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The Mgssbauer isomer shift, which is simply related to the charge density at the Mgssbauer nucleus, has
been measured for pure ¥7Au and for ¥7Au as an impurity in Cu, Ag, Ni, Pd, and Pt. Since the isomer shift
associated with an impurity and the residual electrical resistance due to that impurity are properties of a
common conduction-band wave function, one may expect a correlation of the residual resistance with the
isomer shift through a suitable model. We have thus made residual-resistance as well as isomer-shift measure-
ments at 4.2°K for the above dilute gold alloys. These measurements have been correlated through a theo-
retical model using (a) the residual electrical resistivity and the Friedel sum rule to specify the asymptotic
wave function at the Fermi level and (b) a pseudopotential which will produce this asymptotic wave function
and which is used to continue the s partial wave inward to the gold nucleus at the origin. The correlation of
our experimental results using the theoretical model is good if we assume that a gold impurity presents an
attractive potential to the s partial wave of the host s-band conduction electrons, and if we assume the s-
band fillings to have the values 1, 1, 0.58, and 0.37 for Cu, Ag, Pd, and Pt.

I. INTRODUCTION

N the theory of metals, it is often convenient to

think of the whole metallic sample as a single
potential well for the conduction electrons. The Bloch
wave functions, which give an approximate solution
to the corresponding quantum-mechanical problem
extend throughout the entire sample. If an impurity is
dissolved in the metal, these electron wave functions
again will in general extend throughout the sample. One
will then expect a correlation between the properties
of the electron wave function in the region near the
impurity and its properties in the far region. Corres-
pondingly one will expect a correlation between different
physical phenomena associated with the impurity which
depend dominantly on the different regions of the
wave function.

When an impurity atom is dissolved in a host metal,
it may have an affinity for electrons different from that
of the host and as is implied above this may result in a
redistribution of the electron charge density. For a
suitable impurity, this change of charge density at the
impurity nucleus may be measured through the use of
the isomer shift of the Mdssbauer effect. Other con-
sequences of this charge displacement appear, for
example, in the Knight shifts’? and quadrupole line
broadening effects in NMR3# of the components of the
alloy, in the heat of formation of an alloy,’ and in the
residual electrical resistivity of the alloy due to the
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impurity.’—8 Thus, there will be a correlation between
all these quantities through the electron wave functions
associated with the charge displacement. In the follow-
ing we give both electrical resistance and isomer shift
measurements for gold in several noble metal and
transition metal alloys. We then present through a
simple model a correlation between our measured
isomer shifts for several dilute gold alloys and the
residual electrical resistivity per atomic percent, Ap/c,
introduced by the gold in these alloys.

Because of their relatively simple electronic con-
figurations, the noble elements copper, silver, and gold
have played a prominent role in the development of the
theory of metals. Copper and silver, unfortunately, do
not have gamma rays convenient for Méssbauer effect
studies. Gold, however, does have a suitable gamma ray,
and if it is assumed that the gold 54 shell, as well as all
the other inner shells, remains full and relatively little
modified in the alloying process, measurements of the
gold isomer shift may be interpreted to give some infor-
mation about the valence s-state wave function in gold
alloy systems.

To give an idea of the kind of information we would
like to obtain from the isomer shift, let us consider
two examples which indicate some of the interesting
questions concerning the electronic - distribution in
alloys.

Silver and gold, in addition to having the same
valence and crystal structure (fcc), have virtually the
same lattice constant. Thus the alloys of these elements
with each other should be favorable cases to discuss

6 J. Friedel, Phil. Mag. 43, 153 (1952); Advan. Phys. 3, 446
(1954). P. deFaget de Casteljau and J. Friedel, J. Phys. Radium
17, 27 (1956) ; J. Friedel, Nuovo Cimento 7, 287 (1958).
~ 7F. ]. Blatt, Phys. Rev. 108, 285 and 1204 (1957).
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theoretically. Mott® had already concluded in 1936
that, in dilute alloys of gold in silver, gold with the
larger ionization energy should present a more attractive
potential than silver for the conduction-band electron
charge. This difference of potentials would lead to the
qualitative suggestion that a gold atom in silver would
be negatively charged compared to a gold atom in gold.
Theoretical studies employing the Fermi-Thomas
semiclassical potential,®:® as well as quantum-mech-
anical partial-wave calculations beginning with that
of Huang,®® indicate that the ‘‘screening” charge
density falls off very rapidly with distance, but little
experimental information has been available.

In the case of alloys of the noble metals with the
transition metals, investigations of the dependence on
composition of the magnetic, electric, and thermal
properties have provided important information on
the s and d bands of the transition metals. For example,
the alloys Ni(Cu), Pd(Ag), and Pt(Au), in which the
components adjoin each other in the periodic table,
reveal rather sharp changes of behavior of these pro-
perties near 55-659, of noble metals.® A well known
interpretation of these data involves overlapping s and
d bands, where for pure Ni and Pd it is thought that
the fillings are about 0.6 electron/atom in the s band
and 0.6 hole/atom in the d band. In the alloys the
quantum states of the noble metal atoms should be
included in the discussion of the alloy properties. How-
ever, as compared with the information obtained about
the d-character of the transition metal, little is directly
known about the role which the noble metal plays in
producing the interesting alloy behavior observed. In a
discussion of say the specific heat or the paramagnetic
susceptibility of Pt-Au it may perhaps be assumed that
charge is transferred in some degree from the s shell of
the gold to the d shell of the platinum. This single
process alone would tend to make the gold atom in the
alloy electrically positive relative to a gold atom in
gold. As with the Ag-Au alloys mentioned above,
however, there may also be an effect due to the different
attractive potentials of the gold and of the platinum
for the valence charge. In considering alloys in which the
components have different atomic volumes it is clear”
that differences in atomic sizes also play an important
role. A study of the correlation to be expected between
the isomer shift of an impurity and the residual elec-
trical resistivity which it introduces should give infor-
mation on subjects such as those indicated above.

We conclude this introduction by recalling how the
electronic charge density at the nucleus is obtained from
the measured isomer shift.!! The isomer shift arises
from the interaction between electrons and the Mdoss-

9V. Marian, Ann. Phys. (Paris) 7, 459 (1937).
( Q. C. Kistner and A. W. Sunyar, Phys. Rev. Letters 4, 412
1960).
1D, A. Shirley, Rev. Mod. Phys. 36, 339 (1964) ; P. H. Barrett,
R. W. Grant, M. Kaplan, and D. A. Shirley, J. Chem. Phys. 39,
1035 (1963).
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bauer nucleus. As a consequence of this interaction,
each level of a nucleus which is penetrated by electrons
has a slightly different energy than it would have if the
nucleus were ‘‘bare’’; i.e., if it had no electrons penetrat-
ing it. The Coulomb (electrostatic monopole) term in
the interaction gives the dominant contribution to this
energy shift. In first-order perturbation theory, the
Coulombic energy shift, of a bare nuclear state x
produced by a single Dirac s electron is D|,(0)|?
X{x|72°| x). Here D is a constant, o= (1—a2?)!/> where
2z is the nuclear charge and « is the fine structure con-
stant, and |¢,(0) |2 is the nonrelativistic electron density
at the origin.

