
P H YSI CAL REVI E%' VOLUME 137, NUMBER 3A 1 I EBRUARY 1965

Theory of Giant Quantum Oscillations in Ultrasonic Attenuation in a
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The eRect of collisions on the giant quantum oscillations in the attenuation of both transverse and longi-
tudinal acoustic waves propagating parallel to a dc magnetic 6eld in metals is studied. This is accomplished
by using the results of Tosima, Quinn, and Lampert on the theory of collision eRects on the magnetoconduc-
tivity tensor of a quantum plasma. The experimental conditions under which quantum oscillations should be
observable are determined, and the information which they yield about the Fermi surface is discussed.

I. INTRODUCTION

HE magnetic field dependence of the attenuation
of acoustic waves in very pure metals at low tem-

peratures has become a very valuable tool in the study
of the electronic properties of metals. ' The most widely
studied magnetoacoustic phenomenon, the "geometric
resonance, " results from. a m.atching of the size of the
orbit of the electrons in the dc magnetic field to the
wavelength of the sound. wave. These geometric reso-
nances yieM information' about the extremal linear di-
mensions of the Fermi surface in a direction perpendicu-
lar to the dc magnetic field and to the direction of
propagation. The object of this paper is to study a dif-
ferent magnetoacoustic phenomenon, the giant quan-
tum oscillations in the attenuation of acoustic waves
propagating parallel to the dc magnetic field. The exis-
tence of giant quantum oscillations was first predicted
by Gurevich, Skobov, and Firsov. ' These authors
studied only the An=0 tra, nsitions (that is, transitions
in which the Landau-level quantum number e is un-
changed). The period of these oscillations is a measure
of the cross-sectional area of the Fermi surface at the
plane k,~ms/h, where s is the velocity of sound, and.
the magnetic field is in the s direction. Because s is very
small compared to the Fermi velocity, the oscillations es-
sentially give the extremal cross-sectional area of the
Fermi surface. The existence of giant oscillation in the
hrI, = +1 transitions was pointed. out by Quinn' and by
Miller' for the propagation of helicon waves, and by
Langenberg, Quinn, and Rodriguez, ' and Gantsevich
and Gurevich' for the case of acoustic waves. Langen-

' See, for example, The Fermi Surface, edited by W. A. Harrison
and M. B. Webb (John Wiley R Sons, London and New York,
1960},Sec. VI, pp. 214—263.' A thorough analysis of the geometric resonances can be found
in M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev.
117, 937 (1960).' V. L. Gurevich, V. G. Skobov, and Yu A. I'irsov, Zh. Kksperim.
i Teor. Fiz. 40, 786 (1961) LEnglish transl. :Soviet Phys. —JETP
13, 552 (1961)j.See also J.J.Quinn and S. Rodriguez, Phys. Rev.
128, 2487 (1962) for an alternative treatment of giant quantum
oscillations.

4 J. J. Quinn, Phys. Letters 7, 235 (1963).' P. 3. Miller, Phys. Rev. Letters 11, 537 (1963).' D. N. Langenberg, J. J. Quinn, and S. Rodriguez, Phys. Rev.
Letters 12, 104 (1964).

~ S. V. Gantsevich and V.. L. Gurevich, Zh. Eksperim. i Teor.
I'iz. 45, 587 (1963) LEnglish transl. : Soviet Phys. —JETP 18,

