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obtained at helium temperature, 19.2 eV.' lt is thus
concluded that Keyes' theory of the electronic contribu-
tion to the elastic constants for degenerate material
accounts quantitatively for the effects here observed.

In the interpretation of this experiment, it has been
assumed that the density of states in the neighborhood
of the Fermi level is parabolic, so that in Eq. (3) one
may insert a constant eGective mass. Keyes has shown'
that a study of the temperature dependence of 5C44
and/or 5C&ss can provide m* directly. Such a study for
diGerent doping levels might then permit direct deter-

' H. Fritzsche, Phys. Rev. 115, 336 (1959).

mination of the energy dispersion of the conduction
band to substantial energies above the band edge point.
A study of the temperature dependence of the elastic
constants of samples I and III is now in progress.
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The response of a spin system is calculated when a pair of 90' rf pulses is applied to a set of static identical
interacting nuclei, initially polarized in an external static magnetic Geld. For pulse spacings the order of the
spin-spin relaxation time, a "solid echo" is predicted. This effect is strongly dependent on the relative phas-
ing of the two pulses and is maximized for a 90 phase shift. Extending the work of Powles and Strange, it is
shown that the second moment of the nuclear resonance absorption line can be obtained from the solid echo
in a straightforward manner, and to a predictable accuracy. A general expression is derived for the principal
error term arising in the estimation of the second moment by the solid-echo technique and is applicable to
a system of static interacting nuclei of any spin I. Preliminary experimental data shows the presence of
solid echoes in powdered aluminum (I= ,). An experim-ental estimate of the second moment gives AMs
=9.5~0.2 G' at 297'K. The eGect of two closely spaced rf 90' pulses has also been calculated for a system of
static interacting spins composed of two magnetic species. The rf pulses are assumed to interact with one
species only. Some new and interesting eGects are predicted, especially in the case when the two pulses are
coherent. Unlike a single-spin species where this pulse combination would give zero signal, the presence of
the second magnetic ingredient gives rise to a signal the initial slope of which is proportional to the second-
moment contribution of the nonresonant spins. Direct measurement of this "cross second moment" shouM
be very valuable, particularly when scalar interactions are present as well as the dipolar interaction. The
automatic removal of the resonant spin contribution to the total second moment would tend to increase the
accuracy of a scalar coupling constant determination, particularly if the resonant spin term were dominant.
Preliminary experiments on a single crystal of ÃaF show general qualitative agreement with the predictions.
Also calculated is the double-pulse response of a single magnetic species with half-integral spin which has
both a dipolar and quadrupolar interaction. The system treated is one of well resolved quadrupole satellites.
The rf is assumed to interact with the central transition only. Kambe and Ollom have calculated the second
moment of the steady-state absorption line of the central transition due to dipolar broadening in the case of
well-resolved quadrupole structure. In the present work, it is shown that, as might be expected, the second
moment as derived from the free induction decay, when the central line only is pulsed, is in agreement with
that of Kambe and Ollom. If a second pulse is applied to the system, in phase with the 6rst, a nonzero signal
is predicted, even though this is a single-spin species. It is shown that the growth of this signal is character-
ized by only part of the dipolar interaction, and a second moment which can be extracted is analogous to the
"cross second moment" of a two-spin-species system. When a scalar interaction is present as well as the
dipolar term, the nontrivial fact is shown that for two pulses the interaction measured is no longer a simple
fraction of the steady-state second moment. The scalar coupling constants and the dipolar lattice sums are
shown to be combined in a difterent way in each case, so that a double-pulse experiment will yield new in-
formation on the spin system. This should certainly help in estimating the scalar coupling constants further
than just nearest neighbors.

I. INTRODUCTION
' 'T has been shown previously' that if two short 90'
~ - rf pulses are applied within a time of order T2 and

* Supported in part by the U. S. Atomic Energy Commission
under Contract AT(11-1)-1198.

$ Present address: Department of Physics, University of
Nottingham, Nottingham, England.

at the Larmor frequency, to a variety of polarized
protonous solids, the system gives rise to a "solid echo"
following the second pulse. The echo maximum can
rise almost to the full free induction decay amplitude

' P. Mansfield, Ph.D. thesis, London University, 1962
(unpublished).
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and is found to be dependent on the relative phasing
of the two rf pulses.

The formation of this echo is contrasted to the more
familiar "spin echoes" of Hahn. ' These are usually
produced in liquids and rely upon an external magnetic-
field gradient for their formation.

In solids, the rigid-lattice magnetic dipolar field is
usually considerably greater than the external magnetic-
field inhomogeneity over the sample. Typically for
metals, the absorption linewidth is a few gauss, giving
T& 100 @sec. The field inhomogeneity over a 1-cc
volume for a standard magnet may be 20 mG, so that
nuclei are effectively in a uniform external static field.

It has been shown that the "solid echoes" arise
through the effect of the dipolar interaction. An exact
calculation has been performed in the case of isolated
static proton pairs. This was shown to predict the
correct behavior in the case of the hydrate protons in
a single crystal of gypsum. '

In the study of solid materials, the even moments4
of the steady-state absorption line shape are of con-
siderable interest. In principle, these moments can be
obtained directly from the free induction decay signal
following a single 90' pulse, since the signal is the
Fourier transform of the steady-state line. ' For the
second moment, a measure of the second time derivative
is required at zero time, i.e., immediately following the
pulse. It is well known, however, that experimentally
it becomes extremely dificult to get the resolution time
of pulse equipment very short, and considerable effort
has been expended to this end. '

Recently, Powles and Strange' have demonstrated
that, as expected, for very close pulse spacings the
solid half-echo shape of the proton resonance is practi-
cally the same as the Bloch decay over the whole signal
envelope in a number of solid polymers. They have also
considered the general case of e interacting static spins
—'„and they have shown both theoretically and experi-
mentally that the second and fourth moments can be
obtained directly and rapidly from the solid echo.

In a two-pulse experiment of close pulse spacing, all
the information concerning the even moments is con-
tained in the region of the solid-echo maximum, as well
as the Bloch decay following the first pulse. Since by
careful choice of pulse spacing, the echo maximum can
be made to fall just outside the equipment resolution
time, information that is normally inaccessible through
equipment limitations can be made available with
relatively modest pulse apparatus.

The present work extends the solid-echo calculations
to include m identical interacting dipoles of any spin I.

2 E. L. Hahn, Phys. Rev. 80, 580 (1950).' J. G. Powles and P. Mansheld, Phys. Letters 2, 58 (1962).' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).' I. J. Lowe and R. E. Norberg, Phys. Rev. 107, 46 (1957).' P. Mansfield and J. G. Powles, J. Sci. Instr. 40, 232 (1963).' G. W. Clark, Rev. Sci. Instr. 35, 316 (1964).
s J. G. Powles and J. H. Strange, Proc. Phys. Soc. (London)

82, 6 (1963).

In Sec. II.A, an expression is given for the principle
error term arising in the evaluation of the second
moment.

Also calculated is the effect of two or more rf pulses
on solids containing two magnetic ingredients. It is
predicted that for certain pulse sequences, which for a
single-spin species would normally give zero signal,
transient signals are obtained which are neither solid
echoes in the forgoing sense nor Fourier transforms of
the steady-state line shape. It is shown that measure-
ments of these signals should lead to a direct estimate of
the second-moment contribution of the nonresonant
spins. This cannot be done either by steady-state ab-
sorption or "conventional" solid-echo studies; although
there is a class of double irradiation and cross relaxation
experiments, ' "which could, in principle, measure this
quantity. These experiments, however, require a rather
complicated theory with which to extract the result and
are by no means as direct as here. We are thus able
essentially to isolate the cross-coupling terms between
the two magneti. c species arising in the dipolar Hamil-
tonian and look at the effect of this alone.

