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the symmetry at the vanadium site is less than cubic
for T&160'K, it is unlikely that the crystallographic
transformation from rhombohedral to monoclinic sym-
metry will lead to a quadrupolar broadened V" NMR
line shape for T& 160'K. Thus, it is not inconsistent to
conclude that V20~ undergoes an antiferromagnetic
transition at 160'K; and for temperatures less than
160'K, the V" NMR would occur at higher frequencies
(200—350 Mc/sec).

An estimate for the NMR linewidth 6H for a nucleus
of a paramagnetic ion has been given by Moriya" with
the result

27r 'i' A'S(S+1)
3 3+5 cog

(7)

where A is the hyperfine coupling constant, S the elec-
tron spin, y the nuclear gyromagnetic ratio and co, is
dehned by

co '=-'(J/h)'ZS(S+1),

approximation gives a relationship between the ex-
change constant J and the Curie temperature 8 as'

25(S+1)ZJ
(9)

From Eqs. (8) and (9), and taking Z~6,

~.=(8)'"(&0)/& (10)

or for igi 600'K, ~, 3X10" sec '. An estimate for
the hyperfine coupling constant A can be made by
combining the previously determined values of H&"'

and p, ,ff with the result 2 100&&10 ' cm '. The line
width 5H is thus calculated from Eq. (7) to be

(3H)„i —.20 G

which is in satisfactory agreement with the observed
5H 16 G. For comparison, the dipolar linewidth in

V203 is of the order of 3 G.
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CoI'& is a simple two-sublattice antiferromagnet and has a rutile crystal structure. Each Co++ ion is sur-
rounded by a rhombically distorted octahedron of fluorine anions and the crystal-field parameters are known
from an analysis of infrared absorption measurements. A good description of a single Co++ system can be
obtained in terms of a spin Hamiltonian with S=-,. In this paper, an exchange Hamiltonian for the entire
lattice is determined in which the only unknowns are the exchange parameters J1 and J2 describing inter-
actions between nearest- and next-nearest-neighbor Co~ ions, respectively. The resulting intermediate
coupling problem is attacked by spin-wave methods, introducing operators which represent deviations of
spin from the molecular-field ground state, The parameters J& and J2 are determined by calculating the
antiferromagnetic resonance frequency and the temperature dependence of sublattice magnetization, and
by fitting theory to experiment. We find that J& is very small and probably ferromagnetic. With the exchange
Hamiltonian now completely determined, a molecular-field treatment is shown to reproduce closely the
measured parallel and perpendicular magnetic susceptibilities in the temperature range 0 to 300'K (except
in the immediate vicinity of the Weel temperature), and is used to discuss the nuclear magnetic resonance
of Co" in CoF2.

1. INTRODUCTION

S OME years ago, an attempt was made by Nakamura
and Taketa' to obtain a theoretical understanding

of the somewhat unusual magnetic properties of the
antiferromagnetic salt CoF~. At that time, however,
the experimental information was scant, consisting of
little more than a knowledge of the magnetic structure

' T. Nakamura and H. Taketa, Progr. Theoret. Phys. (Kyoto)
13, 129 (1955).

of the crystal and some rather incomplete susceptibility
data. Even so, they found it possible to obtain a quali-
tative explanation of the unusual features of the sus-
ceptibility curves and were able to demonstrate the
origin of the large anisotropy which exists in the salt
and to obtain some measure of the exchange interaction
present. Since that time, a considerable amount of new
experimental data has been obtained and we are now in
a position where a more qua. ntita, tive approach to the
problem can be attempted.
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CoF2 has the rutile crystal structure with cations on
a body-centered tetragonal lattice. At low temperatures
it exhibits a simple two-sublattice antiferromagnetic
ordering in which all the spins align along the tetragonal
c axis. ' It has, therefore, exactly the same spin pattern
and crystal structure as the much investigated and
so-called "ideal" antiferromagnet MnF2. ' 4 The reason
why the magnetic properties of these two salts are so
different centers around the fact that the ground state
of a free Mn++ ion is an 5 state and is therefore almost
completely free from the inAuence of the crystalline
electric field, while the ground state of a free Co++ ion
is an Ii state with orbital degeneracy which is partly
or completely removed by such a field. Thus, whereas
it is possible to write down immediately a spin Hamil-
tonian (the Heisenberg Hamiltonian) to represent the
MnF2 system, the spin Hamiltonian for CoF& must first
be derived from a knowledge of the form of the crystal-
line electric field and it will thus contain crystal field
parameters in addition to exchange parameters.

Experimental results concerning CoF2 which have
recently been obtained and are relevant to the present
discussion include measurements of:

(1) The infrared absorption spectrum' consisting of
several peaks in the 0.15—0.20-eV range;

(2) Single crystal magnetic susceptibilities both
parallel (X~~) and perpendicular (X,) to the c axis over
the temperature range 0—300'K;

(3) Antiferromagnetic resonance frequenciesr at very
low temperatures;

(4) Variation of sublattice magnetization with
temperature in the ordered state, by studying the
magnetic resonance of the fluorine anion nuclei in the
effective fields of the cation spins';

(5) Magnetic resonance of the ca,tion nucleus (Co")
itself'

(6) Electron spin resonance of Co++ in ZnFs and
estimates of the principal g values for this case. '

Of particular interest are the properties in the spin-
wave region. For the simpler case of MnF2 it is now
claimed" " that spin-wave theories are able to give a
very satisfactory quantitative description of the
antiferromagnetic state right up to temperatures
approaching the Neel point T~ (but see Jones and
Jefferts"). Moreover, it would appear from these

2 R. A. Erickson, Phys. Rev. 90, 779 (1953).' J. W. Stout and S. A. Reed, J. Am. Chem. Soc. 76, 5279 (1954).' F. Ke6er, Phys. Rev. 87, 608 (1952).' R. Newman and R. M. Chrenko, Phys. Rev. 115, 1147 (1959).' S. Foner (unpublished).
r P. L. Richards, J. Appl. Phys. 55, 850 (1964).
8 V. Jaccarino and L. R. Walker (private communication).

V, Jaccarino, Phys. Rev. Letters 2, 163 (1959)."D. Shaltiel (private communication; results reported by
H. Kamimura and Y. Tanabe in Ref. 18).

"V. Jaccarino, in 3/Iagnetism, edited by G. Rado and H. Suhl
(Academic Press Inc. , New York, 1963), Vol. 2.

