2(n, +ns)+f, +ls. (2.6)

If we assume a Gaussian wave function for the light
nuclide,

(2.7)g, ~ exp( —rP P r;, ),
and harmonic-oscillator functions for the bound nu-
cleons in the nucleus, we obtain

L(2n —1)!]'"
0„= (xy)2"(1—x)" ', n=1, 2, , (2.8a)

2" '(n —1)!
which is a monotonically decreasing function of n. Here

X= 2v/(2a2)'+v) y= 2)(2a/v)' ' (2.8b)

' The appearance of only the s state of the relative motion
follows from our assumption that (a) the light nuclides of mass 4
or less are pure relative s and (b) the interaction responsible for
the reaction acts between the centers of mass of the two parts of
the light nuclide that are separated in the reaction. These assump-
tions also lead to the important connection of I. with the parity
change as discussed in Refs. 1 and 3."I.Talmi, Helv. Phys. Acta 25, 185 (1952).

'2 M. Moshinsky, Nucl. Phys. 13, 104 (1959)."T. A. Srody and M. Moshinsky, TaMes of Transformation
Brackets (Monogra6as del Instituto de Fisica, Mexico, 1960).

they are transferred. This overlap is denoted by 0 .
We shall assume that the relative motion in the light
nuclides (of mass number @=3,4) is pure s state. Con-
sequently, the only part of the nuclear state which can
contribute is that which corresponds to s-state motion
P.=O) in the relative coordinate. "This accounts for the
appearance only of the ) =0 transformation brackets in
Eq. (2.3). For harmonic-oscillator wave functions sf „&

in Eq. (2.4) the brackets can be obtained in closed
form" "and they have been tabulated. "

If the nuclear wave functions have delnite symmetry
under exchange of the two particles, then

g= 1 lf Rylygy= Sglogg

=V2, otherwise.
(2.5)

If the wave function does not have a de6nite symmetry
(i.e., a neutron-proton configuration without definite
isospin), then g= 1.

The sum on p in Eq. (2.3) is over the various con-
6gurations that Inay be present in the nuclear wave
function of the pair of transferred nucleons. As we see
from Eq. (2.3), the different configurations enter co-
herently. For some levels and their components, the
coherence will be constructive so as to yield a large
cross section, but for others it may be destructive. The
sum p, which is explicitly over e&l& j&F212j2, contains an
implicit sum over e because of the connection"

where a(=3 or 4) is the mass number of the light
nuclide.

The oscillator parameter v is de6ned so that the single-
nucleon wave functions are proportional to exp( ——2'vr2).

This parameter is typically about 3 '/ F ', which cor-
responds to an oscillator spacing Aco=41A ' ' MeV. Of
course if one is using shell-model wave functions ob-
tained by diagonalization of the shell-model Hamil-
tonian, the same value of v should be used in Eq. (2.8) as
was used in the diagonalization.

The size parameter g of the light nuclide is connected
to its mean-square radius by

for He 4

64(r')

6(r2)
for He' or H'. (2.9)

The experimental rms radii"" and the corresponding
size parameter are listed in Table I.

It should be remarked that the structure factors de-
pend on the properties of the light nuclide (in particular
its size) through the overlap 0„.For nuclides heavier
than He4 the assumption concerning the dominance of
the relative s state may be less valid. Indeed, one should
use as a probe those nuclides whose properties are well

enough known to allow an interpretation of the reac-
tion in terms of the properties of the nucleus.

The full expression for the cross section is written in
the Appendix.

III. CALCULATION OF THE PARENTAGE FACTOR

We shall refer to P~, which appears in the structure
factor G LEq. (2.3)j, as the parentage factor connecting
the nucleus (A+2) to (A). To define our notation we
denote the reaction by

(ii) sr+(A)~»~ ~ (~ )s2+(A+2) ~2'.
Atomic-mass numbers are given in parentheses, and
spins and isospins are indicated by subscripts. Then,
for stripping reactions, Pr measures the extent to which
the nucleus (A+2) in the state in which is it formed by
the reaction, appears as the ground state of the nucleus

(A), plus two nucleons in the state y(—=nilinsl2 ),
L,, 5, J, T. For pickup reactions, P measures the degree
to which the ground state of (A+2) has as its parent
the state of the nucleus (A) that is formed in the re-
action, plus two nucleons with the above quantum num-
bers. More precisely:

f A+2
Ppl szr(ji) 4) =

i L+~,&,*(A)
2

X4rLs JT (rl, rs)]J2TPJ2T2(A rlrs)ZAdrlcfrs, (3.2a)
"R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
"H. Collard, R. Hofstadter, A. Johansson, R. Parks, M. Rey-

nold, A. Walker, and M. R. Yearian, Phys. Rev. Letters 11, 132
(1963).
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where the square bracket denotes vector coupling. "
A 2The factor has to be understood as symbolic

2
in the following sense: In case the isospin formalism is
not used in constructing the wave functions, then

tions immediately, obtaining

pyLS JT(ps+2) ~(jij2) J2Ts ~2

L

2 jl
~JJs~TT2 ) (3 3)

!jA+2~ ~E+o~!Z+~~

2 i I o ik w
i' (3.2b)

+J2T2(A+2) = +o(A)p C(jyjg) Jsz's4(jgjs! JsTs(rl T2), (3.3)
2122

where the C's are the mixture coefficients for the levels
above the closed shells of (A). To calculate P„Ls~z we
want to transform g&j,j,&q from the j-j scheme to the
L-S scheme; this is achieved with the coefficients

where v and m are the number of neutrons and protons
transferred (o+zr=2). Izt atty case, if, as is usual, the
overlap is computed with wave functions that refer
only to a certain antisymmetrized subgroup of the total
number of nucleons, then A (or X and Z) stands only
for the number in the group to which the pair is
added.