A phenomenological explanation of the signal for-
mation is obtained if we consider the nonresonant 5
spins as providing an effective static local field through
the Csj,sS,&

interaction or cross-coupling term. This
is seen to have the same rotational symmetry as a
single-spin interaction with external inhomogeneity,
provided the pulses interact with the resonant spins
only. Immediately following an rf phase-coherent pair
of 90 pulses with spacing less than T2, the net trans-
verse magnetization is zero. Classically, the y magneti-
zation, say, is composed of two equal and opposite
components of magnetization which evolved during
the free induction decay following the first 90' pulse.
These two equal and opposite components of magneti-
zation are free to precess in the local 5 spin 6eld, and
thus a signal growth might be expected, not unlike the
classical Hahn spin-echo formation. The time to reach
the maximum signal amplitude is not expected to be
equal to the pulse spacing, so in that sense this effect
is not a solid echo.

In Sec. II.C, the applicability of solid-echo studies is
considered in the case of a quadrupolar broadened
system. Kambe and Ollom, " in an earlier paper, have
calculated the second moment of the central absorption
line due to dipolar broadening in quadrupolar broadened
systems of half integral spin.

The present work considers the effect of pulse ir-
radiating the central transition of a well-resolved
quadrupolar broadened system of half integral spin. In
the case of a single 90' pulse, it is shown that the second
time derivative of the free induction decay envelope at
zero time yields the second moment of the central
absorption line, in agreement with Kambe and Ollom.

L. R. Sarles and R. M. Cotts, Phys. Rev. 111,853 (1958).' F. M. Lurie and C. P. Slichter, Phys. Rev. 133, A1108 (1964)."K. Kambe and J. F. Ollom, J. Phys. Soc. Japan 11,50 (1956).
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An expression is also given to erst order in time for
the transverse magnetization when the central tran-
sition only is irradiated by a pair of coherent 90' pulses.
It is rather surprising that a signal should appear at all
in this system, since we are dealing with a single mag-
netic species. The interesting consequences of this fact,
particularly when scalar interactions are present, is
discussed.

II. THEORETICAL TREATMENT

A. Single Magnetic Species, Any Syin I
The pulse response of a spin system is easily calcu-

lated using the density matrix formulation. "Let

exp —MC/k T
p(o) =

Tr (exp —ABC/k T)

be the initial thermal equilibrium density matrix, where
MC is the total Hamiltonian of the system, k is the
Boltzmann constant, and T is the absolute temperature.
Here Tr denotes the trace or diagonal sum, We take the
spin dependent part in the high-temperature approxi-
mation and put

p(0) 5&qpI, /kT Tr[1)=aI, .

If the spin system is perturbed by an external agency,
the equation of motion of the density matrix is

the density matrix according to

p*(t) = (expiXpt) p (t) (exp —iBCpt)

and substituting into the equation of motion this gives
at resonance

dp*(t)/dt = i[yH—„I„
+ (expiBCpt)BCiT" (exp —Xpt), p*). (5)

In the present work, we assume that K„»KjT', so
that during the rf pulse, the dipolar interaction may be
ignored. In this case, it is seen that the perturbing
pulse acts as a simple rotation operator R, about I„,
so that Rtp(0)R aRtI,R= a(I, cospr„t+I,sinter„t); and
for the special case of a 90' pulse considered here we
have R~I,R=I, and in a similar manner one obtains
R~I,R= —I, and R~I„R=I„,where

R—~ ieap tI1t

and R~ is the Hermitian adjoint. Immediately following
the pulse, the spin-system Hamiltonian is

= ( o+ "')
(XiT" is the rigid-lattice dipolar interaction, any lattice
vibrations being ignored. ) Since, in the present work
Ko»GC& ', there is no energy exchange between the
Zeeman and dipole energies, we take that part of K~ "
which commutes with Xp, i.e., [Xp,BC,)=0. BCi is the
truncated dipolar Hamiltonian4 given by

with solution

dp(t)/dt = —i[X,p) BCi=g A;~I; I~+B;~I,,I„,
k&j

(2) where for a pair of spins jk of internuclear distance r, &,

and with the vector r making an angle 8;~ with the
applied static field Hp,

p(t) = (exp —iBCt)p(0) (expiXt) .

ABC includes the perturbing Hamiltonian.
Where possible, the square bracket is reserved to

denote the commutator of two operators.
The macroscopic observables of the quantum me-

chanical operators are calculated using

A;a = —-,'y'h((1 —3 cos'8;~)/r, I,')
,B=i-,yP'fi((1 —3 cos'8 i)/r I,P).

(A)=.Tr{pA),
The normalized x component of the free induction decay

(3) signal following a 90' pulse is thus

where A is an arbitrary operator. During the application
of an rf pulse (—H~sinpit, —H„co&ot,s0), the total
Hamiltonian for the system is

ABC = (BCp+X„+BC''")Ii,

where BCO is the Zeeman term.
3C„is the interaction between the applied rf pulse

and spin system and is equal to

eire tIzI e
—iottIz

u g

K~T" is the total dipolar interaction. Transforming

"A. Abragam, The Principles of Ngclear Jtt/lagnetism (Clarendon
Press, Oxford, England, 1961}.See also for introduction to the
density matrix, D. ter Haar, Elements of Statistical Mechanics
(Holt, Rinehart and Winston, Inc. , New York, 1954).The general
methods of calculation used in this work are those used by I. J.
Lowe and R. E. Norberg, Phys. Rev, 107, 46 (1957).

(I,)= Tr{(exp —iXpt) (exp —iBCit)
Tr{I,')

XI (expiXit)(expiBCpt)I }
8 cos+03—Tr{(exp —iXit)I, (expiXit)I, }.
Tr{I,')

(7)

In all the calculations presented here, (I„)=0.This
formulation is extended to the case of two rf pulses, the
second of which is applied at a time r later and is
represented by a second rotation operator R(2). We
obtain for the transverse free induction signal

8 cosa)ot
(I,)= Tr{(exp —iXit')R~p&t(exp —iXir)I,

Tr{I,')
X (expiBCir)Ripi (expiXit')I, }. (8)
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For two 90' pulses separated by time 7- and which have
an rf phase difference 8, we use the notation 90'-r-90'f].
We now consider the special case where 0=90'.

l. 90'-7--90'&0 PN(se Seqleece

By cyclic rearrangement within the trace, and putting
Rtsl ~kR&sl ——~k' and Rise I,R&s& ——I„Eq.(8) can be
expanded as a double series of commutators using the
expression

e+' 'Ae ' '=A+s!kB,A)t
+s'[8.,[:B,A j](t'/2 )+ . . (9)

Finally, after some manipulation, the transverse mag-
netization Eq. (8) reduces to

(I,)=u cosa&st{1—Ms(r —t')'/2!
+M4(r t')'/4—!+

+ (6/4!)Mk, r't"+. }, (10)

where jII2, 3f4 . are the Van Vleck moments of the
absorption line shape in appropriate angular frequency
units, and 354, is an error term, correct to fourth power
in time, which gives the loss in signal of the echo
maximum at t'=~ and is a measure of the irreversi-
bility of the transverse decay. The precise form of the
error term is

M4, = ( M4+ L1/Tr—(l,')) Tr{[Xk',LKk', l,l]
X [BCk,LKk,l,j]}) (11)

(jM) =28,kBk&I,,I„I„
+ ( —B~~A~k+BkkAgk 8—;~A ki+8;kAk&)

X(I,,I g„I„,I,—j„,)..