'"' G. G. Low, Proc. Phys. Soc. (London) 82, 992 (1963)."G. G. Low (unpublished).
'4 E. D. Jones and K. B.Jefferts, Phys. Rev. 1M, A1277 (1964).

analyses that the comparison of spin-wave theory with
experiment in these low-temperature regions provides
perhaps the most accurate method for extracting
information concerning exchange interactions which is
presently available. It is the purpose of the present
paper to show firstly that a simple spin-wave theory is
able to describe the very low-temperature properties of
CoF2 in a satisfactory way, enabling estimates to be
made of the exchange interactions which exist both
between the same and opposite sublattices, and
secondly to show that these same values of exchange
enable a good agreement between theory and experi-
ment to be obtained for the other properties about
which we have any knowledge. In particular, we find
that the exchange interaction between spins on the
same sublattice has a value very small compared with
the antiferromagnetic exchange between spins on
opposite sublattices. In this respect, it seems as though
CoF2 and MnF2 may well have similarities and, although
the accuracy of theory obtained in this paper may not
be sufficient to attach much weight to the exact value
obtained for the smaller exchange, we find it to be
ferromagnetic in sign (which is also the case for
MnF ) ""

2. CRYSTAL FIELD THEORY

CoF2 is a salt which exhibits the rutile crystal
structure (Fig. 1). Each Co++ ion is surrounded by a
distorted octahedron of F ions. ' The lowest orbital
state of the free Co++ ion (derived from the configura-
tion 3dr) is 'F. In the presence of a cubic crystalline
field, this state splits into two orbital triplets and one
singlet with the singlet highest. "For all but the most
detailed of discussions it is customary to neglect at this
stage the effect of the upper states and concentrate on
the lowest orbital state alone. This twelvefold degen-
erate state (spin 5= ss) is split into six Kramers doublets

by the combined effects of spin-orbit coupling and terms
representing the distortion of the crystal field from cubic
form. For CoF2, this distortion has both axial and
rhombic components and the perturbing Hamiltonian
may be written as

K= sXI..S+ A(1.,' ,')—y—r (I.,' I.„'),——(2.1)—
where the axes x, y, s, are indicated in Fig. 1; and where

X, 6, F, are, respectively, the spin orbit coupling
constant, the axial crystalline field parameter, and the
rhombic field parameter. The numerical factor —~3 in
the spin-orbit term arises because the matrix elements
of the orbital angular momentum I between the three
orbital states of the unperturbed level are the same as
the matrix elements of —ss L between the associated P
functions (see, for example, GriiTith). 'r

"M. R. Brown, B.A. Coles, J. Owen, and R. W. H. Stevenson,
Phys. Rev. Letters 7, 246 (1961)."B.Bleaney and K. W. H. Stevens, Rept. Progr. Phys. 16,
107 (1953).

~7 J. S. GrifFith, The Theory of Transition 3IIetal Ions (Cambridge
University Press, London, 1961).
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Ji C —AX IS The Hamiltonian (2.2) may readily be diagonalized
when we find eigenvalues E;+ and eigenfunctions IP,+
as follows:

where

Es+——55/4+ (P+3ps)'~',

@+=Ca
l s, ~s)—Cil s, ~s),

E +—Q/4 ()2+3~2)1/2

4,+=C, I-;, ~-;)+C, I-;, ~-', ),

Cr/Cs = L~—(~'+3v')"'3/v3v

(2.3)

(2.4)

(2 5)

(2.6)

The matrix elements of 5„5„,S„within the ground
doublet Ipi+ are therefore

S =ps„S„=qs„, S.=rs„ (2 8)

Q = FLUORINE

~ = COBALT

FIG. 1. The rutile crystal structure with axes x, y, s,
as used in the text.

The perturbation problem has been investigated by
Kamimura and Tanabe" who show that the absorption
peaks observed by Newman and Chrenko' correspond
to transitions within the ground state multiplet. They
find that a quantitative agreement between theory and
experiment may be obtained which allows the param-
eters in the perturbing Hamiltonian to be determined.
They 6nd, in particular, that X= —157 cm ' and that
the lowest two Kramers doublets are separated in energy
by 175 cm ' and are removed from the remaining
doublets by energies which are several times larger
than this. It seems likely, therefore, that for tempera-
tures in our range of interest (zero to 300'K) a good
description of the system can be obtained by taking
account of the two lowest doublets only, and we shall
assume this to be the case. Using Eq. (2.1) together with
a subsequent analysis, Kamimura" reports that the
spin contribution to the g values of the lowest doublet
are g '=4 55, g„'=1.98, g, '=3.08.

We may now show that the above g'-values and a
doublet separation of 175 crn ' may be obtained to a
good approximation from an effective spin-~ Hamil-
tonian of the form

where s„s„,s, are the (Pauli) matrices for an effective
spin-~ operator s, and where

P =2V3cics+ 2css,

I7
=2v3cics —2cs' )

r=3cg' —C '

(2.9)

(2.10)

(2.11)

y= —48.2 cm ' g= —26.3 cm—' (2.12)

But we can do even better than this. Thus, for example,
some properties depend dominantly only on one or two
of the ground doublet-spin matrix elements, and it is
possible to choose y and 8 so that the matrix elements
concerned agree exactly (or extremely closely) with
those obtained from a treatment including all six

P-pgx

If we use wave functions normalized to unity (Ci'+Cr'
=1) we have only a single variable Ci/Cs which we
attempt to choose so that p=-', g,'=2.275; q=-,'g„'
=0.99; r= sg, '= 1.54. We plot P, I7, r, as functions of
Ci/Cs in Fig. 2. We find that when Ci ——1.36cs, the
parameters are all within 4% of Kamimura's values.
Writing E, Ei 175 cm ',—an—d—using Eqs. (2.3),
(2.5), and (2.7), we find the corresponding values for the
spin Hamiltonian parameters y and 8 to be

K=y (S,'—S„')+5S,s, (2 2)

where p and 6 are parameters to be determined below.
The ability of a Hamiltonian of this form to describe
the system is an indication of the validity of the
assumption made by Xakamura and Taketa' that the
lowest orbital level of Co++ in CoF2 is nondegenerate
and widely separated from the next in comparison
with X.

~ q=-'g'
2

0.5
c)/cp

"H. Kamimura and Y. Tanabe, J.Appl. Phys. 34, 1239 (1963),
and private communication.

