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Magnetic Energy Levels in the Bismuth Conduction Band

G. A. BARAFF

Bell Telephone Laboratories, Murray Hill, %em Jersey
(Received 2 September 1964)

The eRect of other bands on the structure of the conduction band of bismuth is examined by means of
perturbation theory. The unperturbed Hamiltonian is that of the Cohen-Blount two-band model as used
by I.ax and Mavroides and investigated more fully by WolR. The new terms appearing in the eRective-mass
Hamiltonian are those already studied by Cohen in the absence of a magnetic field plus those which arise in
the presence of a field because the various components of the quasimomentum do not commute. Formulas
are presented for the Landau levels at P, =O which can be compared with the expressions of Cohen and
Blount and of Smith, BaraR, and Rowell.
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I. INTRODUCTION

' 'HE electronic structure of the conduction band
of bismuth is both understandable and interest-

ing. For this reason, the material has been the object of
much experimental and theoretical study. The adjective
"understandable" applies because a simple model of the
band structure seems to describe the gross electronic
properties very closely, and the adjective "interesting"

applies because the electrons populating the conduction
band have such low masses and are so few in number
that a variety of quantum effects can be observed under
conditions of moderately strong fields and moderately
low temperatures. '

The simple model which has been successful in de-
scribing the conduction band is the so-called two-band
model, in which the properties of the conduction band
are determined by the presence of a valence band
separated from it by a very small energy gap. As was
Grst shown by Cohen and Blount, ' this situation leads
to a spin mass which is equal to the cyclotron mass.
Thus, the energy levels, labeled by orbital quantum
number @=0, 1, 2, . - and spin quantum number
s= ~1 have the characteristic degeneracy
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E(I+1,s= —1)—E(e, s=+1)
s(~) =

E(n+1, s= —1)—E(e, s= —1)
(1.2)

ranging from about 10 to 30'%%uo depending on the direc-
tion of the magnetic Geld. ' Figure 1 represents sche-
matically the levels in one of the conduction-band
minima for a Gxed magnetic Geld.

It is clear that the nonzero values of 6 arise from the
presence of bands other than the two considered in the
two-band model. Our purpose in this paper is to calcu-
late the effect of these other bands on the energy levels
E(e,s) by using a perturbation theory in which the two-
band model plays the role of the unperturbed Hamil-
tonian. %e shall Gnd reasonably simple forms for the
dependence of E(e,s) on the strength and orientation of
the magnetic field. These forms contain parameters
which will have to be evaluated experimentally, but at
least the forms given provide the framework by which
future experiments may be interpreted.

E(m+1, s= —1)=E(e, s=+1) . (1.1)

The observed levels in bismuth are approximately de-
generate as given by (1.1),with fractional deviations 5(e)
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Fn. 1. Comparison between the magnetic energies as predicted
by the two-band nonparabolic model and the sort of magnetic
energies actually observed.

'L. C. Hebel, Symposium on Plasma Effects in Solids, Inter-
national Conference on the Physics of Semiconductors, Paris,
1964 (unpublished).

2 M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960).' G. E. Smith, G. A. Baraff and J. M. Rowell, Phys. Rev. 1BS,
A1118 (1964).
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In Sec. II, we use standard Luttinger —Kohn' tech-
niques to obtain an eRective two-band Hamiltonian
which includes the effects of other bands to lowest order.
The same program has been carried out by Cohen' in the
absence of a magnetic field. Although Cohen was able
to solve his equations exactly so as to obtain an analytic
E(p) energy momentum relationship, his E(p) is not the
proper starting point for studying the magnetic energy
levels because his treatment discards the antisymmetric
part of the eRective mass tensor which gives rise to the
spin energy. '

