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The electric field gradients in point-charge lattices and the electric field in point-dipole lattices are given
by the same lattice sums (dipole sums). Expressions for the electric field gradients in point-charge ionic
crystals and metals of arbitrary symmetry are presented. Rapidly converging expressions for the dipole
sums appearing in these expressions have been obtained in the preceding paper by the method of planewise

summation.

I. INTRODUCTION

OME years ago one of the authors (F. W. de W.)
applied the method of planewise summation to the
evaluation of the lattice contribution to the electric
field gradients in point-charge ionic crystals and metals
with hexagonal and tetragonal symmetry.! The lattice
sums appearing in the expressions for the field gradients
in point-charge lattices are exactly the same as those
appearing in the expression for the electric field in
point-dipole lattices. Since, in the preceding paper,?
we have extended the method of planewise summation
of dipole sums to lattices of arbitrary symmetry, we
have at the same time obtained the necessary ex-
pressions for the field gradients in arbitrary point-charge
lattices. In this paper we will indicate how the results
of the preceding paper? can be used to evaluate the field
gradients in ionic and metallic point-charge lattices of
arbitrary symmetry.

At this point we mention one important difference
between the electric field in dipole lattices and the
electric field gradients in point-charge lattices; this
concerns the question of shape dependence.? The lattice
sums occurring in both problems are the same con-
ditionally convergent sums (dipole sums), but whereas
the electric field in a dipole lattice, as a consequence
of the conditional convergence of the dipole sum, has a
value that depends on the shape of the crystal, the field
gradients in an ionic crystal or metallic point-charge
lattice are independent of the crystal shape, as a result
of the charge neutrality of the unit cell. Still, the shape
dependence of the dipole sum has some practical im-
portance for the evaluation of field gradients for the
following reason: In an actual calculation the lattice is
divided into sublattices each of which carries charges
of the same sign. As a result, the field gradients due to
each sublattice separately are shape-dependent and
these sublattice field gradients can only be added
together after they have been made to apply to the
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same crystal shape. This is of importance here because
in the planewise summation method it may be ad-
vantageous to choose differently oriented sets of planes
(i.e., different x, ¥, z axes) for the different sublattices.
In such a case one has to add or subtract from the
calculated sublattice field gradients the proper “de-
polarization fields,” so that all results refer to the same
x, 9, % system before they can be added to give the total
field gradients (cf. Ref. 2, Secs. I and VI).

We briefly recall the standard definitions of field
gradients. The potential at a point r due to a charge
distribution of density p(r) is

N3y
V)= f PO W

The field-gradient tensor has the elements 8%V (r)/dkdv,
where « and » indicate «, ¥, z of the arbitrary coordinate
system in which r(x,y,2) is defined. It is evident that
the field-gradient tensor is symmetric, and it is therefore
completely specified by six quantities. Since one of these
quantities (the trace) is unobservable in nuclear reso-
nance experiments, it is customary to consider the
traceless tensor

Ve (O)=3V (r)/0xdv—18,,, 2. BV (x)/0  (2)
(8+,» 1s the Kronecker symbol) which satisfies Laplace’s
equation and which is determined by five quantities.
Henceforth we will use the name field-gradient tensor
for the traceless tensor V., ,. With respect to its principle
axes V., is completely specified by two quantities.
(The other three quantities specify the orientation of
the principal axes.) Choosing the 2’ and «’ directions
along the directions of maximum and minimum field
gradients, respectively, the customary choice for these
two quantities is

eq=V.u, 3
n= (Va:’z’ - Vy’y')/Vz’z' . (4)

7 is called the ‘“asymmetry parameter.” To relate eq
and 7 to the quantities V,,, taken with respect to an
arbitrary coordinate system x, ¥, z, one has to specify
the three Eulerian angles of «, 4', 3’ with respect to

