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The one-band model for an impurity in a crystal is critically discussed. In this model the wave functions
for low'-energy states in the presence of the impurity are considered to be composed only of wave functions
from the lowest conduction band. This is shown to be invalid when the potential is smaller in size than the
unit cell. It is pointed out that the model can be correctly used in this case only when the strength of the
potential is treated as a parameter to be ltted after the calculation and is not presumed known at the
beginning.

I. INTRODUCTION detailed potential shape is obviously important. What
is done in this paper is to consider a particular model
(a special shape of impurity potential well in a lattice
for which the nearly free-electron approximation is
good) which is exactly soluble. By means of this model
it can be shown that the effect of the higher momentum
components is significant, but that the correct asymp-
totic wave function for the given energy can be regained
by using diiferent parameters in the potential (Sec. II).
It is then shown that these remarks can be generalized
both to other potential shapes (Sec. III) and to crystal
lattices which are not nearly free-electron-like (Sec.
IV).

HE problem of ending the e6ect of an impurity
potential on an otherwise perfect lattice has had

many approximate solutions each with certain unsatis-
factory features. This paper deals with one of these
solutions, namely the one-band model, which gives the
appearance of being a particularly practical technique.
The present form of the model which uses Wannier
functions, follows the work of Koster and Slater."

It will however be shown in this paper that the basic
assumption, that only the wave functions of the lowest
band are necessary to build up the impurity wave
functions, is inconsistent with another simplifying
assumption usually invoked: that the perturbing
potential is much smaller in size than the unit cell.
Provided, however, one asks only the right questions
the model can still give the correct answer. Essentially
one must not ask of it: What are the binding energies
or wave functions of a lattice in the presence of a given,
small (in linear dimensions) impurity potential U(r)?
Instead the potential parameters (in particular the
strength) must be regarded as parameters not given
ab initio but to be fitted in a phenomenological sense
after the one band calculation has been completed.

Before proceeding to the details of the calculation
one can bring out the difhculty by a simple argument.
If the lattice spacing is d, then the highest crystal
momentum component in the first band is of the order
of sr/d. If, on the other hand, the radius of the potential
is u, then any wave function in the presence of this
potential will contain some momentum components at
least up to order sr/tt. If the potential is much smaller
than the atomic cell (a(d/2) then the wave functions
from the single band cannot represent the higher com-
ponents in the true wave function. The question being
asked is then what effect the absence of these higher
components from the wave function has on the binding
energy (if there is a bound state) and on the asymptotic
wave functions (expressed through the phase shifts) for
the impurity potential.

This is such a wide question that it is clear that a
i.igorous general answer cannot be given, since the
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II. A SOLUBLE MODEL

The 6rst part of this section is devoted to a derivation
of the one-band model. The problem will then be re-
stated somewhat to allow the details of the calculation
with the soluble potential to be made clear. The only
case considered will be that of three dimensions, since
the one-dimensional case leads to totally misleading
conclusions concerning the validity of the model. (This
point will be briefly remarked upon later. )

As always in these impurity calculations one is trying
to solve the Schrodinger equation

(where t't'/2m=i). V(r) consists of a perfect crystal
lattice part e(r) and an additional impurity potential
U(r) centered about one of the lattice sites:

V(r) =e(r)+ U(r), e(r+I) =e(r),

where l is any lattice vector. The one-band model
assumes that the perfect lattice solutions (U(r) =0) are
known. Instead of the Bloch functions Q„s for this
lattice the localized Wannier functions

1
W,„(r—r;) =—P e '" "@k(r)-

are used„where e is the band index and r,; are the
lattice points. This is done to simplify the discussion
of the matrix elements of U(r), but its principal virtue
is that the lattice propagator in this representation
closely resembles the free-electron propagator in plane-
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wave representation. The usual derivation now expands
P in terms of the Wannier functions and finds a set of
difference equations for the coeScients. Since this usual
set of difference equations obscures the inadequacy of
the approximations to be made, it is better to keep
everything in integral equation form. The propagator
for the imperfect lattice satisfies

(—V +V(r) —E—i.)G(r,r') = —S(r—r'), (2)

and in terms of the propagator for the perfect lattice,
Go, is given by

G(r, r') =Gp(r, r')+ Gp(r, r")U(r")G(r",r')dr". (3)

This equation becomes in Wannier representation

yak(fi —1 j')

(ei)G(mj)=g B.
k E Ek+ie—

&ik(ri—r~)

+2 2 2 («IUI pt')(pl'IGl~j), (4)
k y l i' E E~k+Ze—

where

(ei
~

G
~

m j)= (W (r—r;)
~

G (r,r')
~

1F (r' —r, )),

To make contact with the usual formulation one
observes that the wave function equation which is
formally

4 =4+GpUP,

becomes in Wannier representation

&ih (ri—r l)

X («i Ui pP) (p/'i g) (6)

and this with the restriction (5) is exactly the usual
difference equation.

