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large single crystals is encountered. Although boules
several grams in weight are readily produced, Ga203 has
a strong tendency to twin in the growth process. This
results in samples built up of small needle-like single
crystals, some of which have their b axis in one direc-
tion, and the remainder their b axis in the opposite
direction. Even if large single crystals cannot be pro-
duced, it may be possible to overcome this de.culty by
judicious choice of sample orientation. The possibility
of using Cr'+ in Gaq03 as the active material in an
optical maser is somewhat less promising, although well
worth considering. All of the required characteristics
are present to some extent. The linewidth of a few A is
greater than would be desired but could possibly be
reduced by almost an order of magnitude with refine-
ments in crystal preparation techniques. Experiments
to determine the factors that so strongly aRect the
quantum efFiciency wouM also be required for perfecting
the growth technique. However, it is significant that
the quantum efficiency of the best Quorescing samples
produced to date is not very diRerent from that of ruby.
Another important consideration is whether E-line light

is absorbed by the excited system. Experimental in-
vestigation of this question has not been performed.
On the basis of experiments completed at this time, with
the sample quality presently available and the difhculty
of fabricating a laser rod, it appears that the operation
of this system as a laser would be marginal, at best.
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The electronic band structure of arsenic is studied by means of a pseudopotential approach. The pseudo-
potential has been chosen by (a) fitting the "atomic" pseudopotential of Ge to a four-parameter curve and
(b) adjusting the parameters slightly so as to allow comparison of the various theoretical curves with the ex-
perimental data. The energy bands are determined by diagonalizing a fairly large (=90)(90) secular
determinant. Spin-orbit coupling is included u Posteriori. Group-theoretical analysis is carried out throughout
the Brillouin zone and use is made of the classification of the levels as well as the compatibility relations. It
is found that the holes are located at T, the center of the hexagonal face. The electrons are probably dis-
tributed in six equivalent pockets, each one located along a binary axis in a pseudohexagonal face, near its
center I..

1. INTRODUCTION

~ 'HE group-V semimetals, As, Sb, and Bi, have been
for a long time the center of interest of many

investigators both from the theoretical and the experi-
mental points of view. ' The main reason behind this
wide interest lies in the fact that a small eRective
number of carriers makes transport and equilibrium
properties relatively easy to measure as well as easy to
interpret in terms of a few para, meters.

However the over-all band structure of the semi-

*Work supported in part by the National Science Foundation
and the U. S. Once of Naval Research.

' For a summary of the present state of the many facets of the
field see, for instance, the proceedings of the Topical Conference
on Semimetals, New York, IBM J. Res. Develop. 8, 215 (1964),
and the many references quoted there,

metals has remained, up to now, virtually untouched.
This is so because the small number of eRective carriers
is in this case a drawback rather than an advantage,
since only a minute region of the Brillouin zone can be
reached by the standard experimental techniques. In
addition the relatively low symmetry of the A7 (arsenic)
structure complicates the theoretical approach. But
without a reasonable overall energy-level diagram,
complicated experimental measurements like optical
properties' or behavior upon alloying' cannot be reliably
interpreted.

Of the three group-V semimetals, arsenic is the one

'M. Cardona and D. I.. Greenaway, Phys. Rev. 133, A1685
(1964).' See Ref. 1 for work on Si-Sb alloys and for further references.
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k —k'= 6, (1.3)

where G is a reciprocal lattice vector; in general these
matrix elements depend on k as well as on G. However,
as it has been proved for the case of silicon and ger-
manium, ' ' quantitative agreement with experiment can
be obtained even if two greatly simplifying assumptions
are made: (i) V„ is expressed as a superposition, of
atomic-like pseudopotentials centered about each ion
site

n, ion SiteS

(ii) the atomic like pseudopotentials are local, i.e., they
are simple (spherically symmetric) functions of position
rather than integral operators:

U =U(lr —r l). (1.5)

Under these circumstances the matrix elements of the
pseudopotential can be decomposed into a product of

4 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959);
M. H. Cohen and V. Heine, ~bQ'. 122, 1821 (1961);B.J. Austin,
V. Heine, and L. J. Sham, ibid. 127, 276 (1962).

~ J. C. Phillips and L. Kleinman, Phys. Rev. 128, 2098 (1962).' D. Brust, Phys. Rev. 134, A1337 (1964).

that, because of experimental difhculties, has been
studied least; on the other hand, it is the one which is
most likely to be manageable from the point of view of a
first-principle band structure calculation: it has the
smallest atomic number (8=33) and it is placed in the
periodic table adjacent to germanium, for which most
of the properties are well known and understood. It is
then expected that the methods which give the best
answers for the calculation of the band structure of Ge
would give reasonable answers for As.

We have decided thus to start our study of the semi-
metals with arsenic, and we have computed its elec-
tronic structure by two different methods: (a) an
orthogonalized-plane-wave (OPW) calculation, to be
reported shortly, which is expected to achieve self-
consistency, and (b) a pseudopotential approach whose
results we report here.

It has been repeatedly shown4 that the one-electron
Schrodinger equation for the perfect crystal

Q'/2m+ V(r)ff„q(r) =E„(k)if„q(r) (1.1)

can be rewritten

l P'/2rrt+V„jp„q(r) =E„(k)rp„q(r), (1.2)

where (1.1) and (1.2) have the same set of eigenvalues.
V„ is a nonlocal integral operator, and y i, is a smooth
function which does not include the typical atomic-core
oscillation of the real wave function P„z. Consequently
an expansion in plane waves of q „~ is free of the slow-
convergence difhculties that the corresponding expan-
sion of P„t, is known to have.

The matrix elements of V„between plane waves of
wave vectors k and k' are nonzero only when

a structure factor 5(6) and the Fourier transform U(lt)
of the atomic-like pseudopotential, taken at the value
tt=

l Gl = lk —k'l.
In this fashion a band structure can be specified by a

simple function U(~), the Fourier transform of the
"atomic" pseudopotential, or more simply, by the set
of numbers f U(lGl)}.

Brust has proved' by actual computations, that
quantitative agreement with experiment as well as with
more sophisticated band structure calculations can be
achieved for Ge or Si with only three nonvanishing
U(IGI)

As a first approximation in our calculation, we drew
a smooth curve through the points determined by
Brust for Ge; in this way we selected a function U(lt)
which, included in a band calculation with the lattice
parameters and structure factors of As, yielded,
surprisingly enough, a semimetallic structure. In
addition this structure was very similar to preliminary
results of the orthogonalized-plane-wave calculations.
The encouraging results of this erst approach pointed
out that for "reasonable" atomic pseudopotentials,
most of the qualitative features of the energy bands are
in fact implicit in the crystal structure, and that,
hopefully, quantitative agreement with experiment
could be obtained by slight readjustments of the
atomic pseudopotential.