A similar expression is obtained using K~ .
These two commutators are multiplied together and

summed over all suffices. The trace of this product is
evaluated using the well-known trace relations which
are written here for convenience.

Tr{I .'}= ksl(I+1) (2I+1)k'
Tr{I,,I„,.I,,}= ksil(I+1) (2I+1)~,

Tr{I,,'}= —,'Lls(I+1)' ——',I(I+1)j(2l+i)k',
»{I*'I '}=l(-'I'(I+1)'+-'I(I+1)3(»+1)" (13)

TrI~,.I»——TrI,, =TrI,,'= TrI~,.'I„,.=0

(j~k);
Ã here is the total number of spins in the system. After
much algebra, we obtain the result

M..= (1/Tr(I;)) Tr{[K, ,k~„l,j][X„L~„I,7]}

{—128;kBkt LA, k (Bk (
—8;,)

l&k&j
+A ki(8;k —8,&)3

—6';k(Bk,—8;,)
+A k i (8;k—8,()$'+ 68ktsB k P}(-',I(I+1))'

+2 Z {B,k'[-s'I(l+1)+-,'7

and has been calculated previously, ' for the special case
of spin ~. It is zero for a pair. of spins ~; this is implicit
in the exact calculation of Powles and Mansfield. '

It is seen from Eq. (10) that the second time deriva-
tive of the transverse signal envelope at ~ = $' yields the
second moment plus a small correction factor. Higher
moments can also be obtained but, strictly speaking,
would require the evaluation of correction terms to
higher powers of time. For the present, we limit our-
selves to a discussion of the applicability of the method
of solid echoes to the measurement of second moments
in materials of any spin I, and thereby justify the
termination of the expansions used to fourth powers in

time.
Calcstlatioss of M4, . Using the truncated dipolar

interaction Hamiltonian Eq. (6) to evaluate the com-
mutators occurring in Eq. (11), we obtain

[~,[~,l.]]=E {(jtt)+(&j)}

+B,k'A, k ,' L 4I(I+1)+3)-—
+8;k'A, k'-,'2—6l(I+1)+-,'j}(-',I(I+1)). (14)

If we use the fact that p~&k» ———,
' g~~k~; and make

the simplifying assumption that there is no exchange
interaction, i.e., A;k ———8;k/3, then Eq. (14) reduces to

M4. =—Z LsB,k'(Bk~ —8;~)'+BkPBktsj
g &~a~~

XLs (+ )j'+—Z 8'Ls (+1)7 (1 )
LV t]'&j

Subtracting from Eq. (15) the expression for the fourth
moment, ' we get finally for Eq. (11)"
M 4.——L

—(3/Ã) (Qk~; B,k')'

+ (2/3&) Z t~k~; [8 k'(8 i
—Bki)'+-'8 k'8 s)

+(1I/&) Zk~ sB "(13+3/2I(l+1))3
XLsl(l+1)7' (16)

where

+ Z {(j@)+(&tj)+(V&)} (»)
l&k& j' In the special case I=-'„the error term reduces to

M4*= —(1/9&) p lwkAJ (s8 k'8 !'+48/k'BglBkl)

(j&)=B~k'I*,l*k'+ArkB~k( I.;IV*k+Iskl s I'— "This expression has been obtained independently by J. H.I» I~k I~ Izk St—range (private communication).
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in agreement with Powles and Strange. If the further
assumption is made of equivalent nuclear sites, i.e., a
cubic lattice, then Eq. (16) reduces to

M4, =[—3(gi »i')'
+(2/3&) E)»~ [»"(& i &»-)'+-'»"&»']

+Q), —,'»)4(13+3/2I (I+1))]PI (I+1)]'. (17)

Fquation (17) has been evaluated explicitly for a simple
cubic lattice with lattice constant d and for the static
magnetic field along the [100]direction. Only the pure
dipolar interaction is considered. We use the lattice
sums given by Van Vleck. 4 The result is

M 4,
——33IIg'[—0.46+0.021/I (I+1)],

where the second moment

~,= (36.8/d') y'A[1 —0.187]-,'I (I+1) .

Comparison with the expression given by Van Vleck for
the fourth moment shows that, in general, —354, &3ff4,
and if taken to be the principal error term, the second
moment can be estimated from the solid echo to a
predictable accuracy.

If the exchange interaction is included in Eq. (14),
then the A, ), are replaced by A, ),+2,)„the 8,), terms
are unchanged. Thus, in this case, measurement of 354,
and 354 could, at least in principle, lead to a separation
of the exchange coupling constant from the dipolar
term. However, because of the rather complex form
for 3f4 and 3f4„it is doubtful if any tractable method
of untangling the two interactions is possible. This
point is discussed in more detail helot, in connection
with quadrupole broadened systems.

Z. PO'-v. -90'0. Pulse Sequence

This case corresponds to the transverse magneti-
zation being tipped down into the —s direction, and is
easily shown to give zero free induction signal following
the second 90' pulse for any r.

B. Two Spin Species I, 8—Irradiate I But Not 8

We now consider the case of two magnetic ingredients
with spin I for the resonant and S for the nonresonant
species. The truncated dipolar Hamiltonian for this
case4 is

SCi=ga&; A;~I;.Ia+»II,,I,„+Qp& & ))S ~ Sp

+7)-P'*.~.,+2~,p &apI.P'.„(18)
where A;&, etc. , is as given previously, and

C)s=A)p+yzys[h(1 —3 cos'8)s)/ri))'].

Because of the diGerent rotational symmetry of

Za, p &ipI;;&*„

Eq. (10) cannot be used to calculate the transverse
decay response to two 90' pulses. Instead, we must
return to Eq. (8) and consider the actual expansion
coeKcients of (I,), term by term.

1. 90'-v.-PO'». Pulse Sequence

Expanding Eq. (8) using the operator expansion Eq.
(9), we get for the transverse decay following two 90'
pulses correct to the fourth power in time:

(I,)= (a/Tr[I '})Tr[I '+&'([&i',[&i',I*]]I.(r'/2!) —[&i' I*][&iI*3'~+I*[&i[~iI ]](~"/2 ))
y;4([~„[~„P{,,[3.,',I.]]]]I,(r4/4!) —[X,',[K,',[X,',I.]]][X„I.](fr /3!)—[X,', [X,',I.]]
)& [~„[~„I.]](g' r2/4) —[3C,',I.][K,,[3ei,[K,I.]]](t"r/3!)

+I.[~i [~i [3'-i [~i I*]]]1(&"/4'))+ ] (19)

The traces of the coeKcients of t'"r for n+m odd are
easily shown to be zero, so we do not include them
above.

Now in this case, 3C~'=E~@ K~R~~) and E.~~) I.8~2)
=I„;also, R(2)"I„R(2)= I. and R(2) IgR(2) I..—U»ng
these operators, together with Eq. (18), we find in
contrast to the single-spin species case that PCi', I ]
W —[Ki,I ]because of the cross term

of Eq. (19) gives

(I.)= (J cos(do&[1 [(3II2rr+IV2r s) (t' ——r)'/2!
+~2Is~'&]+ [(~4jI+~4rs) (f' —T)'/4!
+~4 (&'r /3!)+&4„(t'r /4)

+~4., (~"r/3 )]+ ]
Here

(20)

Z~.u~~(I 8 p.