The principal feature of this paper will be to carry
out the solution of Eq. (3) in the ca,se of a, lattice of
extremely weak potentials, so weak in fact that the
band gaps are negligible. These weak potentials merely
serve the purpose of providing a scheme for defining the
Wannier functions, and a length parameter. The solu-
tion of Eq. (3) ca,n then be very well approximated by
solving for the t matrix (defined by G= Gp+GptGp) fol
a, free electron in the presence of the potential U(r).
Thus

t(r, r') = U(r)b(r —r')+ U(r)Gp(r r")t(—r",r')dr", (7)

(rtif U/mj)=(~„(r —r,) /
U(r)

/
W (r—r;)).

This has an obvious similarity to the equation for the
propagator of an electron in the presence of a single
potential well and all the difFiculties inherent in the
solution of that equation will also arise when solving
Eq. (4). This similarity will be fully used later on. The
one-band model is now derived by writing

(«[ U) pt') = Upptipp&„p&ip&v p, (5)

which is reached in two steps. First, since the Wannier
functions are localized around the lattice sites, if the
potential is restricted to be within the cell surrounding
rp the matrix elements with /= 0 and l' =0 will dominate.
In reality the Wannier functions do overlap onto
neighboring sites so that even if the other matrix
elements are minimized by making the impurity po-
tential as narrow as possible, they do not become zero.
Thus, the assumption that all matrix elements t'~0 or
l'40 are zero is not a quantitatively good approxima-
tion. Qualitatively, however, this approxiniation is not
serious, the presence of the "oft-diagonal" matrix
elements makes little difference. The second, and, it is
suggested here, more serious assumption is to suppose
that only the lowest (zeroth) band matrix element is
nonzero. It is also true here that each individual matrix
element after the first is small, but together they are
not negligible. In the first case the neglected matrix
elements become exponentially small as r&—ro increases,
whereas in the second case the matrix elements behave
like some small power of the band energy.

where now Gp(r) is the free-electron propagator with
Fourier transform I/(E —k'+ie). It is at this point
that one becomes suspicious of the one-band model,
since any practical attempt to solve (7) leads to the
inclusion of high k values in the transformed propagator
unless the potential itself provides the cutoff in k values
by being long ra,nged. Physically this can be seen to
arise in perturbation theory, where, even though the
energy denominator behaves like k' for large k, so does
the density of intermediate states, so the only mo-
menturn cutoff is given by matrix elements of the
potential. To demonstrate this explicitly, Eq. (7) will
be solved for the potential

U(r) =~t (r a)/a'—

which, so far as the author is aware, is the only potential
form in three dimensions for which (7) is exactly soluble.
This pathological potential consists of a spherical shell
of 8 function at a distance a from the origin. The integral
equation (7) can, for a spherical potential, be split into
its angular momentum components giving'

&(x—y) 2 j((kx)j((ks)
ti(x,y) = U(x) -+— U(x)

X2 F—k'+r e

Xk'dkt, (s,y)s'ds. (9)

For the potential (8) write ti(x,y) =3 &8 (x—a).8(y —a)/a"

3 J. L. Beeby, Proc. Roy. Soc. (London) A279, 82 (1964l.
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V(r) V(r) V(r) integral in Eq. (9) can be approximated as follows
(only the case l=o will be given, for simplicity):

(a) (b) (c)

L (k) = jp(ks)tp(s, y)s'ds

rIG. 2. The three forms of the potential.

A calculation parallel to the above was given by
Koster and Slater' Lparagraph preceding their Eq.
(46)]. They extended. to infinity an integral equivalent
to I, as is necessary, according to the above, in order
to solve for the wave function of a specific potential.
However, they described the step as an insignificant
change in the one-band model. This is misleading since
the correct result was obtained in their example only
because the one-band model was not used.

The potential used above can also bind P, d, states
for —X suAiciently large. These cannot be represented
by the one band model, but one extra bound state can
appear for each extra band admitted to the calculation.
The neglect of the overlap onto neighboring sites is
not relevant to this issue, corresponding only to small
additiona1 potentials at those sites. The single, narrow
potential taken above, having several bound states for
large —P, needs the consideration of more bands for a
proper solution.

(1——,
' (ks)'+ }t (s,y)s'ds

where
= t&» ——',k'«'&+O(k'),

s"+'t (s,y) ds.

This can be recombined to give

L(k) = t&P'C1 —-'k'b'-+

t &» jp(kb),
where

b= {t&P'(y)/t"'(y) }"'
(13)

3f(k) = s(x)jp(kx)x"+'dx

is like a mean potential radius. Hut to work out these
t&"&, it is necessary to take moments of Eq. (9), in
doing which the right-hand side involves integrals like

IIE. OTHER FORMS OF THE POTENTIAL
= v&"' jp(kb') (14)

The potential used in the previous section was
plainly pathological, so in this section arguments will

be advanced to suggest why the form of the potential
was not vital to the discussion. The free-electron-like
lattice is still assumed so again the discussion will
center around Eq. (9). One is trying to determine the
important contributions to the k integral, rather than
the detailed solution of the integral equation. Thus,
one can afford to be a little sloppy in evaluating the
integral provided one draws only qualitative
conclusions.