In Sec. 2 we discuss the As crystal structure, its
departure from the simple-cubic and face-centered-
cubic symmetries and the determination of the structure
factors. Section 3 is devoted to the group-theoretical
properties of the energy bands, i.e., the representations
at points and lines of symmetry in the Brillouin zone
as well as the compatibility relations. The actual choice
of the "atomic" pseudopotential and the mechanics of
the calculations are described in Sec. 4. Section 5 gives
the results and makes a comparison with experiment.
In Sec. 6 the inhuence of spin-orbit coupling is discussed.

We use atomic units throughout, i.e., the numerical
values of m, A, and e are one, the unit of length is one
Bohr radius as ——0.529 A and the unit of energy is
1 hartree=2 Ry=27. 2 eV.

2. THE CRYSTAL STRUCTURE OF As AND THE
STRUCTURE DEPENDENCE OF THE

PSEUD OPOTENTIAL

Crystal Structure

The group-V semimetals, As, Sb, and Bi, all have
the A7 (arsenic) crystal structure. ' The unit cell (which
is also a primitive cell) is rhombohedral and contains 2
atoms.

The A7 structure can be obtained from a simple-cubic

7 For a detailed analysis of the relation between structure and
semimetallic character see M. H. Cohen, L. M. Falicov, and
S. Golin, IBM J. Res. Develop. 8, 215 (1964).' R. W. G. Wycko8, Crystal StrtIctgres (Interscience Pubiishers,
Inc. , New York, 1960), Vol. 1.
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~=ud; u&-', . (2.1)

The value I= ~ corresponds to a simple-rhombohedral
structure or to a simple-cubic structure in the absence
of shear; I= 8 and no shear correspond to the diamond
structure.

(b) The angle u between the primitive translations
of the A7 structure determines the shear, 60' being the
value corresponding to the face-centered cubic (or
simple-cubic) structures.

Table I and Appendix A give a more detailed account
of the crystal structure parameters of arsenic; Fig. 1
shows the Brillouin zone with its points, lines, and
planes of symmetry. We have followed Cohen's'
notation for points and lines of symmetry.

One feature of the structure is worth mentioning at

TABLE I. Crystal structure parameters for arsenic.

Value
Symbol (atomic units)

f a;
/

7.807
CL 54' 10'
I 0 226

4.502

Qp
(2n.)'/Q p

kJ
E~
Cp

gp

290.7
0.8533
1.006
0.518
5.510
0.5987
0.0877

Definitions and remarks

Lattice parameter; room. temperature
Rhombohedral angle; room temperature'
Internal displacement parameter; room

temperature~
Half the minimum distance between

atoms along trigonal direction
Volume of the unit cell
Volume of the Brillouin zone
Free-electron Fermi momentum
Free-electron Fermi energy
See Appendix A
See Appendix A
See Appendix A

a See Ref. 8.

M. H. Cohen, Phys. Rev. 121, 387 (1961).

structure with one atom at each lattice site by applying
two independent distortions: a shear and an internal
displacement of the atoms. The shear is along a body
diagonal and transforms the unit cube into a rhombo-
hedron. This diagonal retains its 3-fold symmetry and
becomes the trigonal axis of the A7 structure. To
visualize the 2nd distortion, it is convenient to think
of the simple-rhombohedral lattice as being composed
of two interpenetrating face-centered-rhombohedral
lattices. Each point of either lattice is in the center of
the cell of the other lattice. Then the A7 structure is
obtained by shifting one of these lattices toward the
other along the trigonal axis. This results in a face-
centered-rhombohedral structure in which 2 atoms are
associated with each lattice point.

Two parameters are needed to specify these
distortions:

(a) The parameter u is used to characterize the
internal displacement. If 2~ is the (smaller) vector in
the trigonal direction separating the two interpenetrat-
ing lattices, and d is the trigonal body-diagonal of one
of the lattices, then

FIG. i. The Brillouin zone for the arsenic A7 structure
showing points and lines of symmetry.

this point. The internal displacement of the two atoms
in the unit cell destroys the inversion centers at the
atom sites. However, the points midway between two
adjacent atoms along the trigonal direction, which were
the cubic centers before the distortions, remain centers
of inversion. It is thus convenient to choose one of
these points as the origin of the coordinate system and
the center of the unit cell. In this way the structure
factors turn out to be real; i.e.,

S(G)=-'; P exp(iG r,)=cos(6 ~).
j, unit cell

(2.2)

In (2.2) r; denotes the position of the atoms in the
unit cell and the factor —,

' was included for convenience.

6=Lh, k,lj=—hgg+kg2+lga, (2.4)

where the g; are the primitive reciprocal lattice vectors
as dined in Appendix A, and hkl are integers, it follows
that

S(G)= cos(G ~) = cosL2mu(h+k+«) j. (2.5)

When u = ~ (simple-rhombohedral structure) or
(diamond structure), the structure factor, and hence
the matrix elements, will vanish for many reciprocal
lattice vectors. For the semimetals, I is irrational and

Ps eudopotential

If the crystal pseudopotential V„ is assumed to be
a superposition of local atomic pseudopotentials, its
matrix element between two plane waves takes the form

(2.3)

where 6=k —Ir' is a reciprocal lattice vector and S(G)
is the structure factor (2.2). U(~6~) is the Fourier
transform U(K) of the atomic pseudopotential (which
is a smooth function of its argument) taken at It:=

~
6~ .

The structure factor for a given 6 depends only on
the internal displacement parameter I, and is independ-
ent of the shear. In fact if
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S(G) does not vanish. Thus the value of e has a pro-
found effect on 5(G) and ultimately on the band
structure. z

U(iGi) on the other hand is independent of u. It
depends on shear only in the sense that it determines
the values s=

i Gi at which the function U'(s) must be
evaluated. Since U is a "~ooth" function, we expect
that the matrix elements will not be greatly altered by
the shear z

The shear however has a profound inhuence on the
kinetic energy terms; by changing the length of the
reciprocal lattice vectors it changes the relative kinetic
energy of some symmetry points with respect to others.
At values close to the Fermi energy the shift of T with
respect to I for instance is of the order of 0.03 hartree
( 1 eV).' The internal displacement does not affect the
kinetic energy at all,

3. GROUP-THEORETICAL CONSIDERATIONS

The arsenic structure A7 corresponds to the space
group R3m; the point group symmetry 3m (or Ds&)
consists of 12 operations:

TABLE III, Characters of the small-group representations of h. .'