If the matrix elements (x|7%?|x) are different for the
nuclear ground and excited states involved in a gamma-
ray transition, the penetration of the nucleus by all the
s electrons will modify the gamma-ray energy by
Dps(0)[(r27),— (r*?)4 ], where g and e refer to the ground
and excited nuclear states and

ps(0)=2 [¢,:(0)]?

is the total nonrelativistic probability density of all
the s electrons. By the use of the Mdossbauer method,
one may study the resonant emission and absorption
of a gamma ray under the circumstance that p,(0) is
different at the gamma-ray source and absorber nuclei.
There will then be an energy AE, the isomer shift,
which must be added to the emitted gamma ray energy
I, to bring about resonance with the absorber nuclei,
namely

A= D[Ps, abs. (0) " Ps,source (0)][<720>8_ (7'2")!7:] : (1)

Instead of the isomer shift AE relative to the experi-
mental gamma-ray source, it is convenient to consider
the shift relative to pure gold,

AEr= (AEalloy_ AE‘pure gold)
< [ps, attoy (0)—ps,2u(0)].  (2)

The corresponding mechanically supplied Doppler
velocity of the source toward the absorber, the experi-
mentally measured quantity, is vr=cAEr/E,, where
here ¢ is the velocity of light. Measurements of vy may
yield information either about the nuclear size change
between ground and excited states or about the elec-
tronic densities at nuclei in solids.

II. RESULTS OF ISOMER SHIFT AND RESIDUAL
ELECTRICAL RESISTIVITY MEASUREMENTS

Measurements of »; have been made for the 77-keV
resonant gamma ray of ¥7Au, where the gold has been
placed in a variety of alloy environments.*—** The
gamma-ray source was prepared by neutron activation
of 50-mg samples of 9°Pt metal in the Oak Ridge

2T,. D. Roberts and J. O. Thomson, Phys. Rev. 129, 664 (1963).
B1. D. Roberts, H. Pomerance, J. O. Thomson, and C. F.
Dam, Bull. Am. Phys. Soc. 7, 565 (1962).
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TaBLE I. Parameters used in the correlation of the isomer shift with the residual resistance for Au. The phase shifts 8o and &, are
given for the case of a potential attractive for s waves and for the valence 74, also given below, which results in the best correlation,

Fig. 6. The quantity k¢*/2 is the corresponding well depth in eV.

Experimental
residual Experimental da 3 sa Host .
Host resistivity isomer shift — Poisson’s 1+4——  valence Phase shifts Well depth
metal Ap/c(u cm/at.%) v; (mm/sec) a ratio o vt a  used 94 8o 81 ko?/2 (eV)
Cu 0.524-0.02 4.4+0.2 0.157s 0.364f 1.337 1. 0.0562 —0.1951 0.305
Ag 0.363=0.02 2.1+£0.2 —0.00735> 0.37¢ 0.984 1.0 0.2155 —0.06343 1.07
hyt 0.384-0.02 5.4+0.2 0.209¢ 0.31f 1.397 0.6 0.2872 —0.01113 1.407
Pd 0.70+0.02 2.4+0.2 0.05280+4 0.39s 1.120 0.58 0.423 +0.0425 1.933
Pt 1.55-40.02 1.440.2 0.040¢ 0.39¢f 1.091 0.37 0.624 +0.102 2.597
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ports 10, 54 (1945/6).
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f From the American Institute of Physics Handbook (McGraw Hill Book Company, Inc., New York, 1957).

& Agsumed the value for Pt.

by =3(1—0)/(1+0).

research reactor to form some ¥7Pt. Following a beta
decay to ¥7Au, this source gives the desired 77-keV
gamma ray. The absorbers were prepared either from
pure gold or from arc-melted gold alloys. All measure-
ments were made at 4.2°K. Details of the equipment
and the treatment of the data have been described
previously.?

The results of our isomer-shift measurements, in
units of mm/sec and as a function of the Au concentra-
tion ¢ in atomic percent, for binary alloys of Au with
Ni, Pd, Ag, and Cu are shown in Fig, 1. The curve for
Au-Ni has been presented previously'? but is reproduced
in Fig. 1 for reference. In Fig. 2 results are given
for the isomer shift of Au in the ternary alloy
Aug,0:Cuz—1y7100Ni(100—2)/100-

As was noted in Sec. I, alloys like Cu-Ni, Ag-Pd,
and Au-Pt have a sharp change in some of their pro-
perties as a function of composition near 55-65 at.%,
of the noble metal and it is of interest to see whether the
gold isomer shift also displays any exceptional behavior
in this composition region. The results given in Figs. 1
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FiG. 1. Isomer shift » in mm/sec as a function of composition
for alloys of gold with palladium, silver, copper, and nickel. Here
v is measured relative to a source consisting of ¥7Au in Pt metal
and is given by v=cAE/ [, where AF, is defined by Eq. (1).

and 2 show that for the gold-transition metal alloys
studied thus far, v; may be described within experimen-
tal error as a nearly linear function of composition.
Although more refined measurements may perhaps show
some curvature of v7(c), it seems reasonable to conclude
that there is no dramatic change of slope, dvi/dc,
near 55-65 at.%, gold, and hence no obvious correlation
of v7 with the filling of the 4 band.

In studies of dilute alloys, one often considers the
variation of some property of the system when a
variety of impurities are dissolved in a single host metal.
Here we study the isomer shift associated with a
single-impurity type when the latter is dissolved in a
number of different host metals. For the values of the
isomer shifts at infinite dilution we take the intercepts
of the straight lines in Fig. 1 at 0 at.%, noble metal.
As was mentioned above, it is probable that more
refined measurements will show that the correct de-
scription of v7(c) will not be given by a straight line.
For example, near infinite dilution dvy/dc may be very
close to zero. However, for our present purpose the
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F16. 2. Isomer shift v of gold in the ternary alloy Aug.aCu z-1)/100-
Ni(100-2)1100 s a function of the total atomic percent x of the
noble metals. Here v is defined as in the caption of Fig. 1.
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Fic. 3. Impurity electrical resistivity per atomic percent of
impurity, Ap/c, as obtained from solid solutions containing 0.50,
1.00, and 2.00 atomic percent of gold in silver, copper, palladlum
nlckel platinum, and iron.

use of the intercept should give a sufficiently precise
value of v7(0). Experimental values for »7(0) obtained
from these intercepts are given in Table I.