This makes the evaluation of the traces in Eq. (19)
more tedious since more of the commutator coeKcients
of the fourth power in time are unequal; also the co-
efficients of the second power in time are no longer all

equal to the total second momen. t. Explicit evaluation

~ill = (3I(I+1)/Nr) Zi& & 2
~2rs= (3&(&+1)/I)Ir) Ps, s C,p',

and &I is the number of resonant I spins. M,rl+M', zs
is, of course, the total Van Vleck second moment for a
spin system composed of two magnetic ingredients.
M4~~ is the fourth moment of the resonant spin only,
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2%4„
(M2rr+M2r s)+

M'4rs is the fourth moment contribution from the non- envelope Eq. (20) at t'=r,
resonant spins.

The error terms arising in Eq. (20) are defined below
but not evaluated explicitly. dP

M4tt ™4rr+M4rs
—Tr{[Xr',[Xi',[Xi',I.])][Set,I,]), (21a)

6M4„
+ 72

3 t

(22)

M4 = —(M4rr+M4rs)
+Tr{[K,', [BC,',I,)][X,„[X„I.)]), (21b)

M4, =M4rr+M4zs
—Tr{[Xi',I )[Ki,[Xi,[Xi,I,]]]). (21c)

For short times ~ and for t' r, the dominant terms in

Eq. (20) can be rearranged as

(I,) ~ [1—M2rr (t' —r)'/2! M2zs (t'—2+ 2'2)/2!+ ~ ~ ~ 7.

If M»1))3f»g, the second term dominates and a
definite echo results. The maximum amplitude of the
echo will be decreased by the third term as well as
higher M4, -type terms. If, on the other hand, M»1
(&M»~, as happen s in some ionic crystals, oo meas-
urable solid echo may be observed. Solid echoes may be
discernible for larger 7-, however, since the fourth
moment terms will become increasingly effective in
increasing the signal.

Taking the second time derivative of the signal

It is seen that the procedure for evaluating second
moments from the solid echo at t =2r is still valid in
the case of two spin species, for short 7-. In this case,
however, the error term may be slightly larger than for
a single magnetic ingredient. From the foregoing dis-
cussion, one might guess that the half-echo shape when
an echo arises should deviate more severely from the
free induction decay shape than is the case for a single-
spin system.

Z. 90'-r-90'0 Pulse Sequence

We use Eq. (8) but with the rotation operators
defined as Ri2i I,Et2i I„It (2I&~——(2——

&
I„and—

R(2) I„8~2)=I„.The dipolar Hamiltonian is again Eq.
(18). Following the procedure outlined above and
evaluating the traces, we And in contrast to the single
spin case, the nontrivial fact that not all of the time
coefficients vanish. The expansion up to the fourth
power in time is

(I )= rr{M2zst'r+—M4rs, (r't'/3 )+M4rs2(~ t"/4)+M4zs, (rt"/3!) jhigher terms},

where

M2rs= (1/tUz) E2,p -', 5(5+1)C2p',

(23)

(24a)

M4zs, = (1/1Vz) Qp Qt&t {38t2 (Ctp+C2P )+2Ari (Crp Ct p) +38r2At2(Crp C2P) }—2I(I+1)2S(S+1)- (1/iU. ) Z, Ep - {2 -p'(C, p
—C,.)'+«,.'C p'}[lS(5+1)]'

—(1/ItI r) Q;,p C,p'-,'{S'(5+1)'—-'5(5+1)) (24b)

Mtrs, = (1/tUr) pp p2&; {2A,2 (Ci„—C2P) —88; C2PC,P+482tA, 2(C;p C2P) }22I(I+1)225—(5+1)
—(1/1Vz) P2 Qp& 2tz P2(C2 —C2P)2[25(5+1))2, (24c)

M4rs, = —(1/tUr) Zp Z»r {2Ar (C2P 2Crp)' 3»—2'(Crp'+—C2p')+8t2Ar2(C, p
—C2p)')2I(I+1)25(5+1)- (1/tU. ) ~.2„.{244.p(C.--C.p) +«rp C;. )[-:5(5+1)]'

—(1/tUr) ZrPCJP'2 {5'(5,+1)'—25(5+1)}. (24d)

352~~ is the Van Vleck second-moment contribution of
the nonresonant spins. It is emphasized that M4$+y,

&4~8„and354Ig, are not fourth-moment contributions
of the nonresonant spins but related quantities which
include an error term.

The signal following the second 90' pulse given by
Eq. (23) has the general character of a derivative free
induction decay, but characterized by the cross-
coupling interaction of the two spin species only. This
is only approximately true since N 4183M%41~ and there
are additional terms in t' and t". Taking the first time

derivative of Eq. (23) evaluated at t'= 0, we obtain

(d/dt )(I )t'=0 rr[M2zsr+M4rst(~ /3!)+2). (25)

U»ng Eq (24b), M4zs, can be simplified in terms of
the fourth-moment contribution of the nonresonant
spins, i.e.,

M4rst = M4rs+2 2 {38r2—'(Crp'+C2P')
P k~q'

+8 2A t (CJP C2P)') SI(I—+1)25(5+1) (26)
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Measurement of the initial slope of the signal for
fairly short v- should yield a direct estimate of the
cross second moment. We briefly mention a slightly
different approach which yields the same result as Eq.
(25). The quantity of interest, namely d(I,)/dt' evalu-
ated at t' =0, can be calculated in a rather more direct
manner, showing the 7 dependence in a clearer way.
From the equation of motion of the density. matrix Eq.
(1), we have in the rotating frame

904

LLt BLO
Q OE
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CI

EQUIP.
RESOLUTION

TIME

90

TIME

2IT

HO

zs ))M 211

OUPLING
NT

T'-9O40, )

but

(dp*/dt') g o
—i[K——&,p*(r)]

p*(r) = (exp —iK)'r) —aI, (expiK)'r) .

(27)

Expanding this, using Eq. (9) and substituting into
Eq. (27), we Gnd

ai
(d/dt )(I )~'=o=

Tr (I,')
Tr BC', I,—BC'',I, zr

i2T2

+[K&'[K)',I,]] + . I, . (28)
2~

The first term and the coe%cients of the even powers of
r vanish on taking the trace, thus yielding Eq. (25).
We see, however, that the function. (d/dt')(I, )~ v=o is
itself an odd function of v-. This has the form of a free
induction decay derivative. Integration of this function
gives an even function of r which is similar to a trans-
verse decay signal but characterized by the cross-
coupling interaction, i.e.,

Fn. 1. Sketch of the modulus of the expected signals in a two
spin system in response to two rf 90' pulses spaced a time r apart.
When the second pulse phase is shifted by 90' with respect to the
first one, we expect the normal solid echo provided the dipolar
coupling between the two spin species is small compared with the
total dipolar interaction. This case approaches a single species
spin system. If the cross coupling term dominates, then the same
pulse sequence may not give rise to a well-dehned echo for short
pulse separations. If the two pulses are phase coherent, we expect
a different effect, antiphase to the normal echo, and characterized
mainly by the dipolar coupling between the two spin species.

signal is zero. Provided the signal shows a maximum
outside the second-pulse dead time, a reasonable value
of slope should be obtainable. The modulus of the
expected signals is sketched in Fig. 1. We now propose
a further experiment which may overcome to some
extent the objection raised above.