If the wave functions of (A) and (A+2) are known,
say from a shell-model calculation, then p can be com-
puted. As a simple example, consider a nucleus (A) that
has closed shells. Some states of the nucleus (A+2)
might therefore have the structure

which is the parentage factor connecting the ground
state of (A) and the state Js'ls of (A+2).

It. is very important to notice from Eqs. (2.1) and
(2.3) that the configuration mixture coefficients C in
the wave function contribute coherently to the struc-
ture factors. Thus, the two-nucleon stripping reaction is
sensitive to the phases as well as the magnitudes of the
mixture coefficients. The single-nucleon stripping reac-
tion by contrast depends only on the absolute values of
these coefficients. It should be evident however that,
starting with experimental results, it is in general im-
possible to deduce the wave function. Even supposing
that the experiment uniquely determined the G's,
there is an infinity of ways in which the product of the
three factors on the right side of Eq. (2.3) could be
arranged to yield them. However, if we have a wave
function obtained from a shell-model calculation, say,
we can compute from it the structure factors, and thus
test whether the wave function is compatible with the
experimental results. In the next section this procedure
is illustrated in detail for the E"wave functions.

The parentage factors can be easily obtained when a
pair of like nucleons is added or taken out of a given
shell j.In particular, when e is even, the ground state is
(assuming a pure configuration):

tl 2 jl ll

ls -,'j, =()LjLS)Lj,J[js])' ' ls

S J L

2 jl
l j", (34)
S J

~ (j n) p) —Q((jn—z)&J' (js)@II(jn)p)

~ (j"—z)»', (j')J;p), (3 6)

where Ljj=2j+1 and ( ) is a 9-j coefficient. "Upon
doing this and inserting the resulting expression for
VJ,(A+2) into Eq. (3.2), we can perform the integra-

where n is the seniority, and the bracket ) is a coefficjent
of fractional parentage. " Again expanding the (jz)J
configuration on an L Sbasis, and insertin-g Eq. (3.6)
into Eq. (3.2), we obtain inunediately

(3 7)

Similarly, the wave function for an excited state
~
(j")v= 2,J) can be expanded and one finds

((j" ')»A&(j')&jj(j")uz&s) & —,
' j

L S J.

-N(zt —1)-'"
prss&(j" ')»-~i ~ (j )&sA1= (3.8)

Explicit formulas for coefficients of fractional parentage can be obtained for states of low seniority by methods

i& fn our earlier work (Ref. 1) the factor coming from antisymmetrization was left as a multiplying factor in front of the cross
section. W'e now incorporate it into the de6nition of p in the same way that a similar factor is incorporated in the definition ofthe spec-
troscopic factor in single-nucleon stripping. That symbol denotes ( ) =—m!/L(m —e)!e!g.

"A. R. Edmonds, Ajtgcdar Momentum tjt QNurttgm Mechajtjcs (Princeton University Press, New Jersey, 1957).
's G. Racah, Phys. Rev. 63, 367 (1943).
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2J+12(n —2)
((jn—2)~J (j2)J)(jn)0)—

n —1 (2j—1)(2j+1)
2j+3—n

(n —1)(2j+1)

discussed by Schwartz and de-Shalit. "One Ands

1/2

for e= 2, JNO

for e=-O, J=O, (3.9)

((j=')»J.,(j )Jjl(j-)t =2J.)=3....3...
n(n —1) 2j+1

for J=0

= ~JJ,~',0

n(n —1)

[See Eq. (36) of Ref. 19 for the case when J&0, J,&0.7
Similarly to the above, when e is odd we obtain

(2j+1—n)(2 j+3—n)

(2j—1)(2j+1)
for J~——0. (3.10)

Pia~[(i")s= lj ~ (j" ')~=1j7=
n(n —1)

((j=')s= 1j,(j')Jjl(j-)~=1j) ~ s

.L S J
(3.11)

((jn 2)~
—1~' (—j2) JRjn)~ —] j)—

22 —i
(2J+1)(2j+2—n) '"

for J~0
n(2 j+1)

2j+2—n

n(2 j+1)
for J=0. (3.12)

9, e now consider the situation in which the nucleons are transferred to or from diferent shells. Then

P LSJL(j )J (jb )Jb Js~(j )J (2b )Jb J17
Ja pa Ja ~a g pa

= (n.n„)'"((j.".—')J.',j.jl(j." )J.)((jb"' ')Jb', jb jl(jb"b)Jb) Jb' jb Jb 4 —', jb . (3.13)
' J J J. ,l. S J

The coeKcients of fractional parentage are exactly those familiar from (d, p) reactions, and for states of lowest

seniority can be written down [cf. Eq. (67) in Ref. 17.
The parentage factor for configuration mixed-wave functions based upon the above configurations can easily

be found from those given for the pure conigurations. Thus, for example, if

~~.~b~.~b"'l (j."')J.,(j b"')Jb J2),i' 5~a~ 5

i' b~a'& S'
b& '&b' ' l(j'l" ')J~'(jb" ')Jb'i Jr) (3.14a)

then
PyI SJ[J2~ J17 2 c ~ PALS J[J Jbl Js ~ Ja Jb j J17 ~

z~z ~s~'z~'
(3.14b)

For several other configurations that might rise in

the conventional shell model, we have given the cor-
responding parentage factors elsewhere. '

In regions of the periodic table removed by more than
several nucleons from closed shells, the conventional
shell model becomes very cumbersome. In such situa-
tions, the Bardeen-Cooper-SchrieBer method has been

"C.Schwartz arrd A. de-Shalit, Phys. Rev. 94, 1257 (1954).

applied to the nuclear-structure problem. 'o " Vfith
some sacrifices, one can obtain a solution to the many-
body problem. Using this nuclear model, Voshida" has
considered the two-nucleon stripping reaction and ob-

~S. T. Belyaev, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 31, No. 11 (1959).