From Figs. 1 and 2 and Table I it may be observed
that vy is positive for all of the alloys reported here.
It is in fact true that all of the gold isomer shifts which
have been observed—® for alloys of gold have »r>0.
In Sec. I it was noted that in Au-Pt a transfer of charge
from the s-shell of the gold to the d-shell of the platinum
would tend to give the gold a positive charge, while,
on the basis of the model given by Mott,® mentioned in
the introduction, gold alloyed in silver would tend to
assume a negative charge. The fact that the isomer
shifts are of the same sign for both of these alloys—
as well as for the other gold-transition metal alloys
discussed here—suggests that either the picture with
regard to the Au-Ag or that relative to the transition
element alloys, Au-Pt, for example, is insufficient. Be-
cause of the evident inability of the qualitative models
presented above to give a satisfactory interpretation of
the Mossbauer measurements, we have sought to
correlate these isomer shift measurements with some
other alloy property which would also be related to the
modification in the electric charge distribution produced
by the impurity.

In Sec. ITT a theoretical model is presented which
gives a mechanism for the description of these isomer
shift measurements for dilute alloys. In this treatment,
information about the essential parameters of the
model is drawn from measurements of Ap/c, the residual
electrical resistivity per atomic percent of impurity.
In that our isomer shift measurements were made at

BECKER, OBENSHAIN, AND THOMSON

4.2°K, it seemed appropriate to use values of Ap/c
measured at this temperature also. Earlier studies4-!®
of the residual electrical resistivity of dilute Au alloys
have not usually included measurements at such low
temperatures. For this reason we have made measure-
ments of Ap/c for the alloys of interest at 4.2, 77, and
208°K. These results, given in Fig. 3, were obtained
from measurements on alloys containing 0.5, 1, and 2
at.9% of gold and are in good agreement with earlier
measurements at the two higher temperatures where
they are available.

The measured values of Ap/c¢ for the dilute ferro-
magnetic alloys Au-Niand Au-Fe show an exceptionally
strong temperature dependence which is attributed to
magnetic scattering effects.® Because of this behavior,
we have extended these measurements to temperatures
well above the Curie point for an alloy containing
2 at.9, of gold in nickel and for an alloy of 0.50 at.9,
of gold in iron. At the concentration used, gold forms
a solid solution with nickel over the entire temperature
range.'” For the iron alloy, however, the limited solu-
bility of gold precluded measurements on a true solid
solution below about 1030°K,'” although measurements
on quenched samples were made at temperatures near
300°K and below. Due to the complications introduced
by the ferromagnetism of these alloys, the theoretical
treatment of Ap/c is more complex here than for the
other alloys. For the purposes of this paper we assume
that Ap/c at 4.2°K gives the appropriate measure of
the transport cross section for the Au impurity in Ni
to be used in the theory of the isomer shift. Further
study may require that this assumption be modified.

III. THEORETICAL DISCUSSION OF THE ISOMER
SHIFT OF THE IMPURITY IN
A DILUTE ALLOY

Significant progress has been made in the theory of
dilute alloys using a variety of theoretical methods.
Here we present a simple theoretical model for the
correlation of the isomer shift of an impurity in an
alloy with the residual electrical resistivity through the
conduction band wave functions of the infinitely dilute
alloy.!8 Our calculation is based on the use of an impurity
potential using methods similar to those introduced by
Mott8 and Friedel.® We adopt this approach because it
gives a convenient treatment of both the residual
electrical resistivity and the charge at an impurity site
in terms of the same approximate band theory.

Basically, the gamma-ray isomer shift of an impurity
in an alloy may be viewed as an aspect of the screening

14 T, Q. Linde, Ann. Physik 15, 219 (1932).

15 A. N. Gerritsen, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. 19, p. 137.

16 L7D. Roberts, F. E. Obensham R: L Becker, ‘and J. O.
Thomson, Bull.'Am. Phys. Soc. 9, 398 (1964).

17 M. Hansen, Constitution of Binary Alloys (McGraw Hill
Book Company, Inc.; New York, 1958).

18 L. D. Roberts, R. L. Becker, and J. O. Thomson, Bull. Am.
Phys. Soc. 8, 42 (1963) R. L. Becker, L. D. Roberts, and J. O.
Thomson, ibid. 8, 558 (1963).
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of the impurity. We shall assume that the impurity is a
noble metal, i.e., gold, and we shall consider cases in
which the impurity is dissolved in another noble metal
or in a transition metal. In the case where the noble
metal impurity is dissolved in another noble metal the
screening will presumably be predominantly by the
conduction s band of the host. In the case where the
host is a transition metal, however, the situation may
be more complex. We shall take the usual view that
the eigenstates of the outer electrons in a transition
metal host may be described by two bands, one of
dominantly s and the other of dominantly d character.
For dilute gold alloys with the transition metals we
further assume (a) that the states of gold other than
than the 6s state, in particular the Sd states, are not
sufficiently modified, relative to pure gold, to signi-
ficantly alter their screening of the gold s shells, (b)
that only the s band contributes to the isomer shift,
e.g., we neglect any hybridization of gold s and py/2
states into the d band, (c) that in a gold cell, the
hybridization of gold  and & functions into the s band
is nearly the same as in pure gold, and (d) that the
residual resistivity is attributable entirely to the s band,
because of the high effective mass of the d band holes.

The interaction of the impurity atom with the elec-
trons of the s band of the host metal will be described
by associating a perturbing pseudopotential with the
impurity atom. The pseudopotential will give rise to a
transport cross section oy for the conduction electrons
and will thus produce a residual electrical resistivity
per atomic percent, Ap/c. From a measurement of
Ap/c, oy, for electrons at the Fermi level may be ob-
tained. Then from oy, and the requirement that the
impurity atom must be screened in an electrically
conducting alloy, the effective potential for the /=0
component of Bloch waves in the s band may be
estimated. Using this well, one may obtain a calculated

value of
ps(()) :Zilll’si,abs.(o) 12 )

and thus of the isomer shift to within a constant which
depends on the nuclear size change. The details of this
calculation, which are given below, differ from previous
applications of the impurity potential method in several
respects, which will be discussed as they occur.

We consider the substitution of an impurity atom B
for an atom A of the host metal. The Wigner-Seitz
approximation of replacing the atomic cell by a sphere
of equal volume will be made. At the bottom of the
conduction band at energy E4 in the pure host metal,
there will be a wave function U 4(7), which is a solution
to the Schrodinger equation,
VZUA-I—Z(EA— VA)UA=O, r<ra,

AU 4/dr| r=ry=0, (3a)
containing the potential V 4 of the lattice, where atomic
units are used. For pure metal B and at the bottom of

ISOMER SHIFT FOR

197Au ALLOYS A 899

the band, one would similarly have the wave equation,
V2Up+2(Eg—V3s)Up=0,

r=rg,

AUs/dr| ery=0. (3b)

In the above, 74 and rp are the radii of the Wigner-
Seitz spheres in the pure metals 4 and B, respectively.