3. 90'-7.~-90',.-7.2-180',.Pulse Sequence

The expression for the transverse signal Eq. (8) is
extended to include a third 180' rf pulse in phase with
the erst two 90' pulses as follows:

and

00 —(I )( =()dr=G(r)
dt'

(29)
(I,)=a cos(oot Tr{(exp —iK&t')E(3) t (exp —iK(r2)I('(o) t

X (exp —iK)rq)I, (expiK)r~)E(o)
X (expiK(ro)R(o) (expiK(t')I, ) . (31)

(d'/dr')G(r) ~. o= aMors=— (30)

The fourth derivative of G(r) yields M4rs„which from
Eq. (26) is generally less than the true fourth moment
contribution of the nonresonant spins.

Cross second moments which are derived from Eq.
(29) and Eq. (30) should be more accurate since their
calculation involves using all the experimental points
on the (d/dt')(I, )&. o versus r plot. This method
amounts to an averaging technique and is rather less
sensitive to the values of signal slopeg for short v.

A possible experimental diS.culty may arise with the
foregoing double pulse technique. The Gnite resolution
time of a pulse apparatus may make the estimation of
the initial slope of the signal after the second pulse
difhcult, although it should be easier and more accurate
than the estimate of the second time derivative in the
case of a single-pulse free induction decay. The reason
is that in the latter case, one does not know the maxi-
mum signal amplitude, and often guesses have to be
made about the actual shape of the decay signal within
the receiver dead time. In the present case, however,
we know that immediately following the pulse the

Using the same notation as in the previous section, we
put

E(3)K)R(3) K) Q Ajj'pe IA+Bj)Ig Ig)
k)j

+ Q a pS Sp+b pSz.Sap QC),pI, P.p, —(32)
P)a k, P

since

E(3)I E(3)~ — I and R(3)I E{'3)t I,.
Rearranging Eq. (31) and substituting the above opera-
tors, we obtain

(I,)= (a cos(oot/Tr{I, ') ) Tr{(exp —iK)'r))
X ( —I,) (expiK, 'r, ) (expiK) ro) (expiK, "t')

X (—I,) (exp —iK&"t') (exp —iK(ro)) . (33)

The cross-coupling term P), , p C)pI„S,p does not
commute, in general, with the rest of the dipolar
interaction. The total dipolar Hamiltonian is divided
into two parts as follows:

K(——I'+ Q and Kg"——P—Q,
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P= Q A;gI; lg+B,sI,~I„+Q a pS ~ Ss+b pSz+zs
k&j P)a

and
Q=Z ~&vI Ap

k, P

In order to break down the exponential operator
products (expNC&rs) (expiX&'1'), etc. , arising in Eq.
(33), we use the well-known separation formula for
exponential operators, '4

eI: +@&~=e ~exp e 'Qe 'd~.
0

The product

(expiR~rs) (expiK~'7)

(34)

Xe @'~ exp e+o'Pe @'dt ~. (36)
, t'

4. 90'-7--180 0 o g0 I'Nlse Sequences

Unlike the single-spin case discussed elsewhere, with
two magnetic ingredients, one would expect a small

9O' isO'
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FIG. 2. Sketch of the modulus of the expected signals in a two
spin system in response to three coherent rf pulses. The first two
are 90' pulses and the third is a 180' pulse. The zero following the
third pulse is expected to fall at about ri+2v. 2 from the time origin.

' R. Feynman, Phys. Rev. 84, 108 (1951).

For short times v.2 and 3', a first-order approximation
gives

expiK~rs exp'~"t'~e "e @&" "e ' (36)

Using Eq. (36) in. Eq. (33), it is easily seen that for
t'=rs, (I,)=0. The gradient of the signal at 1'= rs is
from Eq. (33) and Eq. (36):

(d/dt') (I,)~ „(acosset/Tr(I—,') ) Tr( (exp i%~'r, )—
XI,(expiBC, 'r&) expsP2rsfKy I g

Xexp iP2rs), —(37)

which is, in general, nonzero. For small ~2, the domi-
nant term in Eq. (37) reduces to Eq. (28), except for a
change in sign of the cross term. The modulus of the
expected signals is sketched in Fig. 2.

signal growth superimposed on a transverse decay for
both zero and 90' phase shifts. This arises because of
the difference in rotational symmetry of the
P;,s C;sI,~S,&

to the remainder of the dipolar Hamil-
tonian. This case is quite straightforward to evaluate
by using the foregoing techniques and is not discussed
further.

C. Echoes in Quadrupolar Broadened Systems

We now consider the case of a single magnetic species
with half-integral spin I and quadrupole moment Q.
For simplicity, we take the case where all nuclei are
equivalent and in a fixed electric field gradient q'. The
case of a distribution of q's is a simple generalization
of the calculation in this section and is not presented
here. In what follows, we consider the quadrupole
satellites to be well resolved from the central line, i.e.,
pQQ pd'p so that irradiation of the central line does not
interfere with the satellites.

The technique used to calculate the eRect of various
pulse sequences is essentially the same as Sec. 2.A, with
the added complexity, however, that now we have to
discard certain matrix elements arising in the spin
operators. In view of the added complexity, the ex-
pansions are evaluated to the second power in time
only. Since we will be interested only in the expansions
around zero time, the results will predict the gross
eRects, higher order time terms entering as small
corrections.

The present work differs from the well-known quad-
rupole multiple echoes io solids of Solomon" in the
following way. We have specifically included the
dipolar interaction, which is responsible for the echo
formation. Solomon ignores the dipolar interaction
entirely, the echoes being formed through a distribution
of quadr upolar splittings throughout the sample.
Essential in his case also is a very short 90' pulse such
that yII„/2~))vo, which ensures that initially the whole
of the resonance spectrum is turned over—a condition
that often cannot be met in many solids where the
quadrupole splittings may be many megacycles. The
expressions developed here are the result of first-order
quadrupole splitting. Second-order eRects, which pro-
duce shifts in the central transition, are entirely
neglected. This is valid if vq/vo((vq;v, where vs is the
Larmor frequency. Except for extreme broadening,
this approximation has a wide applicability. For single
crystals with one crystalline field axis, we can always
orient the crystal in the static magnetic field such that
the second-order eRects vanish.

1. Free leductioe Decay

The total Hamiltonian for the spin system in the
presence of the rf pulse and with a quadrupole inter-

"I.Solomon, Phys. Rev. 110, 61 (1958).
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action is
hX = A(Xp+Xt+X~+Xq),

Kq ——[e'ttQ/8I (2I—1)Is] (3 cos'0 —1)
X [3I,' —I(I+1)]

(39)=~q[» ' —I(I+1)].
We transform the density matrix to a rotating frame
at the applied frequency according to p*(t) =e '"nr*'

Xp(t)e'"nr*' such that Xo+Xq=co~I, . Xi is neglected
during the rf pulse, i.e., assume that K„&)3C~.The
equation of motion of the transformed density matrix
then becomes, using Eqs. (1) and (38),

dp*/dt= —i[XO+Xq+X~*+coiiI., p ], (40)

where

Ky —opyIy and coy =pH~ ~

The solution of Eq. (40) is

p*(l) = [exp —i(XO+Xq+X,*+o~gI,)t]
Xp*[expi(Xp+Xq+X„*+co@I,)l].