The model potential of II was soluble because both
the potential and its t function. were localized at r=a
LFig. 2(a)$. This feature is changed but little if the
integral is carried out for a potential concentrated
about the shell r= a even if it is not of 8-function form
(see Fig. 2(b)$. Thus

p(x) j&(kx) n(x) j&(ka),

j (ks)«(s, y)=j (k )«(s,y),
and the k integral is exactly that discussed before. It
is here that the physical meaning of u in evaluating the
integral becomes apparent. It is some sort of mean
potential radius and is of the same order as any other
v ay of defining the radius of the potential.

YVith this in mind one can attempt cru(le arguments
for a more usual potential shape of the form shown in
Fig. 2(c), which is zero outside some ra, dius c. The s

exactly as above. Thus, finally, the k integration has the
form "jp(kb')jp(kb)

k'dk
p E k'+pp—

and behaves exactly as the integral discussed in the
previous section. %hat is important here is not the
details of the approximations made to L(k) and M (k),
which are somewhat like matrix elements of the
potential, but their general behavior as a function of
k. They will become small only when kb&~ where b

is some radius characteristic of the potential and is in
general of the same order as other mean radii of the
potential. Thus if the potential is well confined within
the atomic cell, b&&d, more than one band must be
considered (in fact d/b bands should give reasonable
results).

The purpose of this section has been to give plausi-
bility arguments to show that the results discussed in
Sec. II for the pathological potential M(r —a)/a' are
also relevant to most cases of short-range potentials.
For longer range potentials (range) d) other con-
siderations apply, which are not relevant here.

One final point is that the approximate treatment
leading to Eqs. (13) and (14) might form a useful way
of obtaining approximate analytic solutions of the
t-matrix equation (9) for certain favorable potentials.
In particular one would be able to carefully observe
the sources of error in numerical solutions.
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IV. LATTICES WHICH ARE NOT
FREE-ELECTRON-LIKE

In the previous two sections, all that has been done
is to analyze the problem of potential scattering. The
lattice was essentially absent except for the lattice
spacing parameter d. In order to discuss the eRects of a
real lattice on the conclusions drawn, a diRerent
approach will be necessary based on the t-matrix
equation equivalent to Eq. (4):

(n)t[m)= (e( U[nz)+g P (e[ U) p)

(p)t)m), (15)
E E„g+—i»

where only the matrix elements between the Wannier
functions at the impurity site are retained, and the
suffix 0 corresponding to that site omitted for brevity.
This equation is to be compared with the Fourier
transform of Eq. (7) written for this purpose in a
similar notation:

(iltlj)=(&l~lj)+ (&I~I» . (I ltl3) (16)
E p'+i»—

The eGect of the lattice has, by use of the Kannier
functions, been red.uced to using average band matrix
elements (n~t~m) in place of the full set (l)t~j) where
I and j correspond to wave functions in the eth and
mth bands, respectively. The sum over discrete states
in (15) can be treated as an integral, thus introducing
the density of states p(k):

(e/t/re)= (e[ U[rw)+Q (N/ Ufp)

n(k)
dk(pi tin). (15')

z—z„(k)+i»

For higher bands g(k) approaches 1 and E„(k) ap-
proaches O'. Also J'g(k)dk= 1 for the integral over any
band, so that excluding the lowest bands the parallel
between Eqs. (16) and (15') is very close. In this way
the results of Secs. II and III may be transposed

directly to any type of lattice. Using the first band
only cannot give the correct binding energy or wave
function for a potential smaller than the atomic cell.
By regarding the parameters of the potential Lusually
only (0~ U~O)$ as free parameters and not working
them out from a given potential there is little error for
small energies.

One further result can be drawn from the parallel
between Eqs. (16) and (15'). If matrix elements other
than those at the impurity site had been retained, in
particular those where both Wannier functions refer
to the same site (ri

~ U(mi), these two equations would
have remained alike provided U(x) had a small part
around x=r, . It is then obvious, as mentioned previ-
ously, that these small parts have, in general, little
eRect on the binding energies or wave functions. This
argument can be made much more rigorous by explicitly
solving Eq. (16) for such an extended potential derived
from the generalization of Eq. (15').

One might finally comment that in the one-band.
model the bound state is subtracted from the con-
duction band, in the sense that only (lV —1) states
remain in that band. This is not generally true, for
consider a potential which, after binding a state, is
equivalent to a pseudopotential identical to each of the
lattice potentials. Clearly in this case there is a band
identical to the original band, plus the bound state,
(/V+1) states in all. The (IV+1)th state has actually
been attracted down from the second band, a situation
obviously demanding the consideration of more than
one band. ' The density-of-states curve given by the
one-band model must therefore be treated with some
caution.
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