In the alloy the radius R of the impurity sphere may
in general be expected to differ slightly from that in
pure gold, 7p. This radius R is not directly measurable
physically. Furthermore, for small variations of R
the result of the approximate calculation given below
is not very sensitive to the value of R assumed. We
therefore assume R=rg, i.e., we take the radius of the
gold atom in the alloy to be the same as its radius in
pure gold. The pseudopotential within the impurity
sphere, Vaioy(r) = Vg (r)+Vs(r), (#=R), will in general
differ from that within the Wigner-Seitz sphere of
pure metal B, Vp, by the additional term Vg, which
consists mainly of a screening potential and an orthogon-
ality potential.!® Outside the impurity sphere there will
be a potential of similar form, Vanoy (r)=V4(r)+Vs(r),
(r>R). Here, however, as the screening charge falls off
fairly rapidly with increasing », Vs(r) may be much
smaller relative to Vaioy(r) than it is within the im-
purity sphere. Thus we assume Vauoy(#)=V4(r),
(r>R).

The wave function Yy for an s-band electron in the
alloy with energy Ej will be written as

Yu()=2()U(r), (4a)
where
U(r)=Ug(r), r=R; (4b)
=Uy (r) , >R,

is independent of %2 The Schrédinger equation for
the alloy,

V2¢/k+2(Ek_ Valloy(r))¢k=07 (5)
then becomes

(Vi +2(E—Eg—V 5(r))®x JUs

+2v®-vUz=0, r=R (6a)
and
[V?(pk—l‘z(Ek—"EA)q)k]UA

+2vd,-vU,4=0, r>R. (6b)

Friedel® and Daniel> have argued that, in the various
regions of the alloy, either V®x or VU or both will be
small and that the term V&®;-VU may be neglected.
In the case of a pure metal this approximation leads to
approximate Bloch waves of the form yi (1) = Uo(r)e™r;
for the alloy, Egs. (5) and (6) are reduced to the simple

1 C. Herring, Phys. Rev. 57, 1163 (1940); J. C. Phillips and
L. Kleinman, zbid. 116, 287 (1959).

2 For pure metals one often uses the alternative form, yx(r)
=¢%* i (r), but in the presence of a scattering potential the
form chosen above is more convenient. Also Ug(r) is the function
for the actual pure metal, not for the fictitious pure metal dis-
cussed by Daniel (Ref. 2).
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form,
V2®y (r)+[F2—2V (r) JPk(r)=0 (7a)
with
k= Q2(Ex—E4))", (7b)
and?!
V()= (Eg—Es)+Vs(), <R (70

=0, r>R.

Equation (7a) is mathematically the same as the
equation for the scattering of a plane wave with wave
number k from the potential V(r). As usual, one
expands ®y in partial waves. The asymptotic form of ®y
is then specified by phase shifts &;(k). Very little direct
information is known about the perturbing potential
V (r), but information about the phase shifts produced
by V (r) for k= kp, the Fermi wave number, is available
from the residual resistivity together with a sum rule as
described below. These phase shifts specify the approxi-
mate wave functions for 2=k in the asymptotic region
outside the impurity. Only the /=0 partial wave
contributes to the isomer shift as only this partial
wave is finite at the gold nucleus, »=0. We need to use
V(r) explicitly only in continuing the /=0 partial
wave from the asymptotic region to the origin for
those states with the Fermi momentum kr and also
for all lower momentum values down to the bottom of
the s-band.

In some cases a considerable part of V(r) will be due
to the energy difference Ez—E,4, which is of square-
well shape.® In the absence of detailed information
about V g(r) we shall assume, specifically for calculating
the =0 partial wave amplitude as a function of £ and
7, that V(r) may be approximated by a square well of
radius R and a depth k¢/2 adjusted to give the s-
wave phase shift at the Fermi surface as calculated
below from Vp/c. This amounts to assuming only that,
in its effect on s-waves over a limited range of energy,
V s(r) may be replaced by a roughly equivalent square
well.

21 In the alternative formulation (Ref. 2) in which U (r) inside
the impurity cell is taken to be the wave function for the fictitious
metal in which the lattice potential is Vp+Vs, the scattering
pseudopotential V{(r) is simply Ep— E4. Inasmuch as one does
not know Vg accurately and cannot calculate the required U
function, we feel that this approach hides the difficulty which is
explicit in our formulation through the presence of Vs in V(r).
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Different partial waves feel different regions of the
potential more strongly. Consequently it is to be ex-
pected that if the effective potential acting on 2
waves, for example, is also represented by a square well
of radius R, then the depth of this well will be different
from that for the s wave. The present application does
not require, however, an assumption concerning the
effect of Vg on any part of the wave function other than
the /=0 partial wave.

Although U ,4(R) will not in general precisely equal
Us(R), nevertheless, because

AUy dUB%
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the logarithmic derivative of ®, will be continuous.?
Thus, in a partial-wave description of the scattering
process, the phase shifts produced by the potential?
will be the same as those for the scattering of a free
electron of the same energy and satisfying the continuity
conditions at »=R. However, there will be a discon-
tinuity in ®x at R required to compensate the dis-
continuity in U.

We now estimate the charge polarization? using the
square well (Fig. 4). The radial s-wave equations cor-
responding to Eq. (7a) are

d*(rdr)/dr*+E2(r¢r)=0 for >R, (8a)

a2 (rép)/dr*+K2(r¢r) =0 for r<R. (8b)

Here, K?=k>+k% The solution outside the well is
or=sin (kr-+8)/kr. 9)

The solution inside the well may be written conven-
iently in the form

¢e=[U4(R)/Up(R)]IC sin(Kr)/kr. (10)

The continuity of the logarithmic derivative at r=R
yields the equation

K tan(kR+80)=Fk tanKR. (11)
The continuity of ¢,U at R gives
Cr, sinKR=sin(kR-+34,) . (12)

The constant C needed in Eq. (10) can be obtained
from Egs. (11) and (12) [cf. Eq. (21)].

Before being able to calculate the charge density, we
must specify the normalization of the single-electron
wave functions. We consider first the approximate Bloch
wave function for a pure metal, for example metal B,

Y (1) = Up(r)e™r/(Qp)!/2. (13)

Here, as before, Uz (r) is the wave function within the
Wigner-Seitz cell at the bottom of the band, that is,

2 Small deviations of the derivatives of U4 and Up from zero
would in principle occur when R differs from 74 or 73. As U4 and
Up are quite flat near the surfaces of the Wigner-Seitz spheres, we
shall assume that the deviations are negligible.
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at k=0, and Qg is the volume of the metal sample. The
average value of |Ug(7)|? is taken as unity over the
volume v,= (47/3)r,* of the W-S cell,

oy / U 2dr=1. (14)
Then » -
Vg
[ lempar=2, (15)
Jog Qp
and
/;Z II//Bk(f’)PdT:l. (16)

This normalization is such that one electron of each
spin projection is associated with each k state. The
charge at r, Ppi(r), associated with each k state and
with a given spin projection is then

Ppi(r)=|Up(r)|%/Qs. 17)