~' L S. Kisslinger and R. A. Sorenson, Kgl. Danske Videnskab.
Selskab, Mat. -Fys. Medd. 32, No. 9 (1960)."S.Yoshida, Nucl. Phys. 33, 693 (1962).
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tains "spectroscopic factors, " which he calls B(J,7'i js)
for various types of nuclei. The other details of the re-
action he develops in an interesting but unnecessarily
approximate fashion. We can, however, use directly his
expression for the "spectroscopic factors" in terms of
which our parentage factor is given as

~1 g $1

P&zsz= B(Jjij.) ls s js . (3.15)

L 5
He finds, for example, that if both nuclei (A) and (A+2)
are in zero quasiparticle states (i.e., ground states of
even nuclei)

B(0jj)= (j+~i)'~'U;(A) V;(A+2) . (3.16)

If, however, (A+2) is in a zero quasiparticle state and

(A) is in a two-quasiparticle state with configuration
(j,js)J, then

B(Jjijs) = —(2J+1)'"V, ,(A+2) V, ,(A+2), (3.17)

which is appropriate for pickup from an even nucleus.
If the nucleus (A+2) is in a two-quasiparticle state,
while (A) is in the ground state, then

B(Jj j )=U, , (A)U, ,(A). (3.18)

Other situations are also treated, notably collective
vibrational states.

IV. ANGULAR-MOMENTUM TRANSFER AMPLITUDE

The second factor in Eq. (2.1), B~r.~, is the ampli-
tude for transfer of a pair of nucleons between the light
nuclide and the nucleus, when their center-of-mass mo-
tion in the nucleus is characterized by the quantum
numbers Ã, L, M. It contains no detailed reference to
the nuclear structure, since this information has been
concentrated in the structure factors G. The 8's are
expected, as in single-nucleon-transfer reactions, to de-

pend in a characteristic way on the angular momentum
L that is transferred. In addition, they depend on the
number of nodes (cV—1) in the radial function u~l, (R)
for the center of mass of the pair of transferred nucleons
in the nucleus. In general (as already remarked),
several different radial states Ã are required to de6ne
the center-of-mass motion, and these enter coherently
with weights and phases that depend upon the details
of the nuclear wave functions as expressed in G.

The actual calculation of 8 requires the use of dis-
torted waves to describe the motion of the incident and
outgoing nuclides, a method well known from other
work. '" " There are, however, several uncertainties
that arise when the nuclides are strongly absorbed in

+ C. A. Levinson and M. K. Banerjee, Ann. Phys. (N. Y.) 2,
471 (1957);2, 499 (1957);3, 67 (1958).

s4 N. K. Glendenning, Phys. Rev. 114, 1297 (1959)."E.Rost and N. Austern, Phys. Rev. 120, 1375 (1960).
'6 R. H. Bassel, D. H. Drisko, and G. R. Satchler, Oak Ridge

National Laboratory Report ORNL-3240, 1962 (unpublished).

the nucleus. In the hrst place, there is a whole set of
optical potentials that give essentially the same elastic
scattering and differ from each other in the characteris-
tic that one additional half-wavelength of each pertinent
partial wave is pulled into the potential for successively
deeper potentials. '7 In the second place, it is entirely
possible that inside the nucleus no optical potential
can give an adequate description of the wave function.
If this be so, then fortunately, for the same reason that
it is so, the interior should play a very minor role in the
direct transfer process, while compound nucleus con-
tributions to which the interior would contribute vvill

usually contribute little intensity to any given channel
above a few MeV bombarding energy. "This should be
especia11y so if the out.going particle is composite. In
such a situation it would be appropriate to introduce a
cutoff, or otherwise damp the contributions to 8 com-
ing from the nuclear interior.

An attempt to find a prescription for calculating 8
will be the subject of a subsequent publication.

V. METHOD OF ANALYSIS

Following the preceding discussion we shall assume
that the interior of the nucleus makes a negligible con-
tribution to the angular-momentum transfer amplitude
B~~~.In this case the dependence on Xbecomes trivial.
The wave functions live(R) at large radius have the
sign (—)~ ' (in the convention used by most authors),
and outside the nucleus they obey the held-free
Schrodinger equation with negative energy correspond-
ing to the separation energy of the two nucleons from
the nucleus. %e therefore write

BNt. + (—) Wive(v, K)Bz (K)R~), (5.1)

where Bl, has the same structure as 8~1, except that the
wave function N~&(R) is replaced by the spherical
Hankel function izhz&'&(ir&R), —where ~'=4M*e~/h',
&& is the separation energy of the pair from the nucleus,
and M* is the reduced nucleon mass. (More accurately,
2M~ is the mass of the transferred pair that possibly
includes some binding energy. ) The integration in B
extends from R& to infinity. (In the plane-wave approxi-
rnation, B is proportional to the Butler Wronskian. )
The quantity W&z, (v,K), which depends on the separa-
tion energy and the size parameter of the nucleus (see
Sec. II), is a positive normalizing constant found by
matching the interior (harmonic-oscillator) function
to the Hankel function, and renormalizing the combina-
tion to the original normalization. It is tabulated in
Table II.