A

berg et a/. have stressed the importance of the quantum
oscillations in the ~ri=&1 transitions as a tool for
studying Fermi surfaces. It has been shown that the
period of these oscillations can be used to determine the
cross-sectional area of the Fermi surface not only at
an extremum, but at any plane perpendicular to the
direction of the dc magnetic 6eld. Further, under suit-
able experimental conditions, the line shape of the giant
oscillations can be used to determine the cyclotron
effective mass' for the carriers which are absorbing.
Thus this effect is capable, in principle, of yielding the
cross-sectionaI area of the Fermi surface and the cyc1o-
tron ef fectir e mass as a function of v„ the average
velocity (over one orbit) parallel to the direction of
propagation of the sound wave. This is considerably
more information about the Fermi surface than can be
obtained by any of the standard tools used at present.
For this reason, it seems desirable to make a careful
analysis of the experimential conditions necessary for
the observation of giant quantum oscillations. Both
the Am=-0 transitions and the Ae= =II=1 transitions will
be studied. The model used in the present work is that
of a degenerate electron gas embedded in an is6tropic
lattice of positive ions, the latter being capable of
sustaining both longitudinal and shear waves. For
more realistic models' in which the constant energy
surfaces for the electrons in ir spa. ce are other than
spherical, the analysis is somewhat more complicated.
For example, the selection rules he=0 for the absorp-
tion of longitudinal waves and Ae= &1 for the absorp-
tion of transverse waves, no longer hold in anisotropic
svstems; however, manv of the qualitative features of
the sir@pie isotropic model wiH hoM. In particular, if. the
averaged semiclassical attenuation due to a given ab-
sorption process is known, the experimental conditions
on the frequency, magnetic-field strength, relaxation
time, temperature, etc., necessary for the observation
of quantum oscillations in the attenuation should be
readily attainable by application of the concepts of the

403 (1964)j.These authors mention, but do not discuss in detail,
the eRect of collisions on their calculations. Their Eq. (27) is not
in agreement with the conditions determined in the present pages.

s Y. Shapira and B. Lax, Phys. Rev. Letters 12, 166 (1964).
See, for example, J. J. Quinn, Phys. Rev. Letters 11, 506

(1963) and Phys. Rev. 135, A181 (1964) for a treatment of a sys-
tem with ellipsoidal energy surfaces.
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present theory. Gurevich et a/. ' have already considered
the effect of a finite relaxation time on the observability
of quantum oscillations in the De= 0 transitions. How-
ever, their method consists of simply replacing the delta
function, which implies exact conservation of energy,
by a I.orentzian in the expression for the transition rate.
The validity of this procedure is not immediately ob-
vious, and a more thorough treatment of collision effects
seems desirable. Furthermore, there are some minor
errors in the work of Gurevich et al. , although the experi-
mental conditions determined by them as being neces-
sary for the observation of giant quantum oscillations
in the ~m= 0 transitions are correct. The effect of colli-
sions on the he= +1 transitions has not been studied
carefully before. The experimental conditions for the
observation of quantum oscillations in the attenuation
due to these transitions which we find in this work
agree with the conditions obtained by rather qualita-
tive arguments in Ref. 6.

In the present paper, the eGect of a finite relaxation
time for the electrons is taken into account by making
use of the results of Tosima, Quinn, and Lampertio for
the quantum magnetoconductivity tensor in the pres-
ence of collisions. Also, for simplicity, we limit our con-
sideration to propagation of acoustic waves parallel to
the dc magnetic field, although giant oscillations can
occur for other directions of propagation.

II. ATTENUATION

The motion of the positive ions of a metal acts as the
source or driving force which is responsible for the
establishment of the self-consistent electromagnetic
field. The ionic current density is given by —eeu„
where u(r, t) is the velocity field of the ions, e the elec-
tronic charge, and e the mean electron density. The
total current density J is the sum of the ionic current
density and the induced electronic current density j.
From Maxwell's equa, tions one can obtain the relation

where E is the self-consistent electric Geld. For propaga, —

tion parallel to the dc magnetic 6eld, the tensor F is di-

agonal and has the following nonvanishing components:

I'„=I'„„=ipoo, . .

and
I'„= i(o/4~. —

ln Eq. (2), 00 ——ne'r/m is the dc conductivity and
p=-(c'q'/~~'~ )(1r—co'/c'q'), where ro„ is the electron-
plasma frequency. An additional relation between j andI is obtained from the equation of motion of the density
matrix. When one takes into account the motion of the
ions on the random scattering of the electrons, this

relation becomes'

The deGnition of J together with Eqs. (1)—(4) allows one
to calculate the self-consistent electric 6eld and current
density. The power absorbed from the sound wave by
the electrons can be evaluated from a knowledge of the
self-consistent field. %hen one includes the contribu-
tion of collision drag, '" the power absorbed per unit
volume can be expressed as

Q= —,
' Refj* $E—(mu/cr)j+(em/r) ~u~'}. (5)