Using the explicit forms for the Hamiltonian, we

obtain from Eq. (41) in general form

p"'(t) =P expi{ (m' —se)[A&o+3&oq(m+m')]
S

m', n'

+ (rc' rc) [A(o+—3coq (rc+ rc')]}l
t

exp —i Se,' &' dt' p+

0

t

X expi Se„'t'dt' m', ~', 42
0

for a pair of spins with individual magnetic quantum
numbers m, e. Here

X„'(t')= (expi(h I,+co&oq[3I,' I(I+1)]—}t')coiI„
X (exp —i(hcoI, +coq[3I 2 —I(I+1)]}t'), (43)

and Aco=cog —co0, co0 is the Zeeman resonance angular
frequency of the central transition. We see from Eq.
(42) that the effect of an rf pulse at the central line

frequency on the equilibrium density matrix is to leave
the diagonal matri~ elements of p(0) for ~m~, ~N~)-,'
undisturbed, provided, of course, or@))co~. Only the ~-,'
m states are changed. The p* is left with a diagonal z

component of elements (m, sc
~
I,

~
m, rs) for

)
m

~

or
~

I
~
)—',

only, plus a z' component for ns, e=&-,'. Also, of
course, an x' component with matrix elements

(m, &-', ~I,')m, W-', ) and (+2, m(I, '~Wa, m) only. The

where 3:@ is the quadrupolar contribution, the other
parts have their previous meaning. We take the electric-
field gradient to have cylindrical symmetry. If 8 is the
angle between the principal axis of the electric field

gradient tensor eg and the static magnetic field vector
Hp, we write Xq to first order as

latter can be seen from a consideration of the Zeeman
energies in the presence of a quadrupole splitting. As
expected, the applied rf pulse serves to connect only
energy states whose total magnetic quantum numbers
differ by one, i.e., AM = Am+ Arc= &1 with Am,
dc=~1, 0. Since the static I, component commutes
with the dipolar Hamiltonian and also does not con-
tribute to the transverse x signal, we do not need to
consider this further.

The I,' and I ' referred to above are rot, of course,
the matrix components of the total spin I, since we are
irradiating the central transition only. The following is
a simple example: If we consider spin I and calculate
the effect on the initial equilibrium density matrix of
pulse irradiating the &, levels for a siegre spin using
Eq. (42), by simple matrix multiplication it is easily
shown that

(I,)= (a cos~ol/Tr{I, 'I,})Tr( (exp —iXtt)I, '

X (expiXrg)I, }. (45)

Because of the quadrupole splitting, some of the original
degeneracy of the Zeeman levels is lifted, so that now
the dipolar interaction has to be further truncated,
since spin-spin interactions connect only degenerate
states of the same total M. 'e Expansion of Eq. (45) to
the second power in time gives

Tr( —[Ki,Ie'][X&,I,]}g2

(I )=8 cos(dpi 1— ~ ~ ~

2ITr(I,'I,}
(46)

We now wish to evaluate the coeKcient of t' in Eq. (46)
above which we denote as M2, but subject to the re-
strictions imposed by the presence of the quadrupole
interaction. Kambe and Ollom in an earlier paper, "
have calculated the second moment of the central
absorption line due to dipolar broadening in a quadru-
polar broadened system of half-integral spins. Following

«C. P. Slichter, Principles of Magnetic Resonance (Harper 8r.
Row Publishers, Inc. , New York, 1963).

Rtp(0)R= P (m~I, ~m)+I, ' cosn&otl
l~l&4

+I '
sincrcoil, (44)

where R is the pulse rotation operator, I,'= —,'$g„
I '= ~LT and 0-„0,are the components of the Pauli
spin matrix; also cot = yIIr and cr = (I(I+1)+4)'"
=-,'(2I+1). So, in this case, we see that for a given
applied II~ the nutation of the 2X2 submatrix is ac-
tually n times as fast as that of a real spin 2. In the
following calculation, we assume 90' nutations, so that
eyII~t=-,'x, making the z' component vanish. The
z component of the free induction decay following a
90' pulse is given by Eq. (7) with the modifications
mentioned above, i.e.,
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their notation, we write the dipolar interaction as

X,= P Sej(„.——Q (A,i.+A;i,')I„I,
„

+2 (A j' kAi'—') (I+jI ~+I jI+~)-(47)
where A, ~ is the scalar coupling coefficient, as defined
previously, and A; I,

' y——'t'tf (1 3—cos'8;&)/r ji'$ = —2A;„
in the previous notation and I+ are the usual displace-
ment operators.

Since the dipolar Hamiltonian is the sum of two-body
interactions, it is sufhcient to consider just two spins

j, k in evaluating the second Inoment.
Of the matrix elements of Eq. (47), the above con-

siderations show that the terms to be retained are

(m, ji
~
~ji,

~
m, jt) = (A jj+A ji,')mid, (48a)

(m, m —1~~;.~m —1, m)=(m —1, ml~j'lm m —»
= (-'A. i—-'A i')(I+m)

X (I—m+1). (48b)

The matrix elements of the x components of spin are

=-;(2I+1) (49a)

(m, ~-'., ~I.'~m, W-', )=(a-', , mjI. '~ W-', , m)
= —,'(2I'+1) = —', . (49b)

I' means reduced or fictitious spin ~. The calculation
of the traces is straightforward but more tedious than
for the case with no quadrupole splitting and is the
principal reason for terminating the series in t2. The
resulting coeKcient of P in Eq. (46) becomes

-I(I+1) 2I2(I+1)'—3I(I+1)+-,'- 2—QA, P
3 2(2I+1) 1V»j

4P(I+1)'+7/4 2
+ ',I(I+1)+-— —PA, a

2 (2I+1) cV s» 2

2P(I+1)2+3I(I+1)+13/8 2
+ 3I(I+1)+

E2(2I+1)

~)A"
XP . (50)

I )g'

As expected, this result agrees with Kambe and Ollom's

second moment for the central absorption line and shows

that the latter can be obtained from the second deriva-
tive at zero time of the free induction decay envelope.
%e now apply the above ideas to the calculation of the
effect of a second eRective 90 pulse which is coherent
with the first one and again irradiates the central
transition only in a time short compared with the free
induction decay. This pulse inverts the populations of
the ~~~energy levels.

a coscopt
(I,)= —Tr{(exp —iXi'r) I,*(expiBCi'r)

TrfI I ')

X (expiXi't')I (exp —i X'i't)) . (51)

The prime denotes here that we are dealing with the
modified dipolar interaction, the matrix elements of
which are given in Eq. (48). Although formally the
same as Eq. (8), there a.re some subtle differences. We
see from Eq. (44), that I,* is now essentially the total
I, component, but with the populations of the central
truiisitioe only reversed. Expanding Eq. (51) a,nd con-
sidering terms up to the second power in time, we get

(I.)= (a cosh&pt/Tr {I,'I,)) TrfI,"'I, i/3Ci', I,*)I,T-

+iI,*(Ki',I,gt'+ ii [K,',fK,',I,*jP, (r2/2!)
i'5&i', I,*53%i'&I,3'r+i'I, *[Xi',PC i',I,5)

X(t"/2I)+ . ). (52)

The trace of the first term is obviously zero. To
evaluate higher terms, we must consider carefully the
matrix BC''. Now,

3'.i —E(2) Xg E(2) .

By considering the eRect of a 90' pulse on the central
transition of the s component of a single spin, the
matrix elements of the dia, gonal terms of BCi', Eq. (47)
which we denote as BC;I„-D',become

(m, ~~!fe;, '!m, ~)= (A„+A;,')m~

for /m), f~] )-,', (54a)

(m, a-', ~Xj„D'~m, W-', )=(a-', , m~fe, j,D'~ W-,', m)
= (A ji,+A,7,')m-,' (2I'+1)

for fm])-,',
(+l, +ll~j»'I —l, ~k)

= (A j'+A ~') 4(I'(I'+ 1)+l).