From J3z,~ a reduced cross section can be calculated,
which depends on the distortion of the incident and
outgoing nuclides by their interaction with the target,
the Q of the reaction, the separation energy of. the trans-
ferred pair from the nucleus, and of course the scattering

27 R. M. Drisko, G. R. Satchler, and R. H. Bassel, Phys. Letters
5, 347 (1963).
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TAmz II. Constants WNJ. for matching Hankel-function tail
to harmonic-oscillator function. The oscillator constant is v=0.32
F '. The transferred pair has the wave number ~ =0.287
(12.492 —E,)'~' where Z, is the excitation energy in N". Inter-
mediate values of a can be interpolated easily when log TV is plotted
against a.

0.8

0.6

0.5

4 49
5.38
4.83
3.42
2.30
2.30
2.31
1.71
1.01
0.538
1.13
0.918
0.530
0.245
0.0975
0.765
0.545
0.270
0.106
0.0352

II QL(rqK)

@=2
13.0
15.0
13.7
10.1
7.07
5.40
5.44
4.23
2.66
1.50
2.14
1.82
1.15
0.579
0.250
1.29
0.997
0.550
0.238
0.0868

@=3
29.0
32.7
30.3
22.9
16.5
10.3
10.3
8.29
5.44
3.21
3.45
3.02
2.01
1.07
0.493
1.92
1.54
0.908
0.422
0.165

angle, but which is completely independent of the
nuclear structure. We denote the reduced cross sec-
tion by

uL(14,R~,O) ~ P ) 8L~) '. (5.2)

The actual cross section is proportional to

do—~ Q &LoL(x,Rrv, g),
dQ

where

(5.3a)

(L= E Csr'~Z( )~~'xLGr4Lsz—r~' (5 3b)

now contains all the structure information on which
the cross section depends, under the assumption that
the nuclear interior makes a negligible contribution to
the reaction. Ke admit that, while this assumption is
plausible, it is not known to be true. It is not an easy
point to investigate, because of the difficulties inherent
in treating reactions as a many-body problem. We em-

phasize, however, that the analysis of nuclear wave
functions to yield the structure factors, 6 is independent
of this question.

The factor Csr in Eq. (5.3b) is simply an isospin
factor which is written down in the Appendix.

The 8'~~ in Table II are independent of the cuto6
radius E~ that is used in computing the modified trans-
fer amplitudes Bl,~. This independence is in line with
our design to keep the structure calculation independent
of the distorted-wave calculation. The price paid for
this is that the table may be (mistakenly) interpreted as
implying that the cross section decreases with increas-

ing L, because the 8'~1.'s do. The point is that the
BL~'s contain the Hankel function hL(ixR~) which in-
creases with L and compensates the decrease in 8'~1,. On
the other hand, the iV~1, for given L increase with E.
This is significant and is not compensated by 81.~,
which is (by design) independent of JV.

TABLE III. Spectroscopic data for (d, q24) q, 2 =0 (S=1) states.

J L pI48J Q Ã

0.529 3
2
1
2
1

0 785 2
1—0151 i

1.0 1

0

2 —0.4

3 2

1 0.983
2 0.182
3 0.031
1 0.983
2 0.182
1 0.983
2 0.182

0.983
1 0.983

0.408—0.745
0.408
0.289—0.441
0.289—0.441
0.612
0,612

0.212—0.072
0.007—0.114
0.032
0.223—0.063—0.091
0.602

a This is the bracket appearing in Eq. (2.3).

48 B. G. Harvey and J. Cerny, Phys. Rev. 120, 2162 (1960);
H. G. Harvey, J. Cerny, R. H. Pehl, and E. Rivet, 5ucl. Phys. 39,
160 (1962).

'9R. H. Pehl, E. Rivet, J. Cerny, and B. G. Harvey, refer to
Phys. Rev. 137, 3114 (1965); following article.

"W. W. True, Phys. Rev. 130, 1530 (1963).
"W. W. True (private communication, 1964). We are indebted

to Dr. True for making these calculations available."' A convenient table of LSjj transformation coeKcients is
given by G. Racah, Physica 16, 655 (1950). He uses the coupling
convention (sl)j. The coeS.cients in the other convention, (ls) j,
dier by the phase (—)', O. =lI+l2+j I+j2+1+L+S+J.True
uses the latter convention.

VI. ANALYSIS OF THE C"(4r d)N'4 REACTION

Here some aspects of the two-nucleon stripping re-
actions discussed in the foregoing are illustrated in
greater detail by considering the C"(n,d)N'4 reaction to
various excited states. This reaction has been chosen
because of the availability of experimental results""
as well as shell-model calculations. ""Our object is to
test the appropriateness of the wave functions by ex-
tracting the spectroscopic information, relevant to the
two-nucleon-transfer reaction, and to compare the re-
sults with the experimental cross section to the various
levels.