Next we consider the alloy. A prime will be used on
quantities which refer to the alloy. In Eq. (9), ¢
was given the same normalization as the s-wave part
of the plane wave ¢®**. In the alloy the wave function
¥ei’ (), normalized in the same way as ¥pk(r) for the
pure metal [Eq. (13)7], is, therefore, for r=0,

¥ii’ (0)=Ug(0)$:(0)/ (@) (18)
or
Y’ (0)=Ugp(0)[U4(R)Cy sinKr/

Us(R)kr ()2 ]pmp.  (19)

The probability density pgi’(0) at the origin, that is, at
the nucleus of an impurity atom B in the alloy, arising
from a given k state is then

| Uz(0)]*
Q/

Ui(R))?
‘ P(kR),
Ug(R)

where the charge modification factor for a given k state,
P(kR), is

P(ER)=[Ci(ke+E)\2R/ER
= (1—[kRY/ (ki+ )R]
Xsin[ (ki+ENERT,  (21)

where Cj is obtained from Egs. (11) and (12). This
square-well estimate for the charge enhancement of a
k state at the origin has been used by Daniel? for elec-
trons at the Fermi surface in connection with the
Knight shift. Now P(kprp) differs little from unity,
but for smaller values of &, P(krg) deviates appreciably
from one. Thus the isomer shift is more strongly in-
fluenced by the impurity potential than is the Knight
shift.

To obtain the charge density at a B nucleus arising
from all the conduction electrons, either in the pure
metal B or in the alloy, one must sum the partial
probability density P5:(0) over the two spin projections

pzi (0)= (20)

ISOMER SHIFT

FOR 1'%7Au ALLOYS A 901

and over all k states up to the Fermi energy, Ep.
Letting #(k) be the density of the states, including a

factor of two for the spin multiplicity, one has in the
pure metal B

|Us(0) |2
p5(0)=— / 1y (K)d*k
Qp E<Er
[Uz(0)] 3
= Ng=— I UB(O)IZﬂB7 (22)
Vg 41r7’33

where 7, is the number of s-band electrons per atom.
In the alloy one has at a B nucleus located at the origin

[Us(0)|2|U4(R)
o |Us(R)

2

ps’ (0)=

X / W (K)PER)EE  (23)
E<Er’

where #’(k) is the density of states in the alloy. In
the simple free-electron-like band model with spherical
energy surfaces and E (k) =%2/2, the density of states is

w' (k) =29/ (27)?, (24)
so that
Us(R)2 1 plee
ps’ (0)=[Ug(0)[* — f Pw)widw. (25)
Up(R)| m*R? J

With R=7p, and using Eq. (22) this may be written
Ua(R)|* P(kr'rs)

pz’ (0)=pz(0) Us (R)

) (26)

NB
where

_ 4 kp'rp
P(kﬁ‘lrg):—f Pw)wdw.
3w Jo

us

@7

The convenient quantity P is closely related to the
average value of P(kpr;,) over the filled states, which is

3 kr'rp
Pow= f Pw)wdw.
(kr'r5)* Jo

If the alloy were infinitely dilute, the Fermi momentum
kr’ would be equal to the Fermi momentum in the
pure host metal, kr4, which is related to the radius of
the Wigner-Seitz sphere 74 through the equation

kFATAZ (97!'71A/4:)1/3: 1-927’.41/3 )

(28)

(29)

which follows from Eqs. (22) and (24) as applied to
the metal 4. Thus for a very dilute alloy, the relevant
charge modification factor is given by

P('wp) Naf78\°
=——) Py, (30a)
Ny Mg\ 4
where
Wp=kpary=1.929 7, /r,. (30b)
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If, as for gold in transition metals, the number of
conduction electrons per atom is smaller in the host
than in metal B, then this “valence” difference tends
to reduce P/7,. If the host atoms are smaller than the
impurity atoms, as is the case for Au in Cu, Ni, Pd,
and Pt (but not in Ag), the size difference tends to in-
crease P/n,. The remaining factor, P,y is greater than
unity for an attractive impurity potential and less
than unity for a repulsive potential.

Referring back to Eq. (2), the isomer shift AE; is
seen to be proportional to the difference between the
probability densities p,’(0) and p,(0), that is for an in-
finitely dilute alloy

AEr=a[pg (0)—pg(0)]
Uy (_7’3)

Ug (r5)

2 P(w,)

=ap3<o>{ _1} G

Ns

where? the proportionality constant « equals D[{r*"),
—(r*)] in Eq. (1).

Detailed information about the ratio |U4(ry)/
Ug(rs)|? is not available. By our choice of normaliza-
tion? the average values of |U4(r)|% and |Ugp(r)!?
are unity, independent of v, and v,. We may expect,
therefore, that | U4 (r,)/Ug(r,)|* will be close to unity.
The ratio will be set equal to unity in our comparisons
with experiment. Thus the equation we shall use for
gold isomer shifts (,=1) is

vr=GLP(w;)—1],
where the constant G is given by
G=ap;(0)c/E,

and where in this expression ¢ is the velocity of light.

In order to calculate P (kry) from. Eq. (21), we must
know the well-depth parameter ko. As was indicated
earlier we shall obtain an estimate of %y from the ex-
perimental value of Ap/¢ and the Friedel sum rule.®

The residual resistivity per atomic percent impurity,
Ap/c, should be given sufficiently accurately for our
purposes by the first-order solution to the Boltzmann
transport equation. If Ap/c is in pQ cm/at.%, kp, %
and e in cgs units, and the transport cross section o, in
cm?, then

Ap/c=9.00X 104 (7ikp/e) oy (kra) . (33)

Huang® has expressed oy in terms of the phase shifts
of the partial waves scattered by a spherically symmetric
potential as

(32)

dr =
(1) sin?[8,(kra) =811 (kra)]. (34)

Fa? =0

O'tr(kFA) =

B In Ua(rg) the argument is rp relative to the center of the
impurity cell. Translated to the neighboring host cell the argument
would be approximately 7 4.

#If we had normalized U4 and Up to unity in their respective
Wigner-Seitz spheres, then the factor (rz/r4)® which appears in
Eq. (30a) would be absorbed into the ratio |Ua(rz)/Usr(rg) |2
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Hence, using Eq. (29),

0

lE_Z (I41) sin®[8,(kra)—bu41(kra)]
= (0.7037,"%/7,) (Ap/c) ,

where now 7, is in atomic units. Thus the residual
resistivity provides one condition on the phase shifts
at the Fermi surface.