"H. Kamimura, J. Appl. Phys. BS, 844 (1964).

I'zG. 2. Theoretical values of spin contribution to the g values
of the lowest Kramers doublet as functions of the crystal-field
parameters T and b /see Eq. (2.7)g.
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doublets. As an example we may cite the magnetic
susceptibility perpendicular to the c axis for T)T~.
This we shall evaluate by molecular held theory a,nd the
resulting calculation involves only x and y matrix
elements. Writing C~ ——1.47C2 allows us to reproduce
Kamimura's S and S„ground doublet matrix elements
to within about 1%. Also, molecular-field calculations
in the absence of magnetic field (or with a field parallel
to the c axis) are most accurate if the 5, matrix element
is "correctly" reproduced. This is the case when C&
= 1.32 C2. In short, the numerical values to be used for
p and 5 in any particular theoretical result will be
chosen to give the best estimates for those spin-matrix
elements which are involved in the calculation.

We are now in a position to write down a Hamiltonian
for the entire lattice of cobalt spins. We include
exchange interactions (between S=2 spins) which we
assume to be isotropic and to exist between nearest
neighbors (same sublattice) and between next nearest
neighbors (opposite sublattices). We neglect dipolar
interactions since they contribute only =2% to total
anisotropy. Noting (Fig. 1) that the corner cations and
the body-center cations have environments which
di6'er by a 90 rotation about the c axis, we write a
Hamiltonian for the system in the form

K=pl 'r (S;„'—S,,')+85;,'$+QL7 (5&,'—5&„')+85&,'1

+Q Ji(S; Sp+Sg, Si, )+ p J2S,'Sl„(2.13)

where J~ and J2 are the exchange parameters for inter-
actions between nearest and next nearest neighbors,
respectively, and where subscripts j and k refer to
spins on the "up" and "down" sublattices.

In order to determine the values of J~ and J2 which
exist in CoF2 we shall attempt to formulate a spin-wave
description of this system. If the crystal-field terms in
(2.13) are much larger than the exchange terms, then a
good description of the system can be obtained in terms
of an effective spin-2 Hamiltonian. Such a spin-wave
description has been given by Kamimura" who 6nds
that it is not able to account for experimental results
concerning antiferromagnetic resonance. A description
of this type neglects completely the existence of the
upper doublet states (2.3), (2.4). On the other hand, if
the exchange terms in (2.13) dominate, the system can
be described in terms of spin deviations from the
S,= &-,' states. Unfortunately, rough molecular-field
calculations seem to indicate that for CoF~ the crystal
field and exchange terms are of the same order of
magnitude, and Nakamura and Taketa' suggest that
(5,) in the ordered state is of the order 1.2 (we shall
later calculate a value 1.06). This would indicate an
extremely large deviation from the S,= ~3 state even at
T=O'K and make any spin-wave theory (even includ-
ing spin-wave interactions) which is formulated in
terms of deviations from the —,' state very dubious.

In the present paper we shall first tres, t Eq. (2.13)

by molecular field theory to obtain single-ion eigen-
states. We shall then introduce spin-wave operators
which describe the deviations of the spins from the
molecular field state. It seems reasonable to hope that
the latter are small and indeed the final numerical
results seem to indicate that this is so.

where
K, = y(5;—' 5;„')—+85;.' nS;„—

n= (z2J2 —siJi)8,

(3.1)

(3 2)

and where s~ and s2 are the numbers of nearest and next
nearest neighbors of S;, respectively. We may obtain
eigenvalues and eigenfunctions of (3.1) a,s follows,

where

«=5&/4+n/2+ 3(~+n)'+3&'j'"

Ea ——55/4 —n/2+ L(8—n)'+3p'j'",

E,=58/4+n/2 —L(8+n)'+ 3y']'",

E =»/4 —/2 —
l (~—)'+»'J'"

04=dl2, —4)—cll 2)

~.=hl!,l)- ll, -l),
&2=c

I 4 —2)+d I 2, l)
&i=~l2 l)+&ll, —l),

u L(8—n)2+3Y2j"'+n —8

b v3y

c
l
(8+n)'+3y'j"' —n —8

VSy

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

A. , ticipating the numerical results of the paper, ve
show in Fig. -3 the positions of the energy levels for
CoF2 at very low temperatures.

Near the Neel point, o. is very small, and the energy
levels may' be expanded in powers of n. Omitting

unimportant constant terms, we find, to second order
111 O.

where

E4= 175+fn+hn',
E3= 175 fu+�h', —
uE2 go.—kcP,

Eg= —ga —bc',

f=-,'+8/A,

g=-,' —5/A,

h =3y'/2A',

(3.13)

(3.14)

(3.15)

(3.16)

3. MOLECULAR FIELD THEORY

For a molecular-field description of the system we
consider a single ion spin S; and replace all the other
spin operators by their average values which, in the
ordered state, we write as +8. For a spin on the "up"
sublattice we find a Hamiltonian
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&9.3 CM-~

E3

Molecular Beld theory would always seem to over-
estimate transition temperatures" '2 so that the above
estimate for exchange is likely to represent a lower limit.
However, no really quantitative work has been done on
transition temperatures for systems as complex as the
present one, so that we have no indication at this stage
as to how low the 30.2 cm ' value may be.

175 CM 351.6 CIA ~

Eg

57.4 CM-~

E(

FIG. 3. Molecular-field energy levels of the lowest four states
of Co++ in CoF& at very low temperatures, showing the splitting
of the doublet levels by the exchange field.

4. SPIN-WAVE THEORY

In this section we shall assume that the actual
antiferromagnetic ground state is close enough to the
molecular-field ground state E1 for the former to be
described in terms of excitations from the latter keeping
only terms up to those quadratic in the operators
representing spin deviations. We shall thus attempt a
noninteracting spin-wave description which we shall
6nd to be adequate for temperatures up to =0.4T~.