Since C"and the two light nuclides have isospin T=0,
only states in X" of the same isospin can be excited.
In his shell-model calculation, True" assumed that
many of the states in N" could be described as an inert
C" core plus a neutron and proton in the shells beyond
(i.e. , p, &s, ds~s, sUs, dsss). The parentage factor for states
of this structure is given by Eq. (3.5)."

True's wave functions were obtained with an oscilla-
tor parameter v=0.27 F ' for the s and d orbits, and
r =0.32 F ' for the p orbit. We use the latter value to
avoid the unnecessary complication of using two such
parameters. From Eq. (2.7), we then And for 0„ the
values shown in Table III.

The (~) in Eq. (2.3) can be obtained from the tables
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TABLE IV. Structure amplitudes for pure configurations of
isospin T=O (S=1) in ¹4(v=0.32 F ').

GALSJ
Z(=2 X=3 /=4

(Pi/.")'

P1/22$

P1/2d5/2

(»)'
(d )'

2$d5/2

Pl /2d3/2

d3/2d5/2

2$d3/2

Pi/afv/s

2s fq/2

/t5/2/7/2

d3n f7/2

0
2
1
1
1
3
3
0
0
2
2
4

2
2
1
1
3
0
2
2
2

2
2
0
2
2
4
2

3
3

1
3
3
3
5
5
5
1
3
3
3
5
5
0
2
2
4

6
6

0.0248
0.5981
0.0304
0.0248—0.0942
0.1501
0.5673
0.0141
0.0067
0.0322—0.0632—0.0910
0.6018
0.0136—0.0215—0.0555
0.0192
0.7353
0.0101—0.0426—0.0804—0.0486
0.2363
0.6017
0.0215—0.0166—0.0036—0.0602
0.0105
0.5459—0.0796
0.0860
0.4485
0.0298—0.0456—0.0080
0.0083
0.0302
0.0189—0.0808—0.0959—0.0587
0.7768
0.0111—0.0227—0.0654—0.0487
0.1590
0.5382—0.0006—0.0040
0.0062
0.0179—0.0575—0.0580
0.5494

—0.1337

0.6343
0.5179
0.3930

0.0304—0.0719—0.1135
0.2229

—0.3356
0.5307
0.2316—0.0802

—0.1087
0.1501
0.2836
0.1715

—0.5307
0.4110
0.0385
0.2123—0.0371

0.2807

—0.2785
0.4255
0.0666—0.0692—0.0940—0.0587
0.2514

—0.0923
0.0705
0.2034
0.1516

0.0090
0.0285—0.0438—0.0503
0.1619

0.4486
0.2123

0.3209

—0.1135

—0.1661
0.1726

0.2301

—0.0534 0.1087—0.0628
0.0964

of Brody and Moshinsky. " (Our notation is slightly
different: in particular our e is related to theirs by
n =n'+1.)

The three factors obtained in such a way for the T=0
states of the con6guration d5~2' are gathered together
in Table III, along with the resulting structure factors
G. From earlier discussions of the selection rules, ' we

know that only the triplet (S=1) part of the wave func-
tion contributes in (o/, d) reactions and that for con-
6gurations j', only states with J=odd have T=O.

TABLE V. Structure amplitudes for the configuration mixed
states of N'4 having isospin T=0 (S= 1).

Dominant
E' configura- G/t/I. SJ

J~ MeV tionb I E=1 X=2 %=3
0— 3.1 p1/22s
1+ 0 (P1n)'

5.5 (2s)'

(A/2)'

12 2$d3/2

1— 4.5
12

2+ 8.8
14
16

2— 3.6

p1 n2$
P I /2d3/2

2$d5/2
2$d3n
d3/2d5/2

Pl /2d5/2

P1/2d3/2

3+ 6.0 2sd5n

11 (d5/2)'

14

16

Pl/2f7/2

d3/2d5/2

3— 5.1 P1/2d5/2
4+ 11 d3/2d5/2

P1/2 f7/2
4— 15 2s fy/s

5+ 8.5 (/t, /, )'

27 (f7/2)

6— 14 /ts/mf7n

1
0
2
0
2
0
2
0
2
0
2
1
1
2
2
2
1
3
1
3
2

2

2
4
2

3

4
3
5
4
6

6
5

0.030—0.027—0.586
0.013—0.113—0.002—0.079—0.006—0.046—0.004
0.012
0.016
0.059—0.044
0.058—0.041—0.092
0.215—0.027—0.715—0.081
0.019
0.063
0.048
0.050—0.320—0.005—0.335
0.572
0.750—0.040—0.092—0.024—0.604—0.006—0.002
0.058
0.777

0.634
0.150
0.114—0.018
0.008—0.098—0.073
0.052—0.569
0.047
0.095
0.549—0.157
0.546—0.232—0.081
0.400—0.001
0.119
0.014
0.656
0.005
0.027—0.003—0.095—0.000
0.018
0.000—0.048

0.511

0.016

—0.161

—0.118—0.004
0.578
0.006
0.065
0.006—0.046
0.002—0.084—0.002—0.017
0.032

—0.077

—0.032

—0.009

0.006

0.001

—0.000

0.007

—0.011

—0.011

—0.003

0.004

a Energies are calculated ones. With several exceptions only states
calculated to lie below 16 Mev are shown.

b In some cases the functions are very strongly mixed so that there is
no configuration that is dominant.