AI
h.2

A3
h.4

A6
h.6

2C2

1—1—1—1
1

1

0

0

x(R)
x(R)
x(R)

-x(R)
-x(R)—x(R)

TABLE IV. Characters of the small-group
representations of X and L.'

X1
X2
X3
X4
X6
X,
X7
Xg

L1
L2
L6
L4
I.5
L6
L7
Ls

F. C2 J
1 1

1 —1
1 1—1

1
1 —z
1 z
1 —$ —1

1

—1
1
$—Z—z

z

x(R)
x(R)
x(R)
x(R)

-x(R)—x(R)—x(R)—x(~)

a Representations degenerate by time-reversal symmetry are connected
by braces

A1 h2 A3
XD1i2 =Ag Ag A4+Ae+Ag.

E
C3C3 '

C2aC2bC2c

J
JC JC
'maPE bSZg

the identity,
rotations of 120' and 240' about the
trigonal axis,
three twofold rotations about axes per-
pendicular to the trigonal,
the inversion,
two rotation inversions by 120' and 240',
three reaction planes perpendicular to
the binary axes.

a Representations degenerate by time-reversal symmetry are connected
by braces

L1 Lg L3 L4
XD'i2 =Le+Lg Le+Lg Lz+Lg LZ+Ls

and similarly for X.

TABLE V. Characters of the small-group representations
of points along the binary axis. '

C2

The symmetry properties of the various symmetry
points in the Brillouin zone (Fig. 1) have been studied
by several authors. ' "However, for the sake of com-

Ã1
IV2

H"4

x(2~)
x(R)—x(R)—x(~)

TABLE II. Characters of the small-group
representations of r and T.'

2C3 3C2 J 2JC3 3m RXS

a Representations degenerate by time-reversal symmetry are connected
by braces

W1 WR
XD1i2 =W3+W4 W3+W4

and similarly for K, Z, Q, F, and V.

r1
r1'
r2
r2'
r3
r, '
r4+
r,+
r6+r;
I1

r

T1
Tl
T2
T2'
Ts
T3'

(T,+

T4
T5
T6

1 1
1 1 1 —1
1 1 —1

1 —1 —1
2 —1 0 2
2 —1 0 —2—1 z 1
1 —1 —i 1
2 1 0 2
1 —1 z —1
1 —1 —z —1
2 1 0 —2

1—1 —1
1 —1—1 1—1 0
1 0—1 —z

1 0
1
1 i—1 0

x(R)
x(R)
x(R)
x(R)
x(R)
x(R)—x(~)—x(~)—x(R)—x(R)—x(R)

-x(R)

"S.Mase, J. Phys. Soc. Japan 13, 434 (1958); 14, 584 (1959).
"A. A. Abrikosov and L. A. Falkovskii, Zh. Eksperim. i Teor.

Fiz. 43, 1089 (1962) LEnglish trsnsl. : Soviet Phys. —JETP 16,
769 (1963)j.

' Representations degenerate by time-reversal symmetry are connected
by braces.

T1 T1' T2 Tg' T3 T3'
XD1i2 =Tg+ Tg Tg+ Tg T4++Te++Tg+ T4 +Te +Tg

and similarly for F.

TABLE VI. Characters of the small-group representations
of points in the reBection planes. '

UI
U2
U3
U4

RXE

x(R)
x(R)

-x(R)—x(R)

a Representations degenerate by time-reversal symmetry are connected
by braces

U1 Us
XD»2 =Ug+U4 U3+U4

and similarly for 0, M, S, and N.

pleteness as well as consistency in notation we give here
the characters of the small-group representations for
both the single (without spin) and double (with spin)
groups. Table II gives the various representations for
F and T, which have the full 3m symmetry; Table III
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gives the representations for the A line which has 3m

symmetry; Table IV shows the representations for I
and L, with 2/m symmetry; Tables V and VI give the
characters for the representations at points along binary
axes and on reflectioo planes, respectively.

The compatibility relations between points of sym-
metry along lines and planes of symmetry are shov n in
Table VII; they are of fundamental importance in

0.05

I
O

H-0)

K2

TABLE VII. Compatibility relations bet&veen points of symmetry
along the various symmetry lines and planes.

ist
symmetry point

r, ' 12

I'I F1' F3 F3'
F2 I 2' F3 F3'
FI F2' j. 3 I'3'
r, ' r, r, r-.'
T1 TI' T3 T3'
T2 T2 T3 T3
T1 T2' T3 T3'
T1' T2 T3 T3'
X1 X4 LI L4
X2 X3 L2 L3

X1 X3
X2 X4
L1 L3
L2 L4

Connecting
representation

A1
A2

A3
ZI
Z2
01
0'2

QI
Q2
iV1
V2

S1 or S'1
S2 or E2

U1
U2
I'I
F2

2nd
symmetry point

T1
Tl
T3

T2'
T2
T3'

+1
IC2

XI X4 Lj L4
X2 X3 L2 L3

5').
tV2

U2

U2
+1
E2

8'2

accomplished by expanding y„1, in a series of sym-
metrized combinations of plane waves, calculating the
matrix elements of the Hamiltonian, and solving the
corresponding secular equation. The smooth part of
the wave function is thus expanded

p„a(r) =P b„"L„~, (4.3)

where

-0.2
FlG. 2. The pseudopotential Pi. The circles indicate the values

given by Brust (Ref. 6) for Ge. The solid line is the analytic curve
given by formulas (4.i) and (4.2) and the triangles give the values
V(~G~) actually taken in the calculation.

I. g-—-n-'~'P a jexpti(k —G„,) r]. (4.4)

determining points of accidental degeneracy as well as
a tool for connecting the various energy levels obtained
numerically at different points.