Our effective two-band Hamiltonian may be expressed
as a sum of two parts. One part is the two-band Hamil-
tonian proposed by Lax and Mavroides~ and studied in
greater detail by Wolff. ' The other part includes the
eBect of the other bands. The successes of the I.ax and
Mavroides form of the two-band model in fitting
magnetoreQection experiments'" suggests that the
"other band" part of our Hamiltonian will be small, at
least in the light-mass directions. It is then natural to
use perturbation theory with Wolff's eigenfunctions as
the unperturbed states. This we do, relegating the
details to the three appendices A, 8, C and stating the
results in Sec. III. Section IV describes the energy-level
structure resulting and discusses what should be seen
experimentally. In that section, we compare the formulas
to those of Cohen and Blount. I'inally, Appendix D
makes contact between our results and those formulas
used by Smith, Baraff, and Rowell' (SBR) in the inter-
pretation of the magnetoresistance measurements.

This first-order perturbation approach probably loses
its validity in the heavy mass direction. First of all, the
heavy mass itself cannot be understood within the con-
text of a pure two-band model. ' ' Secondly, the param-
eter 6(rs) becomes almost -', in this direction, ' indicating
large deviations from the two-band model, i.e., indi-
cating a perturbation which is no longer small.

The principal conclusions of this work are twofoM;
first that the motion of the two m= 0, s = —1 levels with
magnetic field is, for a fixed Geld direction, either linear
or hyperbolic, as shown in I'ig. 2. If the levels approach
and repel each other, as in the lower figure, then the
optical activity as seen in cyclotron resonance experi-
ments, etc., will transfer from one level to the other at
the field of closest approach. The second conclusion is
that the motion of the other levels is given by formulas
similar to that used by SBR, but modified by allowing

the orbital inverse mass tensor and. spin inverse mass
tensor to be linear functions of energy.

II. THE EFFECTIVE HAMILTONIAN

The method we shall use to study the magnetic spec-
trum of the conduction band is similar to the standard
one for studying cyclotron resonance in semiconductors
at a point of degeneracy. The diRerence is that in
bismuth, the conduction-band minimum (which is two-
fold degenerate because of spin) has an energy only
slightly greater than the valence band (also doubly
degenerate) lying just beneath it. The energy gap Eg
between the conduction-bandminimum and the valence-
band maximum is smaller than the magnetic energies
and thus must be treated as though valence and con-
duction bands were degenerate. The situation is similar
to that in InSb where the energy gap is comparable to
the kinetic energies of interest. Kane's" treatment of
the InSb band structure provides the generalization of
the field-free Kohn —Luttinger method to the situation
of near degeneracy, and the Bowers and Yafeti2 treat-
ment of the magnetic susceptibility of InSb provides the
generalization of the Kohn —t.uttinger method to the
case of small gap and large magnetic field. YVe must
apply this method to the conduction band of bismuth
by specifying the parameters to be used in the equations.
More to the point, we must specify the relations between
these parameters which exist because of the symmetry

0—

0-

' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).' M. H. Cohen, Phys. Rev. 121, 387 (1961).
' J. M. Luttinger, Phys. Rev. 102, 1030 (1956).' B. Lax, Bull Am. Phys. Soc. 5, 167 (1960); and B. Lax and

J. G. Mavroides, in Advances in Sold 5tate I"hysics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1960),
Vol. 11.

P. A. WolG, Phys. Chem. Solids (to be published).
9 R. N. Brown, J. G. Mavroides, and B. Lax, Phys. Rev. 129,

2055 (1963).
"L. C. Hebel and P. A. Wol6, Phys. Rev. Letters 11, 368

(1963).

MAGNETIC, FIELD STRENGTH, H —=

FIG. 2. Energy of the two 0 Landau levels as a function of
magnetic Geld. The levels may either approach each other and
repel or else may repel each other initially, depending on the
direction of the magnetic field.

"E. O. Kane, Phys. Chem. Solids I, 249 (1957)."R. Bowers and Y. Yafet, Phys. Rev. 115, 1165 (1959).
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of the bismuth crystal. Some of the work has already
been done for us by Cohen and Blount' and by Cohen. '
AH that remains is for us to study the form of the
"other band" contributions to the effective Hamil-
tonian. Our notations