Therefore, for such con6gurations we have calculated
G&I,~J only for S= 1, J=odd. For other two-nucleon
configurations, jj', the T=O states can have both odd
and even J. For any T=O level, since only S=1 is
allowed for (n, d) reactions, the multipolarity of the
transition is limited to one value, L =J, if the spin and
parity is J,(—)s while it can have two values, L=J&1,
if the spin and parity is J,(—)s+'. (Note that J is the
total angular momentum carried by the transferred
pair, and is necessarily the spin of one of the nuclei in
the reaction only if the other has spin zero. This is the
situation for the reaction discussed here. )

The above selection rules are rejected in the entries
in Table IV, where the structure factors for other con-
6gurations relevant to N" are given.

The structure factors for a con6guration mixed state
can be found by weighting the factors for the pure con-
figurations by their amplitudes in the mixed state. True
has computed energy levels and wave functions of N"
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cu

I

h.

0.2

O.l

part of the configuration mixed-wave function for the
ground state of N" obtained by weighting the functions
of Fig. 1 by the structure factors listed in Table IV
For comparison, the I.=O part of the dominant con-
6guration is shown also. In this case, the effect of the
small components has been to concentrate the wave
function further out near the edge of the nucleus. In
contrast, the L=2 part is pulled in by the additional
conhgurations. These are striking eGects considering
they are caused by I /ro admixtures in the wave function,
and they manifest themselves in the crucial surface
region.

For more strongly mixed states, the coherence can be
of even much more importance. Consider for example
the two 4+ states. The wave function of the lower
one is

0 64(pr/s. f7/2)+0. 77(ds/sdsis)

-0 I

0

I yG. 2. Projection of the X'4 ground-state wave functions for
the center-of-mass of the last neutron and proton appropriate
to the C»(a,d)N' reaction. The L=o part is shown for the pure
configuration (pq/s)', and for the configuration mixed-wave func-
tion of Ref. 30.

on the basis of the conventional shell model. "In a, more
recent unpublished calculation, he has included the f,/;
level, which is not of much importance for the low-

lying levels, but enters as an important component
of some of the higher ones."The structure factors cor-
responding to these wave functions are presented in
Table V. The energies quoted are the calculated ones,
and are somewhat different from the original published
calculation. The correspondence between some of these
states and experimental levels can be found in True's
paper and in the following paper. "The energy eigen-
values for the higher lying levels could be in error by
several MeV. The calculation in the region above, say,
9 MeV should in fact be regarded as qualitative.

A comparison of the structure factors for the con-
figuration mixed states in Table V with the structure
factors for their dominant configuration which can be
found in Table IV reveals that important differences
can be introduced even by small admixtures. This is be-
cause, as already emphasized, the detailed structure of
the wave function induced by the nucleon-nucleon in-
teraction enters coherently in determining the transi-
tion rate for transfer of the two nucleons. Thus, if we
refer to True's paper for the mixture amplitudes of the
ground state of I'4, we see that he finds it has an ampli-
tude of 0.96666 for (pt/s)'. However, the sum of the
absolute values of the other amplitudes, which have only
a 7'P~ probability, is 0.48; it is this number, compared to
the dominant amplitude, that is important for coherent
effects, not the probability. Figure 2 shows the L=O

and that of the upper one is the orthogonal function.
The first has a structure factor for an L=4 transition
of 0.75, while the second has 0.04. The cross section is
proportional to the squares of these numbers.

An examination of the structure factors will suggest
which levels will be strongly or weakly made, and what
the dominant multipolarity of the transition is for those
cases where it is mixed. Several points have to be kept
in mind when reading the tables for this purpose: (a)
for given .L, the component with the larger E is favored
because the corresponding wave function is peaked
closer to the nuclear surface; (b) for given I., alter-
nating signs for the S components corresponds to con-
structive interference in the surface region, and leads
to stronger transitions; (c) the higher 1.'s are often
kinematically favored by the energy of the experi-
ment and the Q value of the reaction. For the reac-
tion considered here, and 40—50-MeV alpha particles,

~

lr —k~~R—4, where R is the nuclear radius, so that
I.=3, 4, 5 are favored, all other things being equal.
Thus, an L=4, E= 1 transition would be favored over
an L=2, X= 1, but possibly not over an L=2, %=2 or
I.=O, &V=3.

Concerning comparisons with experiment, it is very
important to keep in mind the purely statistical factor
(2j+1) which is contained in the experimental intensi-
ties, and which very much favors the high-spin states.
Thus, the 5+ level at 9 MeV dominates the spec-
trum. "However, if this factor is removed, the intensity
is only about 1.5 stronger than the ground-state inten-
sity. From the nuclear structure point of view, this is the
relevant comparison.

Referring now to Table V, we see that among the 1+
states, for example, the one at 0 MeV will be excited by
both L=0 and L= 2 transitions, the one at 5.5 MeV will
go predominantly by L=O, the one at 9.3 MeV will be
weakly excited, the one at 12 MeV will go predominantly
by L=2 and the one at 14 MeV will be weakly excited.

For the most part the spectrum of T= 0 levels in N'4
below 9 MeV is understood. Prior to the present cal-
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culation and a preliminary report of it, ' the region
above 9 MeV was unexplored by this reaction. From
the tables we see that in the region from about 9 to 16
MeU, the (n,d) reaction should excite the follow-

ing levels, listed roughly in order of expected de-
scending intensity: 6—(L=S), 4—(L=3), 4+(L=4),
two 3+(L=4), 2+(L= 2), and 1+(L=2).A number of
transitions are observed in this energy region. " We
shall not speculate as to their assignments, however,
since the calculated energies at this high excitation can-
not be trusted to within several MeV.