By definition, the coe%cient of attenuation of the sound
wave is the ratio of Q to the incident power per unit
volume. Explicit expressions for the attenuation co-
efficients of both longitudinal and transverse acoustic
waves in a longitudinal magnetic 6eld have been given
bv Kjeldaas" and by Cohen et. col.' For a longitudinal
wave, the attenuation coefficient is

yi ——(zm/3fsir) Re[(0p/0' ) 1j,
where s is the number of conduction electrons per atom,
s~ is the velocity of the longitudinal sound wave, and SI
is the mass of an ion. For transverse waves, it is con-
venient to use circularly polarized waves. The attenu-
ation coefficients in this case are

y+ ——(sm/Ms&7) Re(D1+iP)'o0/(o +-iPao) j 1), —(7)

where s& is the velocity of transverse sound waves and
0 ~= 0 gg~ Zo'~y.

The difference between the present analysis and that
of Kjeldaas or Cohen et ul. is that here we are inter-
ested in quantum effects which the previous authors
were not able to treat with the semiclassical Boltzmann
formalism. Both the real and imaginary parts of the
conductivity display quantum oscillations. The oscilla-
tions in the real part of e are much more dramatic than
those in the imaginary part. In fact, in the absence of
collisions and at zero temperature the real parts of 0-+

and o,.-. display (as a function of the strength of the dc
magnetic field Io) discontinuous jumps between the
value zero and a value which can be orders of magnitude
larger than the semiclassical mean value. These giant
quantum oscillations are precisely what we wish to
study.

III. QUANTUM OSCILLATIONS

In the preceding paper, ' a quantum mechanical
derivation of the magnetoconductivity tensor of a de-
generate electron gas, including the effect of collisions,
was presented. By using the results of this theory, we

"S. Yosima, I. J. Quinn, and M. A. Lampert, preceding paper,
Phys. Rev. 137, A883 (j.965).

"T.Holstein, Phys. Rev. 113,479 (1959)."T.Kjelda, as, Phys. Rev. 113, 1473 (1.959).
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can easily show that"

Ref ej= —(mh'co~'/4s. iV )P( '
I V(q) I )

XL(E„.—E„—k~0)'+k'r 'i '. (8)

at y'=A is of the order ((A +1)'"—A ' '} and the
distance to neighboring peaks is of the order of

{L(~,/kT)+A )'"—A '~'}.Far from a peak the func-
tion decreases exponentially. The actual positions of the
peaks vary as a function of magnetic 6eld strength. If
Ba&)1, the second function

We shall study first the quantum oscillations in the
real part of 0„.Because the matrix elements (i

'
I U.(q) I v)

are given by'4

(s', k„, k.y q I
U.(q) I

Bk„k.)= (k/m) (k.+q/2) &, (9)

where 8„.„is the Kronecker delta function, the attenua-
tion in this case should correspond to the he=0 transi-
tions studied by Gurevich et al. Substituting the matrix
element, Eq. (9), into Eq. (8) gives the result

Reer. ,=

It
—2 —j.

X q(k, +q/2) —(u +r '—. (10)-
'-m

In writing down Eq. (10), we have made use of the
approximation

where p is the chemical potential. The derivative of the
Fermi distribution function po(E„) with respect to p,

is equal to (2kT) ' cosh '$(E„—p)/2kT). We repla. ce the
summation over k„and k, by an integration, and intro-
duce the following simplifying notation:

y=hk, (2mkT) '",
A, = Lp,

—Ace„.(n+-', )j/kT,
ai= hq(gmkT) '"
a2 ——( /q)(m/2kT)'~'

1+B'(y+ ai a~) '—

has a sharp maximum at y=a2 —ai of width 8 '. Far
from its maximum, the function approaches the con-
stant value (s.B) '. In the limit as B tends to infinity,
this function approaches the value (y+ai)'8(y+ a,—a,),
where 8(x) is the Dirac delta function. In this case, giant
quantum oscillations should be clearly observable; only
when a peak of the 6rst function coincides with the posi-
tion of the delta function is Reo-„ large. When 8 is
6nite, we must satisfy the following conditions in order
to have clearly observable giant oscillations in Reo.„as
a function of magnetic 6eld: First, the distance between
peaks of the first function must be larger than the width
of the maximum of the second function; second, the
contribution to the integral from a coincidence of a
peak of the first function with the maximum of the
second must be large compared to the sum of the con-
tributions from all the other peaks of the first function.
These two conditions can be approximately expressed as