The energy levels of Eqs. (3.3) to (3.6) are func-
tions of (s&J&—siji)8. We are presently concerned with
the energy levels for T~ 0 and these may be expressed
as functions of exchange energy alone by writing 8 as
a function of s2J2 —s1J1 through the implicit equation

and
()2+3~2)1/2 87 5 (3.17)

BE1 1 8—n
Sr o=-

Bn 2 [(8—n)'+3y'7'~'
(4 1)

48=+-
8@

exp[—E;/kT]/P exp[—E;/kT7, (3.18)

giving, in the immediate vicinity of T~, the result

g'/k T+2h+[f'/k T—2h7 exp[—175/k T]
~, (3.19)

1+exp[—175/k T]

where we shall measure all energies in units cm '.
The average value of spin 8 on an "up" sublattice

site in the molecular-field approximation follows as

which has the solution shown graphically in Fig. 4. The
resulting positions of the single-ion energy levels as
functions of exchange are as indicated in Fig. S. We see
that for exchange energies of the expected order of
magnitude, E2—E1 is several times smaller than either
E3—E1 or E4—E1. We shall make use of this fact to
simplify the spin-wave calculations as follows.

When we introduce the spin operators S, S„,S„we
see that they are capable of exciting a system in state E1
to any of the other three states. We ought, therefore, to

correct to first order in u.
For CoF2 the Weel temperature is about 38'K

(kT~= 26.4)."Using this value for kT~, the exponential
terms in (3.19) are negligible and we find

l.7

1.5

$,3 CoF&

ssJs—stJ i——[g'/26. 4+2h]—'. (3.20)

Using values y= —48.6 crn ' and 5= —23.6 cm ',
(Ci ——1.32C&) which correctly give Kamimura's g, ' value,
we find

J'= 0.23, g= 0.77, h =0.0053, (3.21) 0.7

from which it follows that s~J2—s1J1——30.2 cm '.
Such a molecular-6eld calculation of Neel temperature

is at best only semiquantitative, but it does serve to
illustrate one important point —that the exchange
interaction is indeed of the same order of magnitude as
the crystal-field terms so that a neglect of the upper
states Es and E4 [the 2h term in Eq. (3.20)] produces
very sizeable errors indeed.

"J.W. Stout and E. Catalano, J. Chem. Phys. 23, 2013 (1955).

0.5'0 20 40 60 80 500 320 $40 560

z~J~-z, J, (cM-~)

2' G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958).
~ R. A. Tahir-Kheli, Phys. Rev. 132, 689 (1.963).

Fio. 4. Molecular-field estimate of the average cobalt spin per
ion (in the ground state) as a function of the magnitude of the
exchange parameter s2J2 —s1J1. The values which we calculate
for CoFg itself are s2J2 —s1J1——34.9 cm ' and S=1.09.
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150

ioo

50

O 0
UJ

sublattice so that the molecular-field state has s;, in
eigenstate +-,'.

In an exactly similar manner we find that the "down"
spins have matrix elements between their lowest two
molecular-field states which may be written in terms of
a spin-~ operator s~ as

S„=Qs... Ss„Ps,——„, Ss,=R~s. T, —(4.8)

where the molecular-field state has eigenvalue s~,= ——,'.
We may now express the exchange Hamiltonian,

given by

3c.x=g Ji(S;.Sf +Ss Ss.)+ P JsS,"Ss, (4.9)

——E2

-100

-150
0 ic 20 30 40 50

z~ J2-z, J& (cM-1)
60

introduce spin-wave operators to represent all of these
possible excitations. Because of the above energy-level
situation, however, it is fairly safe to assume that for
temperatures in the spin-wave region, the excitations to
the level E2 will very largely dominate so that a theory
which includes only these excitations will be able to
describe the temperature variation of 8 in a satisfactory
way. We shall return to a discussion of other spin-wave
modes later in this section but, for the present, we shall
neglect E3 and E4. Note that %his approximation is by
no means equivalent to that of neglecting the existence
of the upper doublet Es+ of Eq. (2.3) which was used

by Kamimura. '9

The matrix elements of S;„S;»S;, between the
levels it r and ibs LEqs. (3.9) and (3.10)$ may be written

S;,=Ps;„S;„=Qs;„, S;,=Rs;,+T, (4.2)

where s;, s;„, s;„are the components of a spin--,'
operator s; and where

P=~3bc+Aad+ 2bd, (4.3)

(4.4)

(4.5)

(4.6)

Q =VSbc+V3ad 2bd, —
2R =3a'—bs+3cs —d'

4T=3a'—b' —3c'+d',

with a, b, c, d, from Eqs. (3.11) and (3.12) and with
wave functions normalized to unity so that

a'+b'=1, c'+d'= 1. (4.7)

We take the subscript j to indicate spins on the "up"

FIG. 5. Energy levels of the four eigenstates of Hamiltonian
(3.1) as a function of the exchange parameter ssJs —s&Jr, cal-
culated for the limit of very low temperature.

(sRJ2 slf 1 )R(T+sR) +2 +r
y

(4.11)

and the primed parameters differ slightly from the
unprimed ones (see Fig. 6) because the spin-wave

50

I

O

45

40
N

I

N

N
35

30

25
504525 30 35 40

z2J~-z, J, (cM-~)

Fn. 6. The relationship between the primed and unprimed
exchange parameters of Hamiltonians (2.13) and (4.10) which
gives the same energy separation between the lowest two molec-
ular-Geld eigenvalues in both cases.

in terms of the above spin--', operators. In this way
we represent the system by the 'effective' spin--,'
Hamiltonian

~ex 2 Jl LP ~;.~f'*+Q'~&.~~'.+ (R».+T) (R&~' +T)l

+P &i'[g'~kal "+P'~ksrs s+ (R~I- T)—
nn

X (Rss, T)]+ P—Js'[PQ(s;,ss,+si„sss)
nnn

+ (Rs;,+T) (Rss, T)j, (4—.10)

where the exchange interactions J~' and J2' are chosen
so that the exchange energy difference between the
molecular-field states s;,=+-'s and s„=——', is equal to
Es Zr LEqs. (3.5)—, (3.6)g. This condition is
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Hamiltonian neglects the states A~ and E4. ~e assume
that A/~2= %'/A'.