%Y, 3
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POINT-ION AND UNIFORM-BACKGROUND LATTICES

In Ref. 2 we have indicated how, in the method of
planewise summation, the choice of the x, y, z system
is determined by the choice of the set of planes over
which the planewise summation is carried out. For
complex lattices of arbitrary symmetry it may be
necessary to introduce a number of sublattices for
which the x, y, 2z axes are not the same. Furthermore,
none of these coordinate systems necessarily coincides
with the principle axis system %/, §’, 2’ of the field-
gradient tensor at a given reference point. The pro-
cedure to evaluate eq and 7 using the method of plane-
wise summation is then the following: First, evaluate
five independent field-gradient quantities V,,,® (r,) at
the reference point ro for each of the sublattices 4.
Second, if different «, y, z axes have been used for the
evaluation of the V,,,® for different sublattices, refer
all quantities to the same coordinate system by adding
or subtracting the appropriate “depolarization fields.”
Third, add the V,,,®’s so obtained to give the total
field-gradient components in the reference point:
Viy(x)=2:V,,@(ro). This completes the deter-
mination of the field-gradient tensor V,,,(ro) with
respect to the common coordinate system x, ¥, z. The
fourth step consists of diagonalizing the matrix V,,,.
The largest eigenvalue is by definition the quantity eg,
and 7 is obtained from the three eigenvalues by the
use of Eq. (4). The eigenvectors of the matrix V.,
give the directions of the principle axes ', 3/, 2’ of the
field-gradient tensor with respect to the x, y, z axes.

On the other hand, from experiments one directly
derives the quantities egQ (Q is the quadrupole moment
of the nucleus under consideration) as well as 4 and the
orientation of the principle axes system ', 3/, 3’ with
respect to the crystal axes.* Discrepancies between the
measured and the calculated quantities eq, 5, and the
x'y'z" directions, may result from a number of causes
such as neglect of covalency, failure of the point-charge
model on other grounds, etc. In some circumstances it
may be more useful to evaluate eg and 5 from the com-
puted V., by a transformation from the %, y, z co-
ordinate system to the experimentally determined x’,
', 4’ coordinate system. This avoids the diagonalization
procedure of the matrix V,,,, but it requires a coordinate
transformation. As an example we express the quantity
eq="V. »(0) in terms of the dipole sums S(k,p,) with
respect to that coordinate system that is most con-

F1c. 1. Eulerian an-
gles relating the &/, ¥/, 2
axes to the x, v, z axes.
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venient for carrying out the planewise summations. For
an ionic crystal we have [cf. Sec. IT, Eq. (11)]

eq="Vu,(0)=22; ¢ 2 {3\, 85—} (5)

Let «, v, 8 be the Eulerian angles of the principle axis
system 2, 9’, 2’ with respect to the system #, y, z used
in calculating the lattice sums (cf. Fig. 1), then

2',;=sina sinBx,, j— cosa sinByy,;+cosBan,;.  (6)
Substitution of (6) into (5) leads to:

eq="V 2 ,2(0)=2_; e;{—cos2a sinBSj,,j,i; (¥, p2)
+ (cos™8—sin’B cos’a) Sy, i3,51 (2,12
—sin2a Sin2ﬁSJ'1,J'2,J'3 (x:Py)
+sina sin2BSj,,j3.5 (%, 92)
—Cosc SinzBthfz.is(yrpz)} ’ (7)

where we wused the relation S(x,p.)+S(¥,p,)
+5(2,p.)=0, which is equivalent to Laplace’s equation
[cf. Ref. 2, Eq. (64)]. Hence, if the Eulerian angles a,
7, B are known, eq can immediately be found from the
values of the sums appearing in Eq. (7).

II. THE FIELD GRADIENT IN
IONIC LATTICES

In this and the following section we adopt the
notation of Ref. 2, Sec. III. We consider an ionic crystal
made up of a number of sublattices j, containing the
point charges® ¢ The charge neutrality of the unit
cell is expressed by > ; ¢,=0. If we choose the origin 0
at the point at which we want to evaluate the field
gradient, then the charge density in the lattice is
(omitting the point charge at 0):

p(0)=2"¢ 2\ 8(r—125), €))

where it is understood that for =0 (i.e., j1=jo=j3=0)
the term A=N=X3=0 1is excluded from the A
summation.

Since the charge density is zero at the origin and
hence the trace vanishes, we have from (2): V,,.(0)
=02V (0)/9«%. Furthermore, the differentiations may
be carried out under the integral sign in (1). This gives

3k2—7?
VK,K(O)Z/P(r) 5

&, 9)

Ven(0)= / p(r)gd?’r. (10)

Substitution of Eq. (8) into Egs. (9) and (10) gives:
Vin(0)=2_; & 20 {3kx, 2, — 1%}

= Z]’ GJ'Sil,J'z,is(K;PK) ) (11)
[cf. Ref. 2, Egs. (34)-(36)%], and
Vi (0)=2"5 € 20x 3ka,592,472,7°
= Zi Gijl,jz,j3(K,Pv) ’ (12)

% Some of the e;’s may have the same value, but belong to
different sublattices for convenience of the summation procedure.
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[cf. Ref. 2, Egs. (37)-(39)%]. « and » indicate x, v, or 2.
The appropriate summation formulas for Sj,,j,,s5(k,Px)
and Sj,.5,.5(k,p») are given in Sec. IV of Ref. 2; the
special formulas applying for the cases j3;=0, and
J1=Jja=73=0, given in Ref. 2, are equally valid here.