Another condition is provided by the Friedel sum
rule.® When a neutral impurity atom is substituted for
a host atom, the metal as a whole remains neutral.
However the impurity atom furnishes to the conduction
band, in general, an amount of electronic charge
different from that furnished by a host atom. The ionic
core of the impurity atom has a correspondingly dif-
ferent net charge from that of the core of a host atom.
The conductivity of a metal insures that the excess
core charge on the impurity is screened within a
relatively short distance by the conduction electrons.
The excess conduction electron charge within a sphere
about the impurity of radius large enough that the
wave functions have attained their asymptotic forms,
must just compensate the extra ionic charge within
this sphere. Friedel’s sum rule is an expression of this
in terms of the phase shifts of the conduction electrons,
namely,® for a single band,

$rZ=3 10" (2+1)[6:(kra)—8:(0)],

where Z is the excess ionic charge and §;(0) is zero unless
the impurity potential is strong enough to support a
bound state for that partial wave. The sum rule has
been generalized to apply to the scattering of Bloch
waves and to bands with nonspherical Fermi surfaces
by Blandin.?®

In the case of gold in transition metals, screening
may occur in both the s and d bands. One would then
have a self-consistency requirement to satisfy, relating
the charge to be screened by each band to the electronic
charge distribution in the other band. We do not
attempt to solve this difficult problem, but assume,
Sec. I, that to a good approximation the 5d shell of
each gold impurity atom is full. Then the ionic charge
presented by a gold ion to the s band is the same as in
pure gold, namely 5z, which is unity. When occupied
by a host atom the impurity site has an ionic charge
for s band electrons equal to n4. Consequently, if the
host and impurity atoms are of the same size, the
charge to be screened by the s band per impurity ion
is Z=ng—1a4.

Size differences between host and impurity atoms
introduce complications into the determination of the
charge to be screened. Blatt” has investigated the effect
of size differences on residual resistivities. His dis-
cussion was phrased in terms of the change in ionic
charge within the volume occupied by an impurity

(35)

(36)

25 A. Blandin, J. Phys. Radium 22, 507 (1961).
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atom. He did not explicitly consider modifications in
the ionic charge density outside the impurity cell,
although the Friedel sum rule involves the total
change in ionic charge within a large sphere about an
impurity.® We show in the appendix, however, that
consideration of the alteration in ionic charge within a
Friedel sphere of radius not much greater than a mean
free path yields the same result as Blatt’s.” Letting
/=¢/100 be the atomic fraction of impurities, and
writing the fractional change in lattice parameter due
to the impurities as Ae/a= (da/a) f+0(f?), then Blatt’s
formula takes the form

Z=(ny—mn,)—[(A+0e)/(1—0)](6a/a)n,.

Values for Poisson’s ratio ¢ and da/a are given in
Table I. We note that this formula does not refer
explicitly to the volume of the impurity cell but refers
only to expansion of the crystal as a whole. In our
derivation of this formula, elasticity theory is used to
relate the expansion of the material originally inside a
Friedel sphere to the expansion of the crystal. This
would seem to be better justified than using it to pre-
dict the expansion of an impurity cell.

In order to calculate the residual resistivity Friedel
el al.® and Blatt? assumed that the impurity potential
could be approximated by a square well of range equal
to the impurity sphere radius. They varied the depth
until the sum rule was satisfied to within reasonable
accuracy. This entailed using the first four phase shifts,
/=0 to 3, in Blatt’s work. Blatt’s phase shifts have been
used by Blandin and Daniel® in calculating the Knight
shift of the host nuclei and by Flynn and Seymour?
in calculating effects of electric field gradients in NMR.
On the other hand, Kohn and Vosko,® who also cal-
culated quadrupole effects in NMR, used the sum rule
together with the experimental residual resistivity and
the assumption that only the first two partial waves
were non-negligible. This yields values for the s and p
wave phase shifts at the Fermi surface. We adopt
Kohn and Vosko’s procedure largely for two reasons.
First, the Friedel-Blatt procedure gives a relatively poor
estimate of the residual resistivity for alloys such as
Ag(Au) for which Z is very small. This results from
the fact that the Friedel-Blatt potential is determined
by valence and size differences, but does not include
any effect of the orthogonality term in V. Second, the
spatial dependence of the impurity pseudo-potential
is not very well known, so that it is advantageous not to
have to assume a specific form for it in obtaining the
phase shifts. The Kohn-Vosko procedure would lead
to erroneous s and p wave phase shifts if higher phase
shifts are important. However, since the d and f wave
phase shifts in Blatt’s calculations are relatively small,
the error in neglecting them may not be very great,
especially for small Z.

In obtaining 8o(k#) and 8,(kr) from Ap/¢ and the
sum rule, there are in general two sets of solutions

37)
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Fic. 5. Modification factor P, Eq. (27), for the electronic
probability density at the nucleus of an impurity in an alloy. This
was computed with the use of a square well, Fig. 4, as the effective
impurity potential acting on s-partial waves; P is a function of
well depth or barrier height through the parameter |ko|R and of
the s-band filling through the parameter wr=/kraR.

because Eq. (34) involves the squares of the sine func-
tions. We give below the results of the calculations for
both sets of solutions. For the cases we have treated,
one value of 8,(kr) is positive and the other negative.
If the potential is weak, a positive 8o(kr) corresponds
to an attractive potential for s waves, and a negative
8o(kr) arises from a repulsive potential. Consequently
the two solutions give strikingly different results for
the isomer shift. We note also that if Z is close to zero
while Ap/c is not small, then for each set of phase
shifts, 6;(kr) is of the opposite sign from &y(kr).26
Instead of producing moderately large s and p wave
phase shifts of opposite sign, the Friedel-Blatt pro-
cedure gives very small phase shifts of the same sign
in such cases. The isomer-shift predictions turn out
to be much better when one uses Ap/¢c than when one
uses only the sum rule and an assumed square well.

Having obtained 8o(kr) we proceed, as explained
earlier, to employ a square-well potential to extend
the s wave inward to the origin. The well depth parameter
may be found from Eq. (11) which for k= kr may be
written in the form.

wp cotwp— tandy(kr) ]
1+4cotw, tando(kr) ’

2 For the solution with 8 (kr) negative and & (kr) positive,
one may speculate that the orthogonality term in the pseudo-
potential is more repulsive at larger distances than at short
distances.

(38)

V) COtvp=
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Fic. 6. Comparison between the calculated isomer shift
vr=g4(P—1) using an attractive impurity potential, Eq. (32) and
Fig. 5, and the experimental isomer shift, Table I. The experi-
mental values for v; are represented by points or crosshatched
areas. The calculated v; are given by the solid curves where
g4=8.0 mm/sec has been chosen to give agreement between
theory and experiment for Cu as host. Closer over-all agreement
is found here than for a repulsive potential, see Fig. 7.

where w,, was defined in Eq. (30a) and

Vp=1"p (k02+kpA2)1/2. (383.)
The depth of this well is quite different in general from
the depth of the square well in the Friedel-Blatt
treatment, as their square well is used for all the partial
waves.