4. THE CHOICE OF THE PSEUDOPOTENTIAL
AND THE MECHANICS OF THE

CALCULATION

The choice of U(a), the Fourier transform of the
"atomic" pseudopotential was made in two parts: (a)
by passing a smooth curve through the four points
determined by Brust' for Ge; (b) by representing that
curve by a four-parameter analytic expression and
slightly varying the parameters. Figure 2 shows the
values given by Srust and the interpolation by means
of the function

U(~) =At(a' —A&)LexpA3(lt' —A4)+1/ '. (4.1)

P b "H~ (k)=E„ab„", (4 5)

where

+pm(k) 2 ~
k Gmi~ bpm+2 dms ~yj

In (4.4) 0 is the volume of the crystal and the 6;
are reciprocal lattice vectors. The set of vectors k —G, ,
for the same m and k, all have the same magnitude and
are related. to each other by operations of the small
group of k. The coeKcients a j of the symmetrized
combinations L 1, were calculated by means of the
character tables of Sec. 3; some of them are listed in
Appendix B.

Substitution of (4.3) and (4.4) into (2.1) leads to

The fitting parameters were found to be

31——0.0655, 3 g
——2.78,

3 3
——2.38, 3 4

——3.70; (4 2)

&(cosL(G;—G„;) ~jU(i 6,„;—G„ji). (4.6)

(4.7)

Equation (4.5) leads to the usual secular equation

i a,„(k)—Z.,b„.i
=O.

the corresponding pseudopotential was designated I'i.
The choice of the analytic form (4.1) has no deeper
meaning than a convenient interpolation formula which
permits one, by adjusting only four parameters, to
obtain a fairly accurate fit of the band structure to
experimental data.

The solution of the Schrodinger equation (1.2) was

The solution of (4.7) was found numerically, by
truncating the secular equation at a finite number of
terms. The size of the determinant depended on the
symmetry of the small group of k; in the actual cases
computed it varied from a 12&12 at F and T to a
54X54 for points on the reflection plane and 89X89
when no symmetry was taken into account. The



TABLE VIII. Energy levels for various pseudopotentials.

Designation

P1
P2
P3
P4
PS
P6
P7
P8
P9

0.0655
0.0600
0.0550
0.0655
0.0655
0.0655
0.0655
0.0655
0,0655

2.78
2.78
2,78
2.60
2,40
2.78
2.78
2.78
2.78

2.38
2.38
2.38
2.38
2.38
2.20
2.00
2.38
2.38

A4

3.70
3.70
3.'70

3.70
3.70
3.70
3.7D
3.40
3.10

0.55943
0.56876
0.57658
0.55924
0,55840
0.55980
0.56011
0.55878
0.55796

L1

0.52880
0.54436
0.55772
0.53834
0.54449
0.52899
'0.52939
0.52448
0.52111

0.53134
0.55649
0.57915
0.56265
0.59655
0.53104
0.53083
0.54237
0.55038

0,53981
0.55871
0.57570
0.56790
0.59705
0.54072
0.54186
0.52953
0.52081

0.55954
0.58047
0.59938
0.60378
0.64638
0.56137
0.56369
0.53747
0,51954

T3

0.57039
0.59151
0.60953
0.57982
0.58730
0.57043
0.57054
0.57508
0.58018

calculations were carried out on the IH1%1 7094 system
of the University of Chicago Computation Center.

S. RESULTS QF THE CALCULATIQNS AND
CQMPARISQN WITH EXPERIMENT

Energy levels at various points of the Brillouin zone,
obtained through calculations with several pseudo-
potentials, are shown in Table VIII. The over-all
structure of the bands is essentially unchanged for all
nine cases; a few level crossings can be observed, but
the general features are quite similar throughout. This
reBects the facts that (a) the kinetic energy term of the
Hamiltonian is more important than the pseudo-
potential term, and (b) the structure factor in the
pseudopotential matrix elements (2.3) dominate for
any "reasonable" variation of the atomic-like factor.

Figure 3 shows the band structure obtained for
pseudopotential I'1. The approximate position of the
Fermi energy is indicated, and it can be seen that only
the energy bands near I and T cross the Fermi level.
This means that, on the whole, five bands are doubly
occupiecl throughout, except close to I., where some
"electrons" are in the sixth band, and close to T, where
"holes" are left in the fifth band.

In order to compare these results with experiment, it.

is useful at this stage to summarize the available
experimental information. As far as we are aware, there
are as of today only two sets of experimental data
which yield information on the band structure of As.
These are the optical reHectivity measurements of
Cardona and Greenaway' and the de Haas —van Alphen
(dH —vA) measurements of Berlincourt. "The interpre-
tation of the optical data requires extensive cornputa-
tions' which we expect to carry out in the not too
distant future. We therefore restrict ourselves to the
dH —vA data. The measurements of Berlincourt" show
several oscillations due to different sets of carriers,
which will be described in turn.

Electrons

A first set of carriers, presumably electrons, are
distributed in either three or six equivalent pockets.
Each of these pockets shows either reAection symmetry

' T. G. Berlincourt, Phys. Rev. 99, 1716 (1955).

in a plane perpendicular to a binary axis, or twofold
rotational symmetry about a binary axis, or both. This
kind of symmetry is found also in the "electrons" in

antimony and bismuth.
If the electron pockets are only three, symmetrv

requires them to be at either I. or X and consequently
to possess both reflection and binary-rotation sym-
metry. If, on the other hand, the pockets are six they
may lie anywhere along binary axes (Z, V, Y, Q, N') or
on reflection planes (0, kf, U, 5, cV)

Berlincourt" interpreted. his experiment by assuming
that the electron pockets are ellipsoids with one
principal axis parallel to a binary axis and a second
principal axis normal to it and making a "tilt angle"
of about 36' with the trigonal axis.

Under the following three assumptions: (a) the
pockets are ellipsoidal, (b) the bands are parabolic,
and (c) k vectors and energies are measured from the
minimum of the band, the energy can be expressed by

2E=ngkp+nmk22+n3k32, (5.1)

"The sign of the tilt angle Oz in all the semimetals is of great
importance when comparing theory with experiment; unfortun-
ately it is tedious to measure it, and many times it has been
ignored. Our definition corresponds to the convention used by
Shoenberg (Ref. 14) to measure directions of magnetic fields.

'4 D. Shoenberg, Phil. Trans. Roy. Soc. (London) 245, 1 (1952).

where ki, k2, and k3 are in the directions of the principal
axes of the ellipsoid. The parameters 0, can be inter-
preted as reciprocal effective masses. For the sake of
definiteness we take k~ in the binary direction, choose k2

and. k3 so that n2&e3 and define the "tilt" angle oz as
the angle between the trigonal and the k3 axes. Oz is

positive if the k3 axis is obtained by rotating from the
E—T line towards the I' —I line, and negative if the
rotation is from I"—T towards I"—I.""