(54b)

(54c)

The further subscript D used here and OD referred to
below denote the diagonal and oG-diagonal parts of
BCi in Eq. (47), i.e.,

1 Z +jk Z KjkD +xjkoD
&)y' k&~

For the eRect of the pulse on the off-diagonal terms,
we again note that the rf connects only the &-,'ns
states of a single spin, so that the matrix elements for

~

m
~
)-,'remain unchanged.

Z. 90'-7--90', .Pulse Sequerrce, IrradMtirIg the
Centra/ TrarlsitiorI Only

We follow the procedure used in Sec. II.B, Eq. (19),
but with the modifications expressed in Eq. (45). Thus,
for an effective 90'-v.-90 p' pulse sequence, we obtain
for the transverse component of magnetization following
the second pulse applied at time 7- after the first
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The matrix elements for m= +~ do interact with the
rf 6eld operator, and this case requires a treatment
similar to Eq. (42) for the effect of an rf pulse on I,
when irradiating the central transition. For the eRect
of a pulse on the x component of a single spin I, we

obtain

RtI,R= P (mlI, lm 1)+(—m 1—II, ltn)

+2@50~ CostlQ)yt+ gGAO g S111GGDyt. (55)

We must now consider the effect of the 90' pulse on
the oR-diagonal term in the dipolar interaction in Eq.
(47), which is

X;i,oo'= x'(2A~~ A;~'—)R LI+;I ~+I ;I+„]R-
', (2A; g A; -I,')Rt LI—,,I.,+ I„,.I„,JR. (56)

for lml). —,',
(m, m

I
xtpoo I m, m )=

g (2A 'a A a )& mm'

(57a)

for m, m'= a ~2, (57b)

The I„,.l» term commutes with the rotation operator
about I„soit remains unchanged. Using Eq. (55) with
m»t= ~tr, we obtain for the matrix elements of Eq. (56).

(m, m —1
I
x;eon'

I
m —1, m&

=(m 1 mIXjkoD lm, m —1&

=
I ~A;~ ——

A~4; „'](I+ )m(I tn+1)—

X (2I+1)-,' (2I'+1) (-,')'m'n (60)

is simply the number of matrix elements like

(m, ~ l I lm, ~2&» (~2, ml I
~ l, m& «r Iml )l. This

is 8, independent of m.
Returning to Eq. (52), we obtain the central result

of our calculation, namely, that the transverse signal
following an effective 90'-7-90'0' pulse sequence
evaluated to the second power in time is

2(2I'+1) I(I+1)(2I+1) 1
(I )= —a cosa&ot

(2I+1)' 2.3 4

may disregard them from further consideration. Now
from Eq. (48a) and Eq. (49a), we get

(m, W-,'IX;g, lm, W-,'&(m, W-'. II, lm, a-,')
—(m, wPI. lm, + ', )&-m, a 2I-X;elm, a-', )

= 2(J;~+A;~')x~(2I+1)m(%-,'), (5g)

and from Eq. (A6) we obtain

(m, a-', IX;+n'Im, w-,')(m, w-,'II,*lm, w-,')

= 2(S;g+A;I,') ~ (2I'+1)m(+2') . (59)

Multiplying the two commutators and summing over
the m states and all particles, the total trace is

Tr(LXg', I,*jLX~',I,]}= —g g 4(A;p+A;~')'
m&$ k&q

(+-: ~2lx;.on I

——. ~.)
lx son I+

2
X—Q (Ap jA,~')'t'r . . . (6—1)

g I)g

(2A;I, A;t,
' 2—I+1)'

i
(57c)

We now have all the relevant matrix elements of BC~',

X&', I„andI,*, and the traces in Eq. (52) can now be
evaluated. In striking analogy with the case of a spin

system composed of two magnetic species discussed in

Sec. II.B, we find the surprising fact that the coeKcient
of I,'7. is nonzero. All other terms in the expansion up to
t'"r for n+m=2 vanish on taking the trace Ashort.
proof of this is given in the Appendix.

We now evaluate the coeKcient of t'r, in Eq. (52),
i.e.,

Tr(LX,',I.*CALX,',I,j}.
Since we require the diagonal sum, we see from Eqs.
(A6) and (A7) contained in the Appendix that we

require all matrix elements like

(m, ~klXt»'lm, ~k&(m ~klI *1m ~k&

X(m, W2IX;elm, W2&(m, w-', II.lm, a-',
&

for Im I
)-,'.

There are no matrix elements of LX~',I,] which couple

with those of Eq. (A7) to give diagonal terms, so we

The precise meaning of this result is the following. The
application of two closely spaced coherent 90 rf pulses
to the central transition of a resolved quadrupolar
broadened nuclea, r system of half-integral spin I gives
rise to a nuclear signal following the second 90' pulse.
The calculation is correct in powers of time as far as
n+m=2 in t'"r .

According to Eq. (61), the signal should be zero
initially after the second 90' pulse and will increase as
a function of time antiphase to the free induction signal.
Higher order terms, the calculation of which are not
presented here, will doubtless limit the maximum
build-up and ultimately average the signal to zero for
long times I'.

We emphasize that the presence of this signal is due
entirely to the quadrupole interaction, and removal of
the quadrupole term would cause the signal to vanish.
This case would then simply reduce to the single-spin
species case dealt with earlier in Sec. II.A.

The appearance of the signal is a direct manifestation
of a quadrupole interaction, and thus we have a new

way of detecting the presence of a quadrupole interaction
without actually measuring it or, more important,
without locating the actual satellites.
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Measurements on the signal cannot in any simple
way yield information on the quadrupole interaction
itself.

Comparison of Eq. (61) with the case of two magnetic
ingredients, Eq. (23), shows that we have an analogous
situation in which the 6rst derivative with respect to
t' evaluated at t'= 0 should yield a slope which for short
pulse spacings is proportional to r. Measurement of
this slope will yield an experimental value of

+4 ~ ~ ~ " ++*': ~:::..::%+8+ +I+0 +ft++H+

(b)

(2I+ 1)' 2.3

XP (A;,+A, ,')'.

2(2I'+1) I(I+1)(2I+1) 1 2

4 S I ~
kkkk kk ~ j ~4 ~

~ ~ ~ T1 V T ~ ~ (c)

If the exchange coupling is zero, M2* is a simple
fraction of the central-line second-moment M~. Some
values of this ratio are given in Table I.

TAsLE I. Theoretical ratios of Ms*/M's for various spin I,
when the scalar interaction is zero.

Spin I Moment ratio 3f s /dies

0
0.22
0.14

An interesting consequence arises when A;j- is non-
zero. Comparison with the true second moment, Eq.
(50), shows that the coefFicients of the sums are
different, i.e.,

~s=A Q A;a'+& Z ApÃ;a'+C Q A;i",
i&j s» s'»

M2*——D(Q A;Is+2 Q A, pA, g'+ p A;i's),

so that some degree of separation of the two types of
interaction is now possible. For example, if we take
ABED and A, A,

' as known, then we get a number for

aIld

III. CONCLUSIONS

For a single nuclear magnetic species of any spin I,
solid echoes are predicted in the case of a 90'-r-90 go

rf pulse sequence. From the second time derivative at
t'=27, experimental values of second moment are

From this information, one might be able to get the
individual A;&, particularly if the series are strongly
convergent, and hence get a better picture of the scalar
interaction wave functions.