(k&0„./k T)'"&B—'

750

Ba"/m&(mB)-' P A —'"„
n=o

(15)

and
q/& (p/7i(o, )'"

y )"' v 2kr')'"

(q/&
a~,) s ms'

(16)

(17)

where eo is defined by ka&, (no+ —,') =p. Equations (14)
and (15) lead to the conditions

Reer„=
COc 00

dy P cosh-'h(y' —A.)j
47] gggi n=o

X(y+ai)'n. 'BI 1+B'(y+ai —a2)' 1
' (13,'

where n& is the Fermi velocity and ao is the radius of the
first Bohr orbit in hydrogen. The integrand in Eq. (13)
is a product of two rapidly varying functions. The first
function. P„cosh 'Li~(y' —A„)j consists of a series of
p/h~, peaks of unit height. The width of the peak located

' The notation used in this work will follow that of Ref. 10.
"See the paper of Quinn and Rodriguez cited in footnote 3.

B=qr(2kT/m)'". (12)

The expression for the real part of cr„ then takes the
foal

In these equations, ~p and s are the Fermi velocity and
sound velocity, respectively; p, is the chemical potential
or Fermi energy, and l=v~:7- is the electron mean free
path. In writing down the inequalities (14) and (15),
we have assumed that the width of the pea, ks of the
oscillatory function is much smaller than the separation
between peaks. This is true if A~,))kT. This require-
ment, together with the inequality (16), are the condi-
tions necessary for the existence of readily observable
quantum oscillations in the real part of cr„. Equation
(17) is the requirement necessary in order that the am-
plitude of the oscillations be gigantic compared to the
background attenuation. These conditions do not differ
essentially from those of Gurevich e1 al. , who have also
considered this problem. These authors' appear to have
made a few minor errors, but these do not invalidate
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thcll conclusions. 011c cl 1ol is thc l cplaccmcnt of
(Aco ) by (Aco) ln Eq. (14) of tlleil papel. ; tllls el i'ol'

would result in the factor (y+ai)', appearing in the
integrand of Eq. (13) of the present pa,per, being re-
placed by a2'. The second error is the omission of the
square of y in the argument of the hyperbolic cosine
appearing in Eq. (13) of their paper. These two errors
completely change the behavior of the integrand from
that of Eq. (13) of the present paper.

The matrix elenients of V, (q) and of V,(q)&iV, (q)
are given by

n1aximum of the second must exceed the remainder of
the integral. These two conditions can be written
approximately as

and
A co,/2k T ~ czp

—czr
~
&B ',

B(p—
(czp

—czi)'kT) ~p'

& P n.4„'~"/r-, B.-
(ci3 cii)zl Acor,

(21)

(22)

In the inequality (22) izp =(p, cikT)/Aco where cr is
a, nun1ber of the order of but greater than unity. The
inequalities (21) and (22) result in the requirements

(n', kp, k,+q~ V ~nkpk. )=i(Aco./2m)'~'

X[(n+1) ~„., „„,—n -"~„,„,], q'& nz/Ar, (-'3)

and

(n', k„, k,+ q ~

U,&zVp
~
nk„k.-)

= a2i(Aco, /2m)'"(n+-, 'a-', )8„.„~.. (18)

With the aid of Eq. (18) one can easily show that

ma)„'co, '0
Reo.g =—

(2zr) 'r!7
app(E. [k,))

dk, P — (—n+ ,'w ,')--.
n=o gp

ftig i7
—2 —1—k,+- —co%co. +r '-. (19)

rg 2

In writing down Eq. (19), we have again made use of
Eq. (11).Rewriting the integrand of Eq. (19) in terms
of. the dimensionless variables defined by Eq. (12) gives
the result

~&Cue O) c
Reo-+ =

~~ 4x'gao
dy Q(n+-,'w-', )

y2 —a„
+cosh ' —zr 'B[1+B'(y+czi—czp)') ', (20)