With these assumptions and conventions, a complete
set of measurements of dH-vA periods gives, if the
Fermi energy EI; is known, the three binary products
n,n, (i&j) directly. Berlincourt s data give only n&n2

and Oz unambiguously. Since in arsenic n&) o.'&, o'&e&,

and Oz are given by measurements at the direction of
magnetic field for which a maximum dH —vA period is
found or, what is equivalent, the direction at which the
ellipsoid itself is "pointing. "

If the pockets are nonellipsoidal, the definitions given
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Fn. 3. The band struc-
tures of As without spin,
along various symmetry
lines for pseudopotential
P1. Full lines and dotted
lines indicate different sym-
metries; full lines corre-
spond in each case to the
fully symmetric representa-
tion. The doubly degenerate
level A3 is indicated by a
number 2 inserted along the
line.
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Frc. 4. Details of the band structure close to l. (electrons).
(a) Pseudopotential P1 without spin; t'b) pseudopotential P1
with spin-orbit coupling included; (c) pseudopotential P8 without
spin; (d) pseudopotential P8 with spin-orbit effects. The divisions
in the abscissae indicate 1/10 of the distance between L and the
corresponding end point (F, U, or tV).

so far lose their meaning. In particular 0& may be
defined in several ways. We choose to define it as the
angle between the trigonal axis and the direction of
maximum radius vector (i.e., the vector between the
position of the minimum of the band and the pocket
surface) normal to the binary axis. In pictorial terms,
it is the direction at which the pocket is "pointing. "
This is in general no longer the direction of the maxi-
mum dH —vA period and, due to additional terms in the
right-hand side of (5.1), n&n& is no longer given by the
maximum period either.

The theoretical band structure corresponding to
pseudopotential I'1 (Fig. 3) gives electrons near L, but
the actual band minimum is in fact at a point along
the L-W line, as shown in Fig. 4(a). This minimum

along the I;W line is more pronounced for other pseudo-
potentials [see, for instance, Fig. 4(c) and P8$, when

the two I.& levels near the Fermi energy are not so close
to each other. The closeness of these two levels is

accidental and occurs only for I'1; other pseudo-
potentials (see Table VIII) and the preliminary OPW
calculation do not exhibit this peculiarity.

If in addition to one of the I.& levels there is another
level below the Fermi energy, there will be three
electron pockets centered about the three equivalent
J. points. If, on the other hancl, only one level (Lq) lies

below the Fermi energy, there will be six equivalent
electron pockets centered about equivalent points
along the J=P' line.

Since we believe this latter possibility to be the most
likely, we shall now describe it in some detail. At the
minimum (and all throughout the neighborhood of
the L point) the energy difference between successive
bands is very small and of the same order of magnitude
as the difference between the Fermi energy and the
bottom of the sixth band. Under these conditions the
sixth energy band can be expected to be nonparabolic
and the pockets to be nonellipsoidal. At the same time,
small changes in the pseudopotential may cause large
changes in the band gaps and the band parameters;
these changes even result in levels crossing each other
and producing different orderings. Thus the properties
of the pockets are expected to be strongly dependent
on the pseudopotential.

Detailed calculations show that the energy band

along the direction of the binary axis (L-W line) is

indeed quite sensitive to small changes in the pseudo-
potential and the minimum is highly nonparabolic.
Thus the mass parameter n& along the binary is not at
all well defined. However, in directions perpendicular
to the binary the band is reasonably parabolic and much
less dependent on small changes in the pseudopotential.
Perpendicular inverse masses are at the same time
reasonably well defined, i.e., e~, n3, and Oz are relatively
insensitive to the particular pseudopotential used (see
Table IX).
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TABLE IX. Reciprocal effective masses
at various symmetry points.

Expb
(OPW)

P1
(OPW)

P1
P8

(OPW)
P1
P2
P4
P8

Location

?
XI
XI
L4c
L4
J4'

0.2~

0 is
0.11'
0.16
0.17.
0.57d

CIA, o

115
53.3
20.4

~ ~ ~

135
28.7

167
76

110

5.2
9.0
6.7

19.8
12.6
19,5
6.8
2.9
9.6
4.7
6
4.3

22.1
6.0
3.1

~ ~ ~

19.9
13.2
17.4
16.1
17.9

0,4
0.8
0.83

~ ~ ~

1.5
1.0
0.5
1.2
0.8

—36'
+49.6'
+49.6'

~ ~ ~

—58.0'
—57.2'
—54.4'
—56.1'
—55.8'

a These points are along the LW line. The number gives the fractional
distance of the point from L toward TV.

b Assuming ellipsoidal approximation. See Ref. 15.' The perpendicular masses at L4 are poorly defined. The tilt angle may
consequently take almost any value.

d This point is along the FK line. The number gives the fractional distance
of the point from i' towards K.

'5The reciprocal masses were calculated from Berlincourt's
masses. There is some uncertainty in the matrix inversion because
the determinant is very small.

When the L4 level lies between the two L~ levels, the
compatibility relations produce an intersection of levels
of different symmetry along the L %line LFig-. 4(c),
for instance]; the bands near the intersection are highly
nonparabolic in the directions perpendicular to the
binary. Nevertheless, this behavior near the intersection
has little effect on the tilt angle. ln fact, calculations of
constant energy surfaces near the crossover show that
the tilt angle (which gives the direction at which the
pocket is "pointing") is still determined quite well by
the "transverse masses" at the bottom of the pocket.
However the warping of these surfaces can cause a
discrepancy of 20—30' between the tilt angle as defined
here and the direction of maximum period of dH —vA
oscillations normal to the binary axis.

Table IX lists Berlincourt's" (reciprocal) masses"
and tilt angle. Listed for comparison are the theoretical
masses for various pseudopotentials and from our
preliminary OPW calculation at the L-S"minimum and
at several other band minima; the tilt angles were
computed from these masses.

The masses at the L-8' minimum agree reasonably
well with experhnent. Some of the pseudopotentials
give better agreement than others, but we did not try
to determine a final pseudopotential accurately. The
amount of experimental evidence is very limited and
comparison with the available dH —vA data becomes
difficult and not very convincing when the pockets are
appreciably nonellipsoidal. The tilt angle, as deter-
mined from theory, cannot be changed by more than a
few degrees by varying the pseudopotential. We
ascribe the rather large discrepancy with the experi-
mental tilt angle to nonellipsoidal effects.