The spin-wave creation and annihilation operators of
Holstein and Primakoff23 may now be introduced into
the Hamiltonian (4.10). Following Kubo24 we define
Bose operators for the "up" and the "down" spins by
the equations

s;,=s—u *a sI+= (2s)'I'a s,-= (2s)'I'II * (4 12)

~2.= —e+4'f2, e2+=(»)'124*, ~a =(»)I"f2, (413)

where s=-,', and where s+=s &is„.
Using the canonical transformation

v2a, =Q;+iP, , v2a, *=Q, iP, , —
~&ha= Ra+2S2, ~&bi*= R2 2SI-, —

(4.14)

(4.15)

Qz —(2/qT)iis P Q.e
(4.16)

—(2/g, )1/2 P S e
—4».k

k

R»= (2/.V) '~2 Q R e'" " (4.17)

where K is a reciprocal lattice vector which takes values
determined by periodic boundary conditions (running
over X/2 points in the first Brillouin zone of the
reciprocal sublattice), and where X is the number of
spins in the entire lattice. The resulting Hamiltonian is

3e= ——',ExLs(s+1)R'+ (2s+1)RT+T'j
+2& +la»(QK'+SK')+b»(PK'+R»')

where
+2e»(QKRK P»SK)7) (4.18)

a» Rx(R+T/s)+ J,'P——' Q e'K ~'—'»
nn

'b» Rx(R+T/s)+——J 'Q Q e4» &2—4~

(4.19)

(4.20)

e =J'PQ Q e' )
nnn

(4.21)

X ZoJ2 8]J] ) (4.22)

and where g„(P„„„)means the sum over all nearest
neighbors (next nearest neighbors) r of rs.

This Hamiltonian may be written in diagonal form in
terms of the canonically conjugate variables qi», Pi»,
and qsz, psz which are delned by

qi»= Qx cos8+R» slI18,

pl K= P» cos8+S» S1I18, (4.24)

q2»=R» cos8—Q» sin8, (4.25)

P2»= S» cos8—P» sin8, (4.26)
'3 T. Holstein and H. PrimakoB, Phys. Rev. SS, 1098 (1940).
"R.Kubo, Phys. Rev. 87, 568 (1952).

we introduce spin-wave variables PK, Q», R», S»,
in the form

P»=(2P')"'Z»" "

where tan(28) =2e»/(a» —b»). We obtain

X,= ;.'X—x-/s(s+1)R2+ (2 +1)RT+T2$
+-,'~ QL~»(qlx +p2» )+e»(q2». '+pix') j, (4 27)

where
If„=g» cos'8+b» sin28+2c» sin8 cos8, (4.28)

e»——ax sin28+b» cos'8 —2e» sin8 cos8, (4.29)

and we may thus write eigenvalues

E„,„,= —-,':YxLs (s+ 1)R2+ (2s+ 1)RT+T2]

+S Q (221»+222»+ 1) (tZKAK —C» )"', (4.30)

where m~K and e2K are positive integers denoting the
number of spin waves present in the eigenstate 8„,„,
with wave vector K.

Since the average values of kinetic and potential
energies are equal for a simple harmonic oscillator, we

have

dK(qiK )=e»(pi». ')=(Niz+~)(~»~K e» )"', (4.31)

d»(p2»') = ex(q2»') = (222»+ 2) (a»b» —c»')", (4.32)

where the pointed brackets indicate ensemble averages.
In order to calculate the value of sublattice spin 8 in

the spin-wave region we consider the "up" sublattice
for which we have, from Kq. (4.2),

S=Ra+T,
where

8= g
—C~' Cg (4.34)

Using the same set of canonical transformations which

were used to diagonalize the Hamiltonian we find

S=T+R (R/TV)(pL(—q, '+p, ') cos28

+ (qs». '+P2». ') sin'8)), (4.35)

where we have used the relations (qizq2»)=0 and

(pi»p2»)=0 which are valid because the associated
oscillators are independent. %e now insert the correct
value for Hand make use of Eqs. (4.31) and (4.32) when

we obtain
K+ K

S=T+R—(R/iV)g (22»+-,'), (4.36)
x (a»b» —c»2) "2

where the ensemble average (I»+2) at tempera. ture T
is readily evaluated as

(22»+2)= 2 cothLs(a»b» —e»2)112/2kT). (4.37)

The Anal spin-wave expression for sublattice spin is thus

(~»+b»)
S= T+R 4R—

(a»b» —C»2) "2
- (a»b K—c»2) "2&&coth, (4.38)

4kT
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Fjo. 7. Theoretical spin-wave estimates of the deviation of spin
58 from its value 80 at the absolute zero of temperature plotted
as a function of temperature. These curves are all evaluated for
the case when J1=0. Also shown are the experimental results from
nuclear resonance experiments.

where ( .)x is the average value for K running over
its E/2 allowed values in the first Brillouin zone of the
reciprocal sublattice. We have calculated the numerical
results for S as a function of temperature using (4.38)
and evaluating the Brillouin-zone averages by computer.
Several diferent values for J~' and J2' were chosen and
the results are shown graphically in Figs. 7 and 8 where
spin deviation from the T=O state is plotted against
temperature and compared with the experimental
results of Jaccarino. ' These graphs have been labeled in
terms of the unprimed exchange parameters by use
of Fig. 6. We see that a good 6t of theory with ex-
periment may be obtained for temperatures up to
=15'K (with zsJs —ziJr=35 cm ', Ji/Js ——0, for
example) which is about 40% of the Keel temperature,
but it is not possible to determine J~ and J2 separately
by using this data alone. We shall accomplish this below

by including the antiferromagnetic resonance data
together with the spin-deviation results.

For temperatures above 2Ts/5 the theoretical spin
deviations are smaller than the measured ones, the
discrepancy increasing with rising temperature. For
the present system, this is due not only to the usual
cause, which is the neglect of spin-wave interaction
terms, but also to the fact that the parameters P, Q,
R, T, /which are employed in the construction of the
spin Hamiltonian (4.10)] are calculated by assuming
that S has its molecular-field ground-state value. This
approximation will become poorer as temperature
increases and will break down completely for tempera-
tures approaching the Neel point.