2

where the new paramet. er czp equals q '(co&co,) (nz/2k T) ' '.
As with the integrand in Eq. (13), the integrand of Eq.
(20) consists of two rapidly varying functions. The first
function P (n+-', W-,') cosh '[-,'(y' —A„)$ consists of a
series of zc/Aco, peaks. The height and width of the peak
at y'-=A are approximately [(zc—A„,kT)/Aco, j&p and
A 'l", respectively; the distance to neighboring peaks
is of the order of /ico, /kTA

For .B»1, the second function (B/rr)[1+B'(y+czi
—czp)'j ' has a sharp peak of width B ' at y= czp

—czr.

Far from the maximum, the second function decreases
as (rrBy') '. In order to have clearly observable gigantic
oscillations in Reo-+ as a function of magnetic field, we
must again satisfy the conditions that the distance be-
tween neighboring peaks of the first function in the
vicinity of the maximum of the second function must be
greater than the width of the maximum of the second
function, and the contribution to the integral from the
coincidence of a peak of the first function with the

(2zr)'Aqr 1V

where

&& dxF(cc) (25)
[(Aq/m)a —co]-'+ r z

oe

P(K) = P pp E~ K+ —
pp E~ cc ——

n,=o
(26)

By means of the Poisson sum formula, '5 one can express

"See, for example, R. Courant ancl D. Hilbert, methods of
1Vathematical Physics (Tnterscience Puhlishers, Inc. , New Vork,
1953), gaol. 1, p, 76.

q/& [(p/Aco. )co,r)'"{[1—(co,/qvi )'j} '". (24)

In writing down the inequality (24) we have assumed
ap»czi and co&&co. The inequality (23), together with
the requirement fico&&kT, are the conditions necessary
for the existence of observable quantum oscillations
in the real part of o-~, and hence in the attenuation
due to Dn=- &1 transitions. The inequality (24) is the
condition necessary for oscillations of gigantic am-
plitude. The condition (23) was given in Ref. 6 on
the basis of rather intuitive arguments. The effect of
collisions in both An=0 and Ae= &1 transitions is
relatively unimportant if the width 8 ' of the maxi-
mum of the second function is much smaller than the
width of the peaks of the oscillatory functions in the
vicinity of that maximum. This requirement leads to
the conditions ql&zc'"[(-', ms'+kT)'" —(—'ms')'"$ ' for
An=0 transitions and q/& (co./qvr)(p/kT) for hn= &1
transitions. When these conditions are satisfied, the
function zr 'B/[1+B'(y+cz)-'$ can essentially be re-
placed by Ii(y+cz).

In actual experiments, at least in metals, fs~, is
usua, lly of the same order of magnitude as kT. In this
situation, it is convenient for some purposes to write
the expressions for the real parts of o-,.„. and 0.+ in a
different form which explicitly displays their oscilla-
tory behavior. If one returns to Eq. (8) and performs
some algebraic manipulation, one can obtain the fol-
lowing equation:
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F(«) in the form

F(«) =— A~q 4xkT ~
+ Z(—1)

mco IzM

(2rrr q)
—

rrrriq«
X cosi —— p —c(«)—e —

i
sm ——

k kg% ~ - 21 — m(d ~

X [sinh(2m'rkT/ken )] ' (27)

where e(«) = k'«'/2m. For k&v. &kT, only the first oscil-
latory term in F(«) (that is, the r= 1 term) has appreci-
able amplitude; neglecting the small higher-order terms
gives the following expression for the difference between
Reo-„and its mean value Reo-„.

kT (~aoqr) '
Re(0„—o.,) =——

e(q) slllh(2m' kT/Acop)

s+n r
dk- cos

z'+1

2rrp ( +cur)'-'

hen, . (g2~"-

rr(s+a)r)
+sin (28)

Cuc &

In L'q. (28), we have introduced the dimensionless vari-
aMe s=(hqr«/m) —~r, and we have neglected e(q/2)
compared to p in the argument of the cosine. For sim-

plicity, we assume that co~ is small compared to unity,
although this requirement is not essential. The main
contribution to the integral appearing in Eq. (28) is
from the region