There are other energy levels which should be
mentioned as possible sources of electron pockets. They

are close to the Fermi energy and have the required
symmetry.

(a) The sixth level at X(X&) would give three equi-
valent ellipsoids. The band is parabolic and thus the
masses are well defined. We were unable to bring this
level below the Fermi energy by small changes of the
pseudopotential. Also there is a considerable dis-
crepancy with experiment in the tilt angle, unless there
is an error in the experimental determination of its
sign.

(b) The L4 level would give three equivalent pockets.
The band is parabolic in the binary direction, but the
pocket is very warped perpendicular to the binary. The
tilt angle is poorly defined and can take almost any
value. The binary mass differs considerably from the
experimental value, but we are not sure that this
suffices to discard this level.

(c) There is a minimum along the I' Eline w-hich

would give six equivalent pockets. The band is para-
bolic in the binary direction but is very complicated in
perpendicular directions.

Before the location of the electrons in the Brillouin
zone can be exactly determined, more experimental
information (similar in many instances to some already
available for the other semimetals) is needed. It would
be very helpful indeed to know the exact number of
equivalent pockets (3 or 6). This determination is quite
difficult when the pockets are nonellipsoidal: a con-
siderable amount of experimental information was
needed before Jain and Koenig" were able to set the
number of electron pockets in bismuth at three.

The addition through impurities of a krone number
of conduction'~ electrons to arsenic, could confirm or
reject the hypothesis that the electrons are located in
six equivalent pockets at the L-8' minima. Adding
electrons will eventually raise the Fermi energy above
the upper L~ (or L4) level and thus reduce the number
of pockets to three. This discontinuous change in the
topology from six pseudoellipsoids to three dumbbell-
shaped pockets should be easily observed.

Experiments measuring nonellipsoidal and non-
parabolic effects'~ "could be quite useful. The observa-
tion of such effects would rule out X as the possible
location of the electrons. The measurements would also
allow the determination of the symmetry (binary,
reflection or both) of the electron pockets. '

Geometric resonance experiments using ultrasonic
attenuation, which measure linear dimensions of the
Fermi surface directly, would be especially interesting
in determining the tilt angle.

Holes

The holes are certainly located close to T, the center
of the hexagonal face, and are very probably in a single

"A. L. Jain and S. H. Koenig, Phys. Rev. 127, 442 (1962).
'7 D. Weiner, Phys. Rev. 125, 1226 (1962)."L. C. Hebel and P. A. Wo16', Phys. Rev. Letters 11, 368

(1963), and many references cited in this letter and in Ref. 17.
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FIG. 5. Details of the band structure close to T (holes). (a)
Pseudopotential Pi without spin; (b) pseudopotential P1 with
spin-orbit coupling included; (c) pseudopotential P8 without
spin; (d} pseudopotential P8 with spin-orbit effects. The divisions
in the abscissae indicate 1/10 of the distance between T and the
corresponding end point (P, U, or W).

pocket centered at T."The proximity of the T~ and T3
levels, the degeneracy of T3 and the crossover de-
generacy along TW, required by the compatibility
relations, make the introduction of spin-orbit coupling
necessary to understand the details of the hole surface.
However as it is evident from Fig. 3 and Figs. 5 (a), (c),
before spin-orbit effects are included the T-U and T-W
show very diferent band structures. This makes the
singly connected "ellipsoid" very warped. The warping
should show very clearly in the dH —vA oscillations
when the magnetic field is rotated in a plane perpen-
dicular to the trigonal axis. Berlincourt" performed
this experiment but his results are inconclusive: the
amplitudes of the oscillations, when measured by the
torque method, are very weak for these orientations.
Further discussion of the hole pocket is left for Sec. 6.

"Also conceivable are six equivalent pockets in the hexagonal
face or two equivalent pockets in the A line close to T.

"See for instance C. Kittel, Qeantgm Theory of Solids {John
Wiley 8z Sons, Inc. , New York, 1963), p. 276."C. E. Moore, Natl. Bur. Std. Circ. 467 (1949).

6. THE SPIN-ORBIT EFFECTS

The spin-orbit coupling has been included in the
calculation a posteriori, by means of an approximate
perturbation approach and only in the neighborhood of
the points T and L, where it may be of importance.

As is well known, the spin-orbit splitting at the top
of the valence band in germanium (Z=32) amounts to
0.29 eV —0.01 hartree'0 and is, of course, smaller than
the typical band gaps due to the crystal potential. The
splitting quoted above is also to be compared with the
"atomic" spin-orbit splitting which in Ge n amounts
to 0.22 eV between the J=2 and J=—,

' lines of the
4p 'P ground state"

In arsenic, the nearest neighbor to the right of
germanium in the periodic table, the corresponding
splitting (J=—', and. J= ss in the 4p 'P ground state of
Asrrr) is 0.36 eV." On the other hand the crystal
structure of As is only rhombohedral while Ge is cubic

and the spin splitting in a rhombohedral system is only
about ~3 as large as the splitting in the corresponding
cubic structure. Consequently, by putting all these
pieces of information together, arsenic is expected to
have, at the points of higher symmetry (I', T or A), a
maximum spin splitting of about 0.24—0.32 eV, i.e., of
the order of 0.01 hartree. The effect, as expected, is
small and can be of importance only at places of
degeneracy or near degeneracy (e.g. , T and I.) where
the new splittings may change ordering of' levels and
connectivity of lines.

%e have chosen to include spin-orbit effect by means
of a "tight-binding" approach which can be considered
accurate to better than a fact'or of 2; for such a small
effect the errors involved are not very important and
any more accurate calculation would involve a major
change in the computational technique as well as much
more running time in the computer. It may be noted in
passing that such a modidcation of the computational
approach is an absolute necessity in bismuth, where
spin-orbit gaps ( 1.5 eV) are probably larger than
most crystal-potential gaps; the situation in antimony
(spin gaps of about 0.6 eV) is intermediate between the
As and Bi cases.

For the calculation of the spin-orbit effects in arsenic
the following approximations are made:

3c,.=—(VVXy S)
2plG

(6.1)

in the simpli6ed form equal to

x,.=) P I..S
n, ion sites

(6.2)

when dealing with the first few bands of the structure.
In (6.2) L, is an angular momentum operator which

"R.J. Elliott, Phys. Rev. 96, 280 (1954).