)0 4
6

EXPERIMENTAl

/m -~.o o.5
~~~~o

IIX~

QS
Sp7
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a

Z~ J~-Zg J~ =40 CM

)0
fo 15 20 25
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FIG. 8. Theoretical estimates of spin deviation AS from the zero
temperature value 80 as a function of temperature T. These
curves are all calculated for the same value of "molecular Geld"
(ssJs—s~Jr =40 cm ') and show the effects which may be obtained
by varying the ratio of the exchange parameters while keeping
the effective field fixed.

where
(a $ c s)l/s

ao Rx(R+2T)+P'zt J-—,',
&o——Rx(R+2T)+Q'ztJt',

&o =PQzo Js'.

(4.39)

(4.40)

(4 41)

(4.42)

A consistent solution for spin deviation and resonance

s" A. Yoshimori, J. Phys. Soc. (Japan) 14, 807 (1959).

It is also of interest to note that although the spin
deviation is mainly dependent on the "molecular 6eld"
parameter s2J2 —s~J~, it is also sensitive to variations of
Jt/Js keeping the former parameter fixed (Fig. 8). This
is particularly so when the system approaches an
instability (e.g. , the point where a different spin
pattern becomes more stable). The case Ji/Js ——1

(Fig. 8) is such an example, the ratio being close to that
for which a screw-type spin arrangement25 becomes the
stable ordering. The actual "critical ratio" is that above
which some of the spin-wave frequencies (axbit —cxs)'~s

take imaginary values. For the case s2J2—s&JR=40 cm '
which is shown in Fig. 8, this ratio is Jt/Js ——1.44.

In order to determine the exchange interactions
separately we consider the antiferromagnetic resonance
data. Richards' reports two resonances, a weak one at
28.5 cm ' and a much stronger one at 36 cm '. In the
presence of a magnetic Geld along the c axis, the res-
onances split with g factors 1.18 and 2.80, respectively.
From the theory of the present section we find only a
single resonance frequency (associated with the K=O
spin-wave modes) which is given by
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frequency can only be found if coo is identi6ed with the
36 cm ' resonance. We shall con6rm this choice by a
calculation of the associated resonance g factor, the
theory of which will be given in the next section. Using
this frequency we find agreement of theory and experi-
ment if s272 —ziti ——34.9 cm ' (x=36.8 cm ') and
Ji/ J2= —0.1. Putting s2 ——8 and si ——2 we obtain values
J~= —0.5 cm—' and J2=4.25 cm—'. Because of the
approximations contained in the theory, not too much
weight should be attached to the exact numerical
result for J&. It does seem, however, that J& is certainly
very small compared to J2 and is probably ferromagnetic
in sign. Using the above values for exchange we find
that:

(a) The single ion molecular-field energy levels are
as shown in Fig. 3.

(b) The associated wave functions are given by
Eqs. (3 7) to. (3.10) with parameters a=0.89, b=0.45,
c=0.64, d=0.77.

(c) The parameters P, Q, R, T, defined by Eqs.
(4.3) to (4.6), have values 8=0.99, Q= 2.38, R= 1.42,
T=0.38.

(d) The molecular-field estimate of spin S in the
ground state is 1.09.

(e) The spin-wave estimate for S differs by 2.9%
from the molecular-field value being very close to 1.06.

' The second (weaker) resonance would seem to be
only one of several other possible antiferromagnetic
resonance frequencies. In the present theory, for reasons
stated earlier, we have included only those spin op-
erators which describe excitations between states E~
and F2 (Fig. 3). Since Fi is not the correct ground state
even at the absolute zero of temperature (because of the
presence of zero-point spin-waves), a more accurate
treatment of the problem should include operators rep-
resenting. excitations not only between the ground
molecular-Geld state and E3 and E4, but also between
E~ and E3, E2 and E4, and E3 and E4. Spin waves con-
nected with all six sets of operators may possibly all be
present even at absolute zero, and there could thus be
as many as six antiferromagnetic resonance modes, three
strong ones involving excitations from Ei, and three
weaker ones. The only one of these which is likely to
be as small as 28.5 cm ' is that associated with the
levels E3 and E4. Supporting this conjecture is the fact
that E4—Ea varies with magnetic field parallel to s less
than half as fast as does E2—E~. We thus expect a much
smaller resonance g factor for the 28.5 cm ' mode than
for the 36 cm ' one, which agrees qualitatively with
observations. ~

5. MAGNETIC SUSCEPTIBILITY PARALLEL
TO THE C AXIS

In this section we introduce an external magnetic
Geld P parallel to the c axis of the lattice which is the
direction of spin alignment in the antiferromagnetic
state. We include the effect of this magnetic field by

adding to the Hamiltonian (2.13) a term of the form
—g,pBH p; S,„where pB is the Bohr magneton and
where g, is the Lande g factor for the 6eld parallel to s.
We neglect terms containing higher powers of H since
even the II' term" which contributes to the zero-Geld
susceptibilities would seem to modify the latter by only
1 or 2% in the temperature range of interest. The value
of g, may be calculated from the analysis of Kamimura
and Tanabe" (as also may the g, and g„values for use
in the following section) so that the problem is now
completely determined. With no "adjustables" remain-
ing, we may now calculate the magnetic susceptibilities
and compare the results with experiment. ' We shall, for
simplicity, assume that the effects of any intrasub-
lattice exchange are negligible and write s2J2=35 cm ',
Jg——0.

gg, =2.035, (5.2)

where g=0.77 LEq. (3.21)j. It follows that g,=2.64.
The average spin per site is given by (3.19) from which,
by substituting for n from (5.1), we obtain the parallel
susceptibility X» in the form

Ng, 2IJB2F(T)
(5.3)

1+(xiJi+z2J2)F (T)
where

g'/hT+2h+$f'/hT 2hjexp) —175/h—Tj
F(T)= (5.4)

1+exp/ —175/h Tg

where f, g, h, take the values given in (3.21), and hT is
measured in cm ' energy units.

The above susceptibility is plotted as a function of
temperature in Fig. 9. Except for the expected deviation
in the vicinity of T& (due to the inability of molecular
6eld theory to describe the system adequately in this
region —see, for example, Li") the agreement with
experiment is excellent.