FIG. 3. Photographs of transient signals in powdered aluminum
at 297'K. (a) Iloch decay following a single 90' rf pulse. (b) Solid
echo following a 90'-r-90'90 pulse sequence with v=50 psec.
(c) Zero signal following a 90'-r-90's' pulse sequence. The 90'
pulse length was 12 psec in these experiments and the I,armor
frequency 10 Mc/sec. The horizontal time base sweep is 50 psec/
d1V.

possible within a predictable accuracy. An expression
is given for the principal error term.

Experimental studies of solid echoes in powdered
Ais' (I=s) indicate a value of the second moment
DMs 9.5&0.2 G'——at 29/'K (see Fig. 3). This is to be

compared with the rigid-lattice theoretical value of
7.5 G'. The rather large discrepancy between theory
and experiment seems unaccountable in terms of ex-
perimental errors. The experimental value, however,
is in good agreement with earlier second moments
derived from absorption line measurements on powdered
aluminum. '7'8

In the case of two magnetic ingredients, it is shown
that a 90'-r-90'go pulse sequence should yield an
estimate of the total second moment of the resonant
and nonresonant spins. The expressions derived for the
transverse signal following the second pulse indicate
that the actual shape of the signal can be changed
considerably by the "cross" terms in the dipolar
interaction. For example, when this interaction is much
greater than that of like spins, a discernable echo may
not appear for close pulse spacings. In this case, the
expression for the evolution of the signal from time 27

onwards indicates a larger deviation from the free
induction decay shape than would be the case for a
normal solid echo of a single-spin species. Explicit
evaluation of the correction terms has not been done.

An example of the absence of a solid echo for the
90 -r-90 go' pulse sequence has been observed experi-
mentally in a single crystal of NaF LFig. 4(b)).

For the 90'-r-90'0' pulse sequence, some new solid
transient effects are predicted which should lead to a
direct measurement of the second-moment contribution
of the nonresonant spins. These effects have been ob-

"H. S. Gutowsky 3. R. and McGarvey, J. Chem. Phys. 20,
1472 (1952).

A. G. Red/|", ].d, Phys. Rev. 98, 1787 (1955).
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served in a single crystal of NaF oriented with the (110j
direction along IJs [Fig. 4(c)]. The modulus of the
initial slope of the solid transient signal has been
measured as a function of the pulse spacing 7. These
results are shown in Fig. 5. The general shape of the
curve follows Eq. (25) and is seen to substantiate the
gross predictions of the theory. Details of this work
will be published elsewhere. "

The last part of this paper considers the applicability
of double pulse response studies when applied to single
species spin systems of half-integral spin, having a
dipolar interaction and a resolved quadrupolar splitting.
The specific case studied is when the central line only
is pulsed with effective 90' rf pulses. It is shown that
the second time derivative at zero time of the free
induction decay envelope following one 90' pulse is
proportional to the second moment of the central
absorption line shape. %hen a second pulse is applied
with the same rf phase as the first, a signal is predicted,
the initial slope of which is simply related to the central
line second moment when there is only a dipolar broad-
ening. If a scalar interaction is also present, it is shown
that the dipolar lattice sums and the sums of the scalar
coupling constants combine in different proportions to
that of the true central-line second moment. Thus these
measurements will lead to new information about the
spin system. In particular, it would appear that the
separation of the scalar coupling constants is possible,
and it is reasonable to suppose that evaluation of
individual A, l, to further than just nearest neighbors is
possible.
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Fxo. 5. Preliminary data showing the initial slope versus pulse
spacing of the transverse signal following a pair of coherent 90
rf pulses applied to a single crystal of NaF. The static magnetic
Geld is along the $100$ direction.
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valuable suggestions. elements commute, so that we may disregard them

further. Terms like
APPENDIX

In this Appendix, we wish to calculate the traces of
the coefficients of v-, t', v', t", occurring in the expansion
of (I,) in Eq. (52) and show that they all vanish. Con-
sidering the coefficient of r, we have by cyclic per-
mutation within the trace that

Tr([Xq',I,*)I,}=Tr([I„X~')I,*}. (A1)

The only terms of interest here are the diagonal com-
ponents of [I„X~')since I,~ is itself diagonal. In-
spection of the matrix elements of I„Eqs.(49a) and
(49b), and 3C~', Eqs. (54a)—(54c) and (57a)—(57c), show
that the only diagonal elements arising come from terms
like

&m, m —1I X~koD I
m —1, m)(m —1, mlI. *1m —1, m)

(m, m —1
I
I.*

I m, m —1)&m, m —1
I
3C;goD'

I
m —1, m)

are equal from Eqs. (A5b) and (A5c) and Eqs. (54b)
and (54c), so that these commutators vanish.

We are left finally with nonzero terms like

&m, ~-', l3C,.D'lm, ~-,'&&m, ~-,'II.*lm, ~-, &—&m +2II *1m, ~k&&m +kl3C»'lm, ~l&
=2(w-,')(m, a2lx;gD'Im, w-', &. (A6)

The only other class of nonzero terms arising in the
commutator are

(m, ~—
I
I

I m, ~—)(m, ~—
I 3C;/, D'

I m, &—)
= &~ l, m

I
I.

I ~l, m&&~ 2, m
I
X'»'

I ~k m&

= —,
' (2I+ 1)-', (2I'+ 1)m[A;g+A;p') . (A2)

2&+-'„+-,'lx;, 'I ——;,—-',
&

x (—-'„—l II.*I —-', —l &

(A7)
Hence the diagonal elements commute in the ex-

pression [I„3C~'],i.e.,

[I„3C~')d;„——0 from above. (A3)

We now consider the coefficient of t', and note that
there are no diagonal components of [X~',I ), so that

Tr([3Cq', I,*]I,r —I,*pCq',I,]t'}=0. (A4)

Turning to the more complex case of evaluating the
coefficients of the second power in time, let us consider
the coeKcient of 7' in Eq. (52). We see that

Tr( [3Cg', [SCAN', I,*)]I,}= —Tr([Xg',I,*][Xg',I,]}.
We now examine the matrix elements of the commutator
PC~',I,*]. The relevant matrix elements of I,* are
obtained from Eq. (42). These are

(m, m
I I,*Im, e&= m+e for

I ml

AS.

2&--:, —:lx,.'I+-:, +-:)
x(+-,', +llI**I+l, +l&.

We now use similar arguments for the commutator
[3Cq',I ].From the ma, trix elements of I„Eqs.(49a)
and (49b), and 3C;~', Eqs. (54) and (57), we see tha, t
purely diagonal terms can be dropped since all J,
components are positive. Terms (b) and (c) of Eq. (54)
and (a) of Eq. (57) can also be dropped because these
are all positive. In fact, the only terms that do not
commute are from Eq. (57c) like

= 2 (2;p——,'A;g')[x'(2I+1))'. (AS)

We note that these are diagonal terms only, so that
in the product of the two commutators there are no
diagonal components, i.e.,

(m, &-,' II,*lm, &—',)=ma
(+-'„mlI.*IW-'„m&=W-', +m

alid

for
I
m

I
)—,', (ASb)

Tr( [3Cg', PC~',I,*)]I,}=0. (A9)

We now wish to consider the coefficient of t". i.e.,

Tr{I,*[X&',[Xg',I,]]}= —Tr{[Xg',I,*][X&',I.]}.
&+2, +2 II.*I+i +2&

= —(l+l). (ASc)

It is easily shown from Eqs. (48a), (48b) and Eqs.
(A5a)—(A5c) tha, t the commutator [Xq',I,*]=0, so
that the trace vanishes, i.e.,

In evaluating the commutator, we note from Eqs. Tr{I,*[X)',[Xg',I,]]}=0. (A10)