(a) The actual crystal potential (not the pseudo-
potential in this case) is assumed to be spherically
symmetric about each ion and constant in the region
between ions;

(b) The actual conduction electron wave functions
(not the smooth part of them) are assumed to have a
definite angular-momentum character (s, p, d, etc.)
about each ion; for the first few bands and dose to the
ions they are supposed to behave like the atomic 4s
and 4p functions.

(c) The atomic-like character of a given energy level
in the neighborhood of a given symmetry point, say T
or L, is supposed to be identical with the character at
the symmetry point; in case of degeneracy group-
theoretical considerations indicate the right choice of
symmetry.

Assumptions (a) and (b) permit one to write the
usual spin-orbit Hamiltonian"
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interact via spin-orbit coupling within each set but not
between difterent sets.

(b) The level Ti, and the Ai, Qi, and Mi levels com-
patible with it, behave close to the ions like p functions
parallel to the trigonal axis.

(c) One of the Ti levels, one of the Ai levels and the
Qi and Mi levels connected to Ti behave close to the
ions like p functions parallel to the binary axis.

(d) The second Ti level, the second Ai level and the
Qi and 3II& levels connected to Ti behave close to the
ions like p function perpendicular to both the binary
and the trigonal axes.

(e) The Li levels behave close to the ions like p
functions perpendicular to the binary axis.

For the actual calculation all these properties are
takeo into account and use is made of the well-known
matrix elements of the operator L S between any two

p functions of either spin.
For the point T and its neighborhood we have only

considered the T~ and T3 levels. The resulting 6)(6
matrix to be diagonalized can be immediately factorized
into two identical 3)&3 matrices:

Ei (k) —X 9.
Ei(k) iX

E, (1 )
(6.3)

where E»(k) represents the T» (Ai, M'i and Qi) energy,
Ei(k) is the Ti (A;», Mi and Qi) energy and Ei(k) gives
the energy of Ti (A&, M» and Qi), all of them in the
absence of spin-orbit coupling. The eigenvalues of (6.3)
are plotted in Fig. 5 for two pseudopotentials. In
Figs. 5 (a) and (b) the E(k) correspond to pseudo-
potential P1, and in (c) and (d) to pseudopotential I'8;

acts only on "atomic-like" functions centered around
site n, and X is chosen in such a way that the expectation
value of X„for (4p, J=-,') and (4p, J=-.,'-) wave functions
reproduces the observed atomic splitting A, &=0.364 eV
=0.0135 hartree, namely ) =0.009 atomic units.

In regard to the angular-momentum character of the
wave functions, crystal chemistry considerations7 as
well as detailed analysis show that close to the Fermi
energy the p-like character should dominate and for,
spin spt-itting analysis, a tight bin-ding approach should
in fact give fairly good answers.

If we now restrict our attention to the T and L
levels (and in particular to T», Ti, Li, and L4 sym-
metries) and their neighborhoods, group-theoretical
considerations obtained from Tables II through VII
indicate:

(a) The following set of levels,

(1) TiT2Ti,

(2) Ti'Tg'Tg',

(3) L,Li,
(4)

(a) and (c) correspond to X=O and (b) and (d) to
X =0.009.

The point L was treated in a similar manner, re-
stricting the calculation to the (Li, L,, L4) triplet.
Since L& and L4 do not interact, the secular equation is
reduced in this case to a 2X2 problem. It should be
noted that, if in the absence of spin the L4 level lies
between the two Li levels )as in Fig. 4(c) for pseudo-
potential P8), there is an accidental crossover of bands
close to L and along the L Wline b-etween a Qi and a Qi
symmetry. Table V shows that such a crossover should
be removed by spin-orbit coupling although our
approximate method of calculation yields no lifting of
this degeneracy. The degeneracy is indeed removed,
but the gap should be at least one order of magnitude
smaller than the other spin-orbit gaps. It is proportional
to the amount of mixing of symmetric and anti-
symmetric character in the wave function at this point
in k space. Close to L the amount of mixing should
indeed be small. The removal of the degeneracy is
indicated qualitatively in Fig. 4(d).

Analysis of the results shown in Fig. 4 indicate that
for L no important changes due to spin-orbit coupling
appear in the band structure. The only relevant results
seem to be an additional "repulsion" of the two L~
levels and the appearance of a very small energy gap
at the possible accidental degeneracies. The analysis of
the electron surfaces carried in the last section is
therefore essentially unchanged.

The band structure close to T (Fig. 5) on the con.-
trary, is profoundly altered by spin effects and on the
whole tends to be much simpler, with all the de-
generacies eliminated. This will tend to make the hole
portion of the Fermi surface less "anisotropic" than the
no-spin bands would suggest. Figure 5(b), which we
believe closer to the actual band structure, gives rise to
a prolate "ellipsoid, " fairly "isotropic" normal to
trigonal axis; the trigonal effective mass is in this case
larger (in absolute value) than the perpendicular mass.
However the "anisotropic" possibilities are not com-
pletely removed, as the example of pseudopotential I'8
LFig. 5(d)j shows. Although we do not believe this to
be the actual case, in arsenic this kind of irregular band
structure should be kept in mind when trying to explain
the irregular behavior of some alloys of the semimetals. '

In conclusion we would like to extrapolate the results
obtained here to the other semimetals, Sb and Bi.' "
Sb seems to have a set of three ellipsoids which roughly
fits the tilt angle corresponding to the Xi level (sixth
band at X); it may also have another set of electron
pockets at or near L which would be nonellipsoidal.

Bi has definitely a set of three equivalent electron
pockets of nonellipsoidal nature arising from non-
parabolic bands. If the over-all band structure resembles
that in arsenic and inclusion of the large spin-orbit

"J.J. Hall and S. H. Koenig, IBM J. Res. Develop. 8, 241
(1964), and the references there quoted.
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effects does not change it drastically, the electrons parameter e is related to the shear angle n by
should be located at L, as has been previously
suggested. " cosn= 1 2o 2 o (A2)
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APPENDIX A' DETAILS OF THE
CRYSTAI STRUCTURE

Figure 6 shows the Brillouin zone of arsenic and the
rhombohedron of twice the volume, from which it is
obtained. The rhombohedron is the Brillouin zone in
the absence of internal displacement, i.e., I=0.25. The
axes labeled x, y, s are the cubic axes in the absence of
shear and it is convenient to keep them as an orthogonal
system of coordinates. The three primitive translation
vectors of the As lattice can then be expressed by

k= go{—(1+o) 11}
go= go{1 —(1+o) 1}
go= go{»1 —(1+o)}

(A4)

where go is listed in Table I. A general reciprocal lattice
vector is indicated by

[h,h, l]=—hg, +kg, +lg„ (A5)

where h, k, l are integers; similarly, points in the
Brillouin zone or in reciprocal space in general are
denoted by

[a,b,c)=agq+ bgo+cgo. (A6)

The symmetry points in the Brillouin zone shown in
Figs. 1 and 6 are

o = [1—(1+cosn —2 cos'n)'")/cosn. (A3)

n is the angle between any two a;. No shear implies
o.=60', ~= 0 and the a, 's become the primitive transla-
tions of the face-centered cubic lattice.