(b) Temperatures Approaching Absolute Zero

For temperatures below TN we must distinguish
between spins on the two sublattices. In the presence

~6 M. H. L. Pryce, Proc. Phys. Soc. (London) )L.63, 25 (1950).
'7 Y. Y. Li, Phys. Rev. 84, 721 (1951).

(a) Temperatures Above the Neel Point

Using the molecular-field approximation we write the
Hamiltonian for a single spin S; in the form (3.1), but
where now

r2II gzpBII S(sl~l+s2~2) gzpB+eff y (5.1)

where S is the average value of spin per site and H, fi is
the effective magnetic field acting on 5;. Since o.II is
very small compared to y or 8 (we are concerned
primarily with the limit o.B~O) we may write the
eigenvalues in the form (3.13).Kamimura and Tanabe'2
find that the lowest doublet splits as ~gg p@H ff
where g,'=4.07. Using (3.13) we have, therefore,
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(5.5). The eigenvalues of (3.1) are given in Eqs. (3.3)
to (3.6) and we shall be interested in the lowest two
states Et and Es. Writing crrr as in (5.6), we expand in
powers of e to obtain

-1 8+ (ssJ2—siJi)8—
&sa =~2'+— (5.10)

[(g+~ )2+3~2]1/2

300

+ zoo

1 5—(ssJ2—siJi)S+II Po e+, (5.11)
[(g a )2+3~2]1/2

100/

0
0 too & 50 200 250 300

TEMP ERATURF ( K)

Fzo. 9. Molecular-field estimates of parallel and perpendicular
magnetic susceptibilities (open circles) in the temperature range
zero to 300'K are compared with the experimental curves obtained
by Foner. '

50 350

of the magnetic field H parallel to the c axis, we write
the average "up" spin as S+68 and the average
"down" spin as —8+58.

In the molecular-field approximation, the Hamil-
tonian for spin 5,- on the "up" sublattice may be written
in the form (3.1), but where now

~=~a= g,»II+(8—~8)S2J2—(8+~S)S,J, . (5.5)

For temperatures close to absolute zero, the average
spin on an "up" sublattice is given, to a good approx-
imation, by (4.1), which, on writing

It follows that g,
"must satisfy the equation

g,"R= 1 42e//isII. . (5.13)

This may be simplified by using the result &=0.82

g,p~a to give g,"R=3.07.
Carrying out the spin-wave calculation with rnag-

netic-6eld terms present, we obtain for the antiferro-
magnetic resonance frequency

where Ez' and E&' are the energy levels in the absence of
a Geld. Using s2J2=35 cm ', Ji=0, we may evaluate
the coeKcients of e in (5.10) and (5.11) and we find
them to be 0.33 and —1.09, respectively. In the presence
of a magnetic field the energy separation of E2 and E&

varies therefore as 1.42 e.
In the spin Hamiltonian (4.10) we can introduce the

effect of the magnetic field B by adding terms

g,"/1/2II[—g (Rs;.+T)+P (Rss, T)]. (—5.12)

where
nil= (S2J2—S1J1)8+e=ao+e,

gz/1BH (slJ1+s2J2)68)

(5.6)

(5 7)

(ao+bo)2 —4Cos "'
II=~O+g: ~Pa+

4(ao&o—co')—
(5.14)

may be expanded in powers of e, and gives, to first order,

3p
S+s8=8+

[(g & )sy3+2]2/2
(5.8)

3 )Tg 2p 2y2

(5.9)
[(~—~o)'+3m']"'+ 3m'(srJ i+ssJ )

alld, putting g, = 2.64, p = —48.6 cm ', and 5= —23.6
cm ', this has a numerical value of 96 10 o emu/g
which (see Fig. 9) is again in very good. agreement with
experiment. We may also evaluate (siJt+s2J2) 68,
which will be required in the following subsection, and
we 6nd it to be equal to O. LS g,p,~a. It follows that
e= 0.82 g,@AH.

(c) Splitting Factor for Antiferromagnetic
Resonance

The molecular-field representation of the system at
low temperatures is given by (3.1),where n is defined by

Using (5.7) it follows that the magnetic susceptibility
at zero temperature is

where o/o, ao, f/o, and co are given in Eqs. (4.39) to (4.42).
For the case J&=0, the square root factor is unity and
the result simplifies to

(5.15)

where the resonance splitting factor gg=g, "R=3.07
which is to be compared with the experimental value
2,80.

6. MAGNETIC SUSCEPTIBILITY PERPENDICULAR
TO THE C AXIS

(a) Temperatures Above the Neel Point

I.et us introduce an external magnetic 6eld II
parallel to the z axis. In the molecular-6eld approxima-
tion we may write the Hamiltonian for an arbitrary
spin S; in the form

K,=y;(5,,2 8, )+225S—;. c2r;S,„(i= 1,2) (6.1)

where we have introduced the suKx ~ to distinguish
between the two different types of cation sites (differing
from each other by a 90' rotation about the c axis) and
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where we de6ne 7i——+y, yi ———y, and
A —(b2+3~2)1/2 —87.5 cm i (6 8)

(6.2)~i= g.p i&i—siAS~ —siASi,

&2 ggPBIf &2~2S1 &1~1S2 I

The values to be used for 8 and y have been discussed in
Sec. 2 and are those which will allow for the best
estimate of the matrix elements of 5, and S„ in the
ground states of the unperturbed system. These are
obtained by putting Ci ——1.47Cq in Eq. (2.7). Using
(6.8) wefindvaluesy= —47.0cm 'andb= —32.0cm '.

We may now write equations for the average values
of spin on the two types of site by employing equations
of type (3.18) and using energy levels (6.4). We 6nd

S,=F,(T)a.;, (i= 1,2) (6 9)

(6.3)

where Si and S~ are the average values of spin on the
type-1 and type-2 sites, respectively.

The Hamiltonian (6.1) has eigenvalues which may be
expanded as power series in n; in the form

E4 5b/4+——A+ f,a;+h;n, +
E3=5b/4+A f,ag—+h,nP+
Ep 5b/4——A+—g;n; h,n P—+
Ei 5b/4 —A———g,a,—hpP+.

(6.4)
where

g'/kT+2h, +$f'/kT 2hg] ex—p(—175/kT)
F;(T)=where

1+exp (—175/k T)
f'= k+ (3v' b)/2A, —

g;= —,
' —(3y,—b)/2A,

h, =3(b+y, )'/8A',

(6.5) (6.10)

(6 6) and where energies kT are measured in units of cm '.
Solving the Eqs. (6.9) for Si and Si using (6.2) and

(6.7) (6.3), the perpendicular susceptibility follows as

~'v a'Pg'F i+g, 'Fi+ (g'+ g, ')F iF'isi Ji 2g gg„FiFir—Ji]
2(1+(Fi+Fi)siJi+FiF~(si'Ji' —sPA')]

(6.11)

g1g, =3.09, g2gy= 1.015, (6.12)

Before a numerical calculation can be completed we
require values for g, and g„. These follow from the
calculations of Kamimura and Tanabe' who report that
the lowest states Ei and Ei of (6.4) split in a magnetic
field as ~-',g,'@AH,ff where g1' ——6.18, g2' ——2.03, and

gzp QH&f f) Q2 gyp +Hef f It follows that

energy of the perturbed ground level is

LV3 (ad+bc)+2bd]'nP
Tq' H —E +

4(E, E,)
[v3 (bd —ac) —2bc]'

4 (Ei—E4)
(6.15)

from which, using (6.6), we find g,=2.75, and g„=2.08.
We may now calculate X& numerically as a function of
temperature (using s~J~ ——35 cm ', Ji——0) and the