III. THE FIELD GRADIENT IN UNIFORM-
BACKGROUND LATTICES

A uniform-background lattice is a simple model for
a metal. The conduction electrons are considered to be
free, giving rise to a uniform negative charge distri-
bution, and the positive ionic cores are considered as
point charges. We consider a monatomic lattice of this
kind, but of arbitrary structure, so that a number of
different sublattices may be required to cover all lattice
points. The charge density in such a lattice is

p(X)=pertpion=—Ze/v+Ze 32 ; 8(t—1r ), (13)

where pe is the electron charge density and pion is the
charge density of the positive point ions. Charge
neutrality requires that ps=—Ze/v, where Ze is the
net charge of the ionic cores and v is the volume per
ion. For ji=js=73=0 the term A;=Xy=X\3=0 is ex-
cluded from the N\ summation.

To evaluate 92V (0)/x? and 02V (0)/dkdr we cannot
simply substitute (13) into integrals of the form (9)
and (10), because p is different from zero at the origin
and this causes the integrals to diverge. However, this
difficulty can be avoided in the following way: We first
evaluate the contributions to 9V (0)/d«* and 8%V (0)/
dkdv resulting from the charge inside a small spherical
region around the origin, which is chosen such that it
does not contain any of the positive ionic point charges.
Since this sphere only contains the uniform electronic
charge distribution with density pe1, it follows from
Poisson’s equation (viz., >, 3V (0)/9k*= —4mps) in
combination with the spherical symmetry that

(62V(0)/ axz)spherez - (47"/ 3)Pel .

But if we now consider Eq. (2) we see that (82°V(0)/
9K sphere Will just be cancelled by the term 3, 3*V(0)/
9x? when all contributions to V', .(0) are added together.
In other words, in the case of uniform background
lattices, the expression for ¥, ((0) can again be obtained
from (9), provided an arbitrarily small spherical region
around the origin is excluded from the integration.
Furthermore, since it immediately follows from (14) that
(8*V (0)/9kd)sphere=0, V,»(0) can in a similar fashion
be obtained from (10). Keeping these restrictions in
mind the expressions for V,,(0) and V,,(0) follow
directly from the substitution of (13) into (9) and (10),

(14)
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respectively,

Ze
Vier(0)=—— f (Bx2—72)r—5d3r
v Jr>R

+Ze 20, i{300 =), (15)
Ze
Vi, (0)=—— / 3kvr=5d’r
U Jr>R
+Ze 3 _x, 360,08, (16)

k, v indicate x, y, or z and R is the radius of the small
sphere. At this point we have to recall that the quantities
V.«(0) and V, ,(0) are independent of the crystal shape
as a result of the over-all charge neutrality of the crystal.
However, in Egs. (15) and (16) we have separated the
contribution due to the negative background (in the
integrals) from that due to the positive ionic cores (in
the sums). Since each of these contributions by itself
is shape-dependent, we have to be sure to evaluate the
integral and the sum for the same crystal shape. Since
we evaluate the sums by planewise summation, in
which the planes are perpendicular to the z axis, we
must evaluate the integrals for a slab-shaped region of
integration perpendicular to the z axis. A straight-
forward integration gives:

3z2—r2 2P5(cosb)
/ . d’r= / d¥r=
sla‘uy_lS Izé axis 75 5

Furthermore, from the fact that 3, (3x®*—#%)=0 (k is
%, v, z) and that the x and y directions in the slab are
equivalent, it follows immediately from (17) that

an

32— 4w
LoESE
s abnglYéaxxs P 3
for k is « or y. Finally
Ky
f —d=0 (k, vindicate z, y, or z). (19)
SlabIJSIZQaXiS 75

Notice that the results (17), (18), and (19) are inde-
pendent of the radius R as well as of the thickness of
the slab. Substituting these results in (15) and (16) and
using for the sums the notation which was introduced
in Eqgs. (34)-(39) of Ref. 2, we have

8w Ze
Vz,z(o) =—3— —+Ze Zi N (Zypz) s (20)
v

dr Ze
Vie(0)= -3 —+Ze 3 Sivinis(,p)  (21)
v

for k is x or ¥, and
Ver(0)=Ze2; Sjl:]’z,ia('@?v) ’

where k, v indicate #, v, or z. The appropriate summation
formulas for the sums Sj, j,.;; are given in Sec. IV of
Ref. 2.

(22)