The three reciprocal lattice vectors defined by

g,"a;= 2~5;;
are given by

as ——ao{o,1,1},
ao ——ao{1,o,1},
ao= uo{1,1,o},

(A1)

where {} indicate rectangular coordinates.
Values of

~
a;~, ao, and o are given in Table I. The

r=[0, 0, 0),
X=[0, —,', —,'),
L=[0 -' 0]
L' =[——.,', 0, 0],

where

&= [-' ,o- o-']2,

W=[~, 1—~, —,'],
U=[oV+~ 1—

V ox+~],
E= [0, -' ——',y, —,'7+-„'],

FIG. 6. The Brillouin zone for arsenic inscribed in the rhombo-
hedron corresponding to the Brillouin zone of the simple-
rhombohedral structure. Trigonal and binary axes are indicated
as well as the rectangular system of coordinates xys used in the
initial calculations. Primitive reciprocal lattice vectors g1g2g3 of
the A7 structure are also shown.

y= (1+'oo')/(2+o)'=0. 2303.

The following angles between the faces of the
Brillouin zone of interest:

(a) Angle between hexagonal (T) and rectangular
(X) faces, 120'43',

(b) Angle between pseudohexagonal (L) and rec-
tangular (X) faces, both adjacent to same hexagonal
face, 124' 10',

(c) Angle between pseudohexagonal (L') and rec-
tangular (X) faces not adjacent to same hexagonal
face, 131 07',

(d) Angle between hexagonal (T) and pseudo-
hexagonal (L) faces, 107' 10',

(e) Angle between two adjacent pseudohexagonal
(L, L') faces, 111'40'.

In the absence of shear the erst three angles are equal
to 125' 16' and the last two equal to 109' 28'.

APPENDIX B:THE SYMMETRIZED COMBINATIONS
OF PLANE WAVES

Symmetrized combinations of plane waves can be
obtained by means of the character tables of Sec. 3.
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TmLE X. Coefficients of the symmetrized combinations of plane waves at I' and T.

P vector'

0]~
g]b

S]
b]c
b]
a]
b]—

—b]
—u]

g]s b

—S]
0]

—a]
S]
0]
g]d

b]
Q]
b]
c]
0]

—c]
—b]
—a]b]—
—c]
—S]

0,

b,

a~

—b
—a 7—b
—8

0,

aq

0,

c)

a,
b,

—b,
—8
—c
—c
—a-

7—b

0,
a,

[—a,
a,

C

b,

[—a,
[ b, —
[ b, —

0,
L

[—a,
[ 0,
[—~,

[
C

L

a.,

[
c,

[—a,
[—c,

[ h, —
[—a,
P—b,

[—c,

1

1

1
1
1

1
1
1
1
1

1
1

1

1

1

1
1
1
1

1

1
1

—1
—1
—1

1
1

1
—1
—1
—1
—1
—1
—1

1

1

F2
T2

—1
—1

1

1

1
—1
—1
—1

F2'
T2'

1
—1

1

1
1

—1
—1

1

1

1

1

1
—1
—1
—1
—1

—1

f

T3A

2
—1

2
—1
—1

2
—1
—1

2

—1

2 0
—1 1
—1 —1

2 0
—1 1

—1

2 0
—1

—1
2 0

—1 —1

1

I gf
T38

0
—1

1

0
—1

1

0
—1

1

0
—1

1

2 0
—1 —1
—1
—2 0

1 —1

1 1
2 0

—1
—1
—2 0

1 —1

1

r, 'Af

T3'A

0
1

—1
0

—1
1
2

—1
—1
—2

1
1

2 0
—1 1
—1 —1
—2 0

1

1 —1
—2 0

1 —1
1

2 0
—1

1

2
—1
—1
—2

1
1

0
—1

0
1

—1
2 0

—1
—1 1

2 0
—1 1
—1 —1
—2 0

1 1
—1

—2 0
1 —1
1 1

a T has no k vectors of this form.
b a&0.
o a&b.
& c Wb Wc; if a =0, then j b j P j c j (and similarly if b or c =0).' Form of k —G, where k =F or T and G is a reciprocal lattice vector.

A and B correspond to different rows of the two-dimensional representation and are degenerate in the case of no spin. Note also that two diferent
linear combinations of vectors La, b, cg belong F3A and I"3B. Both must be used in a calculation.

TABLE XI. Coefficients of the symmetrized combinations
of plane waves at A.

TABLE XII. Coefficients of the symmetrized combinations
of plane waves at X and I..

k vector'

Ca, a, a]
Ca, b, b]
Cb, a, b]
[b, b, a]
Ca, b, c]
Cc, a, b]
[b, c, u]
Ca, c, b]
P, c, cj
1 c, b, aj

1

—1
—1

Z, Ab

2
—1

2 0
—1 1
—1

2 0
—1 —1
—1 1

gb

0
—1

1
2 0

—1 —1
—1 1
—2 0

1
1 1

k vector'

L

[—a,

[ 0,
0,

C

C

[—a,
L
—~,

b, b]
b, b]— —
G~

—0]
—a, a]

C]h

c, b]
b, —c]—

—c, —b]

X2
X2

—1

—1

1
—1

1
—1
—1.

1

1

1

—1

a Form of k —G, where k =h. (A = P, 8, 8$; 0 &5 &q) and G is a reciprocal
lattice vector.

h See footnote f of Table X.

a L has no k vectors of this form.
h bgc; if a =0 then jbj g jcj.
e Form of k —G, where k=X or L (X =[0, $, $]; L =j & 0, 0]) and G

is a reciprocal lattice vector.

However, if complete factorization for the doubly
degenerate levels is needed, the complete matrix
representations rather than the character tables are
necessary. In Tables X—XII we give complete factoriza-

tions for the points F, T, A, X, and J.The other points
are trivial. The tables list the k vectors of the plane
waves in trigonal notation (A6). The coefficients are
not in normalized form.