~

s
~

(1.If q/)) (p/Iia&, )'", a,s required by
Eq. (16), we can obtain a rough approximation to the
behavior of the integral by neglecting the s dependence
of cos((2rrp/ka&, ){1—[(s+arr)'/q'P]}). When this is

done, one obtains

The attenuation displays quantum oscillations of the
de Haas —van Alphen type; that is, it is a periodic func-
tion of u,—'. Because of the factor [1—(s'/m~')] in the
argument of the cosine function, the period of oscilla-
tions is slightly longer than the de Haas —van Alphen
period. The period of the present oscillations is pro-
portional to the cross-sectional area of the Fermi surface
at the plane k.=ms/k, while the de Haas —van Alphen
period is proportional to the cross section at the plane
k, =0. The factor e '"&" requires co.r))1 in order that
the oscillations be of appreciable amplitude. In this
situation where Iso,&kT, it is not really appropriate to

kT (aoqr)
—'e—'""

Re(a„—0„)=
ka). sinh(2m'k T/her, )

2' s-
Xcos '1 —— . (29)

vp'

refer to the oscillations as giant oscillations. When
Ace,&)kT, more than one of the oscillatory terms in the
summation appearing in Eq. (28) must be taken into
account. In this case, it is probably of little value to use
the Poisson sum formula.

The same procedure can be applied to o-+ when

k~.&k T. One can show that if q'))m/kr, then
Re(o.+—0.+) can be approximated by an expression of
the form A cos((2ir/ken, )@{1—[(co,&co)'/q'r-~: ']})-We.
do not bother to write down the approximate but com-
plicated expression for the amplitude 4. The main

point is that because of the factor {1—[(~,&~)'/
q-'vF']} appearing in the argument of the cosine, the
attenuation is not a periodic function of or. as in the
de Haas —van Alphen eRect. However, in metals, even
at the highest magnetic fields, (p//ice, )))1; therefore, the
factor {1—[(co,+a&)'/q2vF'-]} changes by an extremely
small amount when one alters the intensity of the dc
magnetic field suAiciently to cause p/ha&, to change by
unity. Thus the oscillations are approximately periodic
over any s~nall. range of magnetic field. The period of
the osclllations is proportional to the cross-sectional
area of the I'enui surface at the plane k.=(m/hq)
X(~&co,). The position of the plane is itself a function
of ~„but it is a slowly varying function compared to the
period of the oscillations. Thus the quantum oscilla-
tions in the attenuation due to An = &1 transitions are„
in principle, capable of yielding the cross-sectional area
of the Fermi surface as a function of k, .

IV. SUMMARY

The present work is based upon the free-electron gas
model of a metal; however, with a slight generaliza-
tion, many of the conclusions should be applicable to
systems with more complicated constant energy sur-

faces than spheres. To demonstrate this point one need
only compare the present theory with the treatment by
Gurevich et al. ' of the quantum oscillations due to
Asz=o tra, nsitions. If one is careful to include the
factor (co, ,/n)' in the generalization of Eq. (14) of
Ref. 3, in which the delta function 8(~ ~ —cu) is re-

placed by a I.orentzian, one obtains the same result as
Eq. (13) of the present paper. Thus the present paper
oRers some justification for this rather simple treatment
of collision effects. For systems with complicated energy
surfaces, the calculation of the conductivity tensor be-
comes very. difficult, but the procedure used bv Gurevich
et al. can probably be carried out.

The physical origin of the quantum oscillation has been
discussed in detail before. ' '' In absorbing a phonon
of wave vector q and energy A~, an electron makes a
transition from the initial state