IV. COMPARISON OF THEORY WITH
EXPERIMENT

Figure 5 shows the calculated behavior of the charge
polarization at the nucleus of the impurity atom,
P(w,) [Eq. (27)], as a function of the parameters
|koR| and w,, which involve impurity size, s-band
filling of the host metal and the well depth. For a given
value for wj, and compared with zero well depth, the
charge polarization P decreases for a repulsive potential
and increases for an attractive potential. For an
attractive potential, when k¢R attains a value of
ir, P reaches a maximum value. This corresponds to
the appearance of a bound state. A maximum in P
occurs because only contributions to p,(0) from the
band states have been taken into account in the cal-
culation. If bound states were included in the calcula-
tion P would not show a maximum, but rather would
monotonically increase with the well depth. In our
applications of the calculation of P we have thus far
chosen to consider only those cases where the potential
is too weak to hold a bound state.

We may now use the curves of Fig. 5 to understand in
a qualitative way how the sign of the isomer shift of
the resonance gamma ray for a dilute solution of ¥7Au
in the noble metals Ag or Cu has the same sign as for
the cases where the host is one of the transition metals
Ni, Pd, or Pt. If, as Mott® suggests, gold presents an
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attractive potential for the conduction band electrons
in silver, then with w, closely equal to 1.92, P will
be greater than one. In the case of a transition metal
host, 7, is expected to be less than 1. However, if the
potential is sufficiently attractive then P may be
greater than one here also. Furthermore if 7,/7,>1,
then the decrease in w; as n, decreases will be partially
compensated [see Eq. (30b)]. Thus one has a mecha-
nism whereby the isomer shifts may be of the same sign,
even though the band fillings may differ substantially
for the several host metals.

As shown in Eq. (32), the isomer shift 7 is propor-
tional to (P—1). This (P—1) is estimated from Ap/c
by the calculation outlined in Sec. III, where, in the
calculation, there are two free parameters, the s-band
filling in the host metal 5,, and the choice between the
two possible solutions of Eqgs. (35), (36), and (38) from
which the impurity potential is obtained.

Because the experimental isomer shifts are all of the
same sign and 7, is always less than or equal to 7,
one must have the same kind of potential, attractive or
repulsive, associated with the s-partial waves for all
of the alloys. In Fig. 6 the calculated (P—1) is pre-
sented for Au alloyed in Cu, Ag, Pd, Pt, and Ni as a
function of s-band filling for the case where the impurity
potential is attractive and in Fig. 7 for the case where
this potential is repulsive. The proportionality constant
G of Eq. (32), which relates vy and P—1, is obtained
by normalizing the theoretical value of P—1 at n4=1
for Au in Cu, to the experimental value vy=4.44-0.2
mm/sec.

This must be done separately for the attractive well
solution, yielding a constant G4=8.0 mm/sec, and for
the repulsive barrier, giving a constant Gp= —31
mm/sec. The quantities G4(P—1) are given as func-
tions of 9, in Fig. 6, and the quantities Gg(P—1) are
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F16. 7. Comparison between isomer shifts v;=gr(P’—1), Lq.
(32) and Fig. 5, calculated using a repulsive s-wave impurity
potential, and the experimental isomer shifts of Table I. The
experimental values for v; are represented by points or cross-
hatched areas. The calculated v; are given by the solid curves
where grp=—31.0 mm/sec has been chosen to give agreement
between theory and experiment for Cu as host. Little agreement is
found, whereasin the case of an attractive potential a close over-all
agreement is found. See Fig. 6.
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given similarly in Fig. 7 [Eq. (32)]. For Cu and Ag, 7,
is taken to be unity so the experimental isomer shifts
are plotted as points at n,=1 with the experimental
errors indicated. For the three transition-metal alloys
the value of 7, is less certain, so that the experimental
isomer shifts are plotted as crosshatched bands with
heights equal to the experimental errors.

An examination of Fig. 6 shows a good measure of
agreement between theory and experiment for the
attractive potential case. In detail, experiment and
theory agree for Auin Pd with a Pd s-band filling in the
range 0.56 to 0.60. This is in quite reasonable agreement
with the usual interpretation of the results of magnetic
measurements on Pd. For the case of Pt as host, the
s-band filling at which experiment and calculation agree,
Fig. 6, is in the range 0.35 to 0.38. There have been
several previous papers on the subject of the s-band
filling in Pt. Some years ago, Wohlfarth*” gave an
interpretation of measurements of the magnetic sus-
ceptibility and of the specific heat of pure Pt in which
it was suggested that the number of holes in the d band
was in the vicinity of 0.2-0.3. The number of electrons
in the s band would then be expected to lie in a similar
range. A recent treatment of the Knight shift in Pt
by Clogston et al.?® also indicates an s band filling in
this range. Thus there is reasonable agreement between
these results for the s-band filling in Pt and the result
obtained here. A much higher value of 0.58 for this
s-band filling has been suggested by Budworth, Hoare,
and Preston? from a rigid-band-model interpretation
of their specific-heat measurements on platinum-gold
alloys. Perhaps estimates of the band filling of pure Pt
may be derived more easily from investigations of the
pure or nearly pure metal as in the work of Wohlfarth,*
Clogston ef al.,*® or from the results reported here, than
from a rigid-band-model interpretation of the properties
of concentrated alloys.

For the case of Au in Ag, Fig. 6, our experimental
isomer shift lies about 309, below the theoretical curve.
For the case of Auin Niat an n4=0.6, the experimental
result lies about 609, higher than the theoretical curve.
The agreement between theory and experiment for the
case of Au in Ag could be made to appear better by
changing the normalization constant to a somewhat
lower value near G4=7.0 mm/sec. The experimental
results for both Au in Ag and Au in Cu would then lie
almost within their experimental error of the theoretical
curves and the results for the s-band filling in Pd and Pt
would be very little changed. On the other hand the
disagreement between theory and experiment for Au
in Ni would be somewhat worse. In our calculation of
the isomer shift from the electrical resistance, ferro-
magnetism of the host was not taken into account in

( % E. P. Wohlfarth, Proc. Leeds Phil. Lit. Soc., Sci. Sect. 5, 89
1948).

28 A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys. Rev. 134,
A650 (1964).

#»D. W. Budworth, F. E. Hoare, and J. Preston, Proc. Roy.
Soc. (London) A257, 250 (1960).
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any way. We find a reasonable agreement between
theory and experiment for the paramagnetic or non-
magnetic cases but not where ferromagnetism occurs.
As was observed earlier, Ap/¢ for Au in Ni is strongly
temperature-dependent. While this temperature depend-
ence must be due mainly to magnetic scattering, it is
not absolutely clear that Ap/¢c at T'=0°K gives a
useful measurement of the transport cross section
associated with the Au impurity in the context of our
model.

Figure 3 gives Ap/¢ for Au in Fe. We have used this
measured Ap/¢ at 4.2°K in a calculation of the above
type to estimate the isomer shift. We do not present
this calculation here, however, since the relatively
very large Ap/c=3.1uQ cm/at.9, implies that a bound
state may exist on the Au for Au in Fe. For the present
we prefer not to extend the model of Sec. III to include
bound states.