VII. THE C"(He', P)N'4 REACTION

In this reaction, the transferred pair can carry both
T=O and 1; and since the target has isospin 0, both
T=0 and 1 levels in N" can be reached. The calculation
of the structure factors for the T=O levels is identical
to that in the example of Sec. VI, except that the over-
lap integrals 0 will be somewhat diferent owing to the
different sizes of Hes and He' (see Table I). Therefore,
the numerical values of the structure factors will be
somewhat diferent for the He' initiated reaction con-
sidered here.

We concentrate attention on the structure factors for
the T= 1 levels. As discussed in the Appendix, the total
angular momentum of the transferred pair when they
carry T=1 is subject to the selection rule

J+hsr = even.

Since the target has zero spin, J in this case is the spin
of the 6nal nucleus. Therefore, the T= 1 levels with the
spin and parity 0, 1+, 2 - cannot be excited. The
structure factors for the remaining levels of N'4 are
given in Table VI, and correspond to the second of
True's calculations. "

As in the preceding example, we can form a rough
idea of which states will be most strongly populated.

TABLE VI. Structure amplitudes for the I = 1 (S=0, I=J) levels
of Nss excited in the (He', p) reaction (v=0.32 F ').

Dominant
J21- MeV configuration

0+ 2.7 (P»s)s
7.9 (2s)'

10 (dsps)s
1— 7 0 p1/22s

12 p1/2d8/2
2+ 9.6 2' 5/g

12 (ds/s)s
16 2' 8/2

P1/~don
4+ 12 (dsis)s

~3/2/Js/2

+ps@/7n

—0.049—0.024—0.0163—0.006—0.058
0.035—0.038—0.007
0.488—0.563
0.454

'MLS J
X=2 1V'=3

—0.348—0.115—0.187
0.401—0.247
0.548—0.035—0.226—0.030
0.005—0.005

0.189 —0.013—0.525 0.012—0.129 0.0164—0.021
0.053—0.006
0.004
0.003

Of the 0+ states, the second should be the strongest;
of the 1—states, the first; and of the 2+ states, the
first. The 3—and both 4+ states should be strongly
populated.

~

Pb"' J)=p 4s;
~ (j; ')J)+Q bsk

~ (j; ' jk ')J) (8.2)

where closed shells have not been mentioned. The
parentage factor for components of the 6rst type in
Eq. (8.2) is

VIII. THE Pbsss(P f)Pbms REACTION

As a final example of the construction of the struc-
ture factors, we consider the above reaction. In this
case Pb' ' is doubly magic so its wave function can be
assumed to have completely closed shells

~Pb"s)= (Pussfs!ssPsiss '' 0) (81)
where only neutron configurations are listed, since they
alone are involved in the reaction.

The wave functions for the levels of Pb"' have been
obtained by True and Ford, "and are of the form

1

P&,sLsg=
~ ~

((j ~' ')J (j')J)(j ')0) l. —
2

L S
j; =(2J+1)'" /;

S
(8.3)

where %=2j+1 and the coeKcient of fractional parentage is given by Eq. (3.9).
For terms of the second type we obtain

j,. 0'l, —, j,
jI 0 lI ~ jI,
J 0 L g J

&&((j'"' )j',j.-jj(jP')0)((jk"~')jk,jkj(jk"k)0)=(2J+1) ~ tk -'
g (84)

L S
ss W. W. True and K. W. Ford, Phys. Rev. 109, 1675 (19S8).
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The fractional parentage coefFicients here are unity.
The structure factors for the configuration mixed

states are, according to Eq. (2.3),

Gear, sr=a o p; r, szO (e0,1VL; LI n;E;,r4;l;; L)

APPENDIX

We write down in more detail the form of the differ-
ential cross section for two-nucleon transfer in the
direct-reaction mode. The notation for the reaction is
defined in Eq. (3.1). The cross sections for the strip-
ping and pickup reactions are given by

IX. SUMMARY
do. kp 2Js+1 fdo.

(stripping),
dQ ki 2Ji+1(dQ s

(A1)

In the reactions we have considered, a pair of nucleons
is transferred between a nucleus and a light nuclide.
The pair is presented or taken away from the nucleus

in a speci6cally correlated condition predicated by the
properties of the light nuclides. Nuclear states will have
greatly varying proportions of the appropriate correla-
tion, thus accounting in part for the wide range of in-

tensities observed for levels in a given nucleus. In addi-

tion, strongly excited states must have a parentage
based on the lighter nucleus. The wave functions of a
nucleus obtained from a microscopic model must re-

produce the observed intensities which depend on
rather intimate details. These reactions therefore pro-
vide a severe check of the wave functions.

A measure of the appropriate correlation and parent-

age is provided by the structure amplitude G which

appears as a factor multiplying the transfer amplitudes

S~~. The latter quantity, which depends upon the
scattering states and the kinematics, is divorced from
our main discussion.

In any microscopic nuclear model, the correlations are
reQected in the wave functions by mixtures of several of
the basic states of the model. Once these wave func-

tions have been provided, the structure amplitudes can
be computed as a linear combination of the structure
amplitudes of the basic states.