result is shown in Fig. 9. The agreement between theory
and experiment is again excellent except in the im-
mediate vicinity of the Keel temperature.

where

3C= Q15jg )

&1 g~P 8+ ~1J1~1 ~2~282 )

(6.13)

(6.14)

and where 81 and 82 are the average x components of
spin on the "up" and "down" sites, respectively. The

(b) Temperatures Approaching Absolute Zero

In the absence of a magnetic 6eld the energy levels
of a single spin "up" system 5; are given, in the ordered
state, by Eqs. (3.3) to (3.6). In order to calculate the
perpendicular susceptibility we shall introduce a
magnetic Geld H in the x direction and perturb the
system with the Hamiltonian

Ei"=Ei——',fiaP,

and, for a spin on the "down" sublattice

EH E if~2—
(6.17)

(6.18)

where fi and fi are numerical factors which may be
evaluated once we have chosen values for y and 8.

It follows from the above equations that, for temper-
atures close to absolute zero,

Si= fi~i &
Si= fio'g (6.19)

Solving for 81 and S2 explicitly, the susceptibility follows
immediately as 1VpIi(g~Si+g, S&)/2H and is given by

where Ei, E&, E4, a, b, c, d, are given by Eqs. (3.3) to
(3.6), (3.11), (3.12), and (4.7).

For a spin on the "down" sublattice we obtain a
similar result but where a —+ —a, c~ —c, and n1~ n2
where

&2 gglJ B+ sl+1S2 s2~iS1 ~ (6.16)

Thus, we may write for a spin on the "up" sublattice
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Eq. (6.11) if we replace Ft, I' s, by ft, fs Fo. r the present
case, where we put J~= 0, this reduces to

( .)r =o= &~s'[g*'fr+a'fs 2a—.asftfs &sj/
2[1 fr—fssssf ssj (.6.20)

As pointed out in Sec. 2, it is not possible to choose
values of y and 6 which will enable the effective spin- —,'
Hamiltonian which we use throughout this work to
give exactly the correct matrix elements for all three
spin components in the ground states of the "zero
exchange" system. The calculation of the low-temper-
ature perpendicular susceptibility does involve S,
S„,and S, and the best we can do is to choose y and 5

as in (2.12) when errors of the order 4% are introduced.
In this way we find values f& 0.0480——, fs 0.008——5, and,
using the values for g, and g„obtained in the preceding
subsection, we calculate the zero-temperature perpen-
dicular susceptibility equal to 637 10 ' emu/g which
is about 5% larger than the experimental value (Fig. 9).

7. NUCLEAR MAGNETIC RESONANCE

Nuclear magnetic resonance of Co" in CoF2 has been
observed by Jaccarino' who reports a resonance fre-
quency in zero external magnetic field of 180.4 Mc/sec
for temperatures close to absolute zero. In the absence
of an external magnetic 6eld, we may write a nuclear
Hamiltonian for the system in the form

SC=A,"SI,+y"hIIDI„

where the first term is of standard form" (A,"being
the magnetic hyperfine interaction constant) and
represents the interactions between the nucleus and the
electrons on the same ion, and where the second term
is the interaction of the nucleus with the dipolar field
HD due to the other electronic spins in the system. We
have neglected quadrupole and all higher order terms.
For the present system the second term is very much
smaller than the first, the dipolar field having a value
=4 kOe for CoF2.

In order to obtain a theoretical estimate for the
nuclear resonance frequency it is necessary to have a
value for A,".Ideally, this should be calculated from
6rst principles in the manner demonstrated by Abragam
and Pryce."To do this, however, requires a knowledge
of the proper ground state of the system which may be
obtained only from a treatment of Eq. (2.1). A knowl-
edge of the electronic "spin Hamiltonian, " which we
have obtained in this paper, is by itself not sufhcient.
We must, therefore, look for a less direct approach.

Paramagnetic resonance experiments on Co++ in
ZnF2 have recently been performed by Hensel. " An

"A. Ahragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
A205, 135 (1951)."I. C. Hensel (private communication).

analysis of the hyperfine spectrum is sufhcient to give an
experimental value for A,"for this case. Let us make
the supposition that the hyperfine interaction constants
for CoF2 and for Co++ in ZnF2 are approximately equal,
assuming that the crystalline field seen by Co + in ZnF2
is closer to that existing in CoF2 than to that in ZnF2.

If we include in the Hamiltonian (2.2) a hyperfine
term I.A'"'S and an external magnetic field term
—g,p~S,EI„ then we find, to a good approximation,
eigenvalues

E~ ~gag, IJgH, A, ssm—], (7.2)

where m is the quantum number associated with the
nuclear spin I„and where g is given by Eq. (3.15) and
has the value 0.77. Hense12' measures gg, to be 2.11 and
the hyperfine separation 2gA."to be 36.8 Oe. It follows
that A,"=4.72 10 ' cm '.

Substituting the estimated values for H~ and A,"
into (7.1), and using y "0=1.00 kc/sec/Oe and S= 1.06
(as obtained from spin-wave theory), we calculate a
zero-6eld nuclear resonance frequency

&vs = (141.6S+4)= 154 Mc/sec. (7.3)

This value is some 15% less than that measured experi-
mentally. ' We can think of no terms omitted from the
calculation which will approach this order of magnitude.
The term representing the direct interaction between
the nucleus and the applied held H, does not enter
into the expression for the hyperfine separation. There
will, it is true, be a chemical-shift term (of the type
discussed by Moriya)" due to the interaction between
the nucleus and the electron orbital moment which is
produced by the polarization of the ground orbital
state by the external 6.eld. For external 6elds of a few
kilogauss as are customarily used in paramagnetic
resonance experiments, the inclusion of such a term into
(7.2) would change the estimated value for A," by
less than 1%.

It would seem probable, therefore, that the dis-
crepancy is due to our assumption that the hyperdne
constants for CoF2 and for Co++ in ZnF2 are the same.
Lending support to this explanation is the fact that the
two largest contributions to A,", namely the electron-
orbit term and the Fermi contact term, are of opposite
signs, so that a relatively small change in the former
(due to a small change in crystal field) may well produce
a much enhanced effect on the resultant hyperfine
parameter.
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