Turning to Fig. 7, we may now investigate the com-
parison between experiment and the theoretical model
for the case of a repulsive potential. With theory and
experiment again normalized for Au in Cu we find
Gpr=—31 mm/sec. Here, however, for Au in Ag, Pd,
and Pt the theoretical values for |v;| are all greater than
for Au in Cu while the experimental values are all less.
There is no agreement for these cases between theory
and experiment for any value of the s-band filling 7,.
In the case Au in Ni, theory and experiment still do
not agree at 5,=0.6 although the disagreement in this
case is less servere than for the attractive potential
Fig. 6. Considering all of these cases, the use of a
repulsive well in the above calculation is not consistent
with experimental results.

The results presented in Fig. 6 thus indicate that in
Au alloys or compounds where v is greater than zero,
the electron probability density near the gold nucleus
is greater than that density in pure gold, (p;'(0)
—pz(0))>0. This result is in agreement with the
conclusion of Mott® that gold when alloyed in silver
should present an attractive potential to valence-band
electrons. From a study of the correlation between the
isomer shift of gold in a variety of alloys with the
electronegativity difference between gold and the host
metal, Shirley et al.'* have also concluded that v;>0
corresponds to (p, (0)—p,(0))>0. We note from Eq.
(1), in agreement with Shirley ef al., that with (p,"(0)
—p;(0))>0 one has ((r*),— (r**),)>0. This result is in
agreement as to sign with the description of *7Au given
by Zeldes® using the shell model.

It is important to note that we have not given here a
calculation of the charge distribution over the whole
gold atom but only of p5(0). The methods of Sec. IIT
could be extended to do this, but we defer this calcula-
tion until further isomer shift measurements associated
with both the host as well as the impurity atom are
available.

% N. Zeldes, Nucl. Phys. 2, 1 (1956/57).
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In the use of the theoretical model given above to
describe the isomer shift, the range of the pseudo-
potential was taken to be the radius of a gold atom.
Strictly, this assumption is not required in the theoreti-
cal model. We have thus repeated the calculation for an
R of 0.257p, 0.5075, 0.757p, and 1.2575. The best
correlation between isomer shift and residual resistance
was found for the case presented in detail, namely
R=rs.

All of the available information, as discussed above,
is in agreement with the conclusion that v;>0 cor-
responds to (o, (0)—p,(0))>0. The use of our theoreti-
cal model gives a direct quantitative relation between
vr and the electronic charge density at the nucleus
through the constant G4. For example, taking G,=8.0
mm/sec we note from Eq. (32) that the measured
value!® v7=7 mm/sec in the alloy AuAl, would cor-
respond to paua1,(0)/pau(0)=1.88. Thus a reliable
value for G4 combined with measurements of vr
would be useful in obtaining information about gold
wave functions in alloys and compounds. The calcula-
tion gives good agreement with experiment but this
agreement will certainly be model dependent in some
degree. Thus, before making extensive applications of
isomer shift measurements to obtain information about
wave functions for gold it is important to further in-
vestigate the value for the constant G4. One way to do
this would be the measurement of v; as a function of
pressure for pure Au. If one assumes that pa,(0) due
to the conduction band is inversely proportional to the
atomic volume, using the compressibility of Au as
5.8X10~7 cm?/kg and G,=8.0 mm/sec one obtains
27=0.005p mm/sec, where the pressure # is in kilobars.
A measurement of this type may be feasible and would
be helpful in gaining a better understanding about size
changes of the gold nucleus and about the wave
functions of gold in alloys and compounds. It also
appears possible to improve the calculation of the
charge polarization factor P, in particular through a
better treatment of the impurity potential.

Note added in proof. The residual electrical resistance
values we have obtained (Fig. 3) are in agreement with
values in the literature for Au in Cu, Ag, Pd, and Pt,
but we have found no previous measurements for Ap/c
for Au in Ni. Recently, we have made additional re-
sistance measurements on two commercially prepared
samples containing 1/2 and 19 Au in Ni. These new
values agree with each other, but lie considerably lower
than our previous values of Ap/¢ for Au in Ni (Fig. 3),
which were obtained from measurements on three NiAu
samples. In view of this, the results of Fig. 3 for Ap/c
for Au in Ni may not be correct, and the compari-
son of the theoretical isomer shift for Au in Ni with
the measured value must await further resistivity
measurements.

It has been observed in many laboratories that the
residual resistivity of a given impurity may depend
appreciably upon other incidental impurities present.

OBENSHAIN, AND THOMSON

APPENDIX: THE CHARGE TO BE SCREENED

When the host and impurity atoms have different
sizes, the alloy lattice will be distorted. The Friedel®
sum rule involves the change, produced by introducing
one impurity atom, in the total charge within a sphere
about the impurity. The sphere, of volume V, must
be large enough that the conduction-electron wave
functions take their asymptotic forms. If one considers
only the scattering from the one impurity atom, and
regards the crystal as being of infinite extent, then one
may choose V to be as large as one likes. If there are
other scattering processes in the crystal, however, such
as phonon scattering or scattering from other impurity
atoms, then the phase shifts entering into the Friedel
sum rule will cease to describe the wave function after
the electron has traveled a distance of the order of a
mean free path from the impurity atom in question.

Seitz® has established that a center of dilatation of
strength s, that is, for which a small sphere about the
center of dilatation is increased in volume by 4ms,
produces a change in the volume of an elastic solid of
finite extent by an amount AQ=+vy 4ws. Here v is
defined in terms of Poisson’s ratio ¢ by y=3(1—0)/
(140) and is about 1.5 for most metals. That the solid
as a whole expands more than the region in the vicinity
of a center of dilatation is associated with maintaining
a stress-free surface. A rough calculation?® of the elastic
field about a center of dilatation indicates that the
change in volume of a sphere of radius of the order of a
mean free path is very nearly 4ms. The additional
expansion (y—1)4rs occurs predominantly at much
greater distances from the center of dilatation. Con-
sequently the volume of host material which is pushed
out of a “Friedel sphere” of radius of the order of a
mean free path or less is AQ/y, where AQ is the volume
change per impurity atom. If f=Nj,,/N is the atomic
fraction of impurities in an alloy and the change in
lattice parameter is Ae= (6a) f4-0(f?), then the volume
of material which passes through a Friedel sphere, per
impurity atom, is

1 (a+Aa)*—a® 3 Q@ da 3 éa
yer = =T (A1
Y Zvimp Y A\7imp a v a

The charge to be screened per impurity atom is therefore

Z=(np—n4)— (3/7)(ba/a)n,. (A2)

This derivation is for the case of only one impurity
atom in the crystal. It makes use of experimental in-
formation on volume changes at finite concentration
only to obtain éa/a, for which the expansion of the
lattice resulting from one impurity atom can be inferred.
The argument does not require the assumption that
elasticity theory gives the correct volume of the im-
purity cell.
31 F, Seitz, Rev. Mod. Phys. 18, 384 (1946).

% J. D. Eshelby, J. Appl. Phys. 25, 255 (1954).
3 R. L. Huddleston (private communication).