The calculation of G has been illustrated in a number

of possible situations in Sec. III, and particular re-

actions were considered in the final sections. To make a
conclusive check on whether the wave functions cor-

rectly reproduce the observed intensities, one would

have to carry out the calculation of the transfer ampli-

tudes 8, perhaps along lines suggested in Secs. Ql and

V. However, the structure factors alone are sufFicient to
suggest which states will be strongly populated and with

what multipolarity.
From the point of view of this paper, the most im-

portant experiments to do are those using nuclei from

regions of the periodic table where detailed nuclear

structure calculations are possible.
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where

do kg 2S&+1 do)
(pickup),

dQ k, 25s+1 gflj,
(A2)

Car = (TiTz„&Tz
I

2'sZ'z, )&sr.

Here m&* and m2* are the reduced masses of the light
nuclides and the bracket is a Clebsch-Gordan coeSci-
ent for the isospins, where the transferred pair carries
TTz. The quantity bz&' is an overlap factor involving
the spin-isospin functions of the light nuclides and is
given by

88s 8ri, (t,p) or (He', m),

bsr'=~ s(&so &ri+~si oro), (t,n) or (He', p), (A4b)

~sl ~rO (4s d)

where we have assumed that the spatial wave functions
are totally symmetric. In case the isospin formalism is
not used, factors involving T should be dropped. (and
the counting factor in P should be rewritten, as ex-
plained in Sec. III, in terms of neutron and proton
numbers'4) .

The transfer amplitude 8~I.~ is de6ned for stripping
by

8Nr, ~(ki,ks) = i (2L+1) '"

x [Psi &(ks)Rs)s4&r(2'') vn~(R)]*

X V(p)g, i+&(k„R,) p(p)dR, dR, (A5)

and for pickup by

( )'+~Bvn ~( ki—, —ks). —(A6)

Here f&+& refer to the scattering solutions; E, Ri, and
R2 refer to the center-of-mass coordinates of the trans-
ferred pair and the two light nuclides of Eq. (3.1); and
p=

I
R—Rs I. The wave function y(p) refers to that part

of the internal wave function for the light nuclide (a)
34 The result for b' looks diA'erent than that given in Ref. 1.Herc

we have absorbed the factor („")g)/(2S+1) into its definition.

kdQ) s (2n. &4')'

C»' & I 2 Gal. szr&&vl.
I
', (A3)

IS JT
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which depends on p. This separation is possible when we
use a Gaussian wave function for the nuclide (a):

TABLE VII. Selection rules for two-nucleon-transfer reactions.

q, = N exp( —g' Q re')
=

p rp(4n'r') p rp(4n'r2') p rp(Sn'/'), (~=4)
(3~2r2) ~ (4r/2@2) (u= 3) . (A7)

Here r is the relative coordinate between the trans-
ferred pair of nucleons, and r2 is the relative coordinate
between the pair of nucleons in the nuclide (a—2) in
the case @=4.For g=3 this coordinate is absent. The
functions y„~ are harmonic-oscillator functions:

Reaction

(n, d)

(f,p) or (He', n)
(r,e) or (He', p)

ga Ta

0
0 1

0
0 1

' Belongs to transferred pair.
b Isospin change of nucleus.

0
1 or 0 if T1&0

0
1 or 0 if Ti&0

Ja
$1/2

QCId ~ ~ ~

eVen J+37r eVen

OC1d ~ ~ ~

eVen 1+67' eVen

r~n+-I ,'q (——-x)'
I '+'/ (xP) = P ~

p=p kn k —1/ —k!
(n~1).

pp ("(vr') =u.g(vr') I"g"(r)

-2v'/p(N —1)!-'"
(pl/pr)l

1(n+t+-', )

t+1/p(&rp)&, ~r p' m(r) (ASa)

(ASb)

rapidly. This fault can be easily remedied by replacing
the oscillator by the appropria, te Hankel (or Coulomb)
function beyond the point in the surface region where
their logarithmic derivatives match.

Alternatively, one could from the beginning use
single-particle wave functions corresponding to, say,
a Woods-Saxon potential. The convenience of the
oscillator functions could still be exploited by expand-
ing the former in terms of the oscillator functions. In
this case, in Eq. (2.3) the replacement

The factor Qq in Eq. (A3) is the overlap between the
deuteron in (n, d) reactions, and the relevant part of the
n-wave function, whereas if a= 3 it is unity:

i~a= us*(r2)ulp(4'g r2 )r2 «e, (~=4)

(a= 3) . (A9)

It acts only as an over-all normalizing factor. The over-
lap integral on the coordinate r in Eq. (A7) is called 0„,

X fl„-(nO, NL; I.
~
nrlrn2lp, .L) (A11)

should be made. Here a„-~ are the expansion coefficients.
General selection rules for two-nucleon-transfer re-

actions have been given elsewhere. ' ' 4 In special cases
additional rules hold.

If both particles are transferred to (or from) the same
state to form (j')I then the additional rule

0„= u„p(p pr') uzp(ur/'r') r'dr, (A10)

and is discussed in Sec. II.
In our formulation, the wave functions u~l, describ-

ing the center-of-mass motion of the transferred pair are
harmonic-oscillator functions. This choice was made
because of their convenient analytic properties. These
functions are good representations of the single-
particle wave functions in any potential well of the type
usually assumed for the shell-model central potential,
except in the surface region, where they decay too

1+5=even (A12)

J,=Jp+ J, T,=T,+T. (A13)

governs the total spin and angular momentum. Because
of the selection rules on 5 as dictated by the particular
reaction, this restricts the squared confjgurations to
only certain spins J.

For any conhguration, if S=O, then J must obey
the parity rule: I+En-= even.

These are summarized in Table VII. We emphasize
that J, 5, and T belong to the transferred pair and are
connected to the nuclear properties by