~
nk„k, ) to the final state

~
sz+n, k„k.+q). Conservation ot energy and wave vec-

tor require that k, =-«, where « is given by « = (m/hq)
X (~ n~.) (q/2). n =—An is—the change in the Landau-
level quantum number in the transition. In order to have
absorption the initial state must be occupied and the
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final state empty. Thais at zero temperature absorp-
tion occurs only if the Fermi energy lies between these
two states. Since these states are separated in energy by
h&o, only over &u/oi, of the full period can absorption
occur. The period of the oscillations is obtained by de-
termining the change in magnetic field necessary to
"push" one Landau level through the Fermi surface at
the plane k, =z . The period 6(Bs ') is inversely pro-
portional to the cross-sectional area of the Fermi sur-
face at the plane k, =z; in fact, A(8s "j= 2s.e/hc5(p, K ),
where S(p,,z ) is the cross-sectional area of the energy
surface E=p (Fermi surface) at the plane k, =z .
Actually, for n/0, the value of f(: changes very slightly
over one period; this results in the attenuation being a
not exactly periodic function of 8& '. It should be
pointed out that in this paper we have neglected all
effects due to the spin of the electron. The generaliza-
tion needed to include spin is rather trivial.

The effect of finite temperature and collisions can be
understood qualitatively in a simple way. If kT& A~,
one can have absorption as long as either the initial or
final state lie within kT of the Fermi energy. Owing to
collisions, the law of conservation of energy has an un-
certainty IIT ' associated with it. This results in a
spread in the allowed values in the plane k, =~ . If
this spread becomes too large, the quantum oscillations
are washed out.

For the purpose of illustration, we shall apply the
conditions obtained in this paper to an idealized metal
and a semimetal. We assume that the metal is character-
ized by the following parameters: m= mo, the free elec-
tron mass, es ——10' cm/sec, and s=2&&10' cm/sec. At
an operating temperature of 2'K, the dc magnetic
field must satisfy the condition Bo)&15000 G in order
to see quantum effects. In order to see giant oscillations
due to he=0 transitions, the conditions (16) and (17)
must be satisfied. Actually, the condition (17) is the re-
quirement necessary for large amplitude oscillations;
that is, oscillatioas in. the attenuation which are of the
order of the attenuation itself. Small amplitude oscilla-
tions may still be observable if only the inequality (16)
is satisfied. For the idealized metal under discussion
here, these inequalities result in the following condi-
tions on the frequency of the sound wave: co) 10 '~ '
from (16) and o~) 10'r ' from (17). Thus, for r=10 '
sec, it is necessary that co&10' sec ', in order to see the
oscillations; and it is necessary that co&10" sec ',
in order that the amplitude of the oscillations be gigan-
tic. The two conditions necessary for the observation
of giant quantum oscillations due to ~n/0 transitions,
namely (23) and (24), are almost identical if one is not
too close to the absorption edge where fp~-——co,. For

our idealized metal they result in the condition ~&2
X105v ')'", thus, for r = 10 sec, the quantum oscilla-
tions should be observable, if co &6X10' sec—'.

We shall use the parameters m=10 'mo, van=5&&10'
cm/sec, and s=2X10' cm/sec to characterize a semi-
metal, or a small pocket of electrons or holes in a metal.
At a temperature of O'K, B&)150 G, in order to see
quantum effects in such a material. The condition
necessary for the observation of quantum oscillations
due to An=0 transitions is co&10 '~ '; the condition
necessary for the oscillations to be of gigantic amplitude
is (o)102r . The condition necessary for the observa-
tion of quantum oscillations due to An/0 transitions
becomes co)2X10 r '~'. It should be mentioned that
the Am=&1 transitions can occur only if to)co,s/ttr.
The oscillations due to An=0 transitions have been
observed by a number of authors" at frequencies as
low as 11 Mc/sec. Thus far, the more interesting quan-
tum oscillations due to An/0 transition have not been
observed.

Pote added irl, Proof. It has been pointed out. to the
author that the treatment of the attenuation of longi-
tudinal waves is not correct because the diffusion
current, arising from the nonuniform electron density
associated with the wave, was not included. Equation
(4) gives only the conduction current. When the diffu-
sion current is included, the quantity 0-„. appearing in

Eq. (6) of this paper is replaced by

o.„+os(m/kyar)'(1+icur) Lg(o~ —i/r)$'
&&rg( —/ )+ ' .g(0)r '

where the function g(x) is defined by

po(~ (k.+V)j poL& (k ))
g(x) =E

k,+-', q
—(mx/Aq)

Including this diffusion term does not alter the condi-
tion (16) necessary for the observation of the quantum
oscillations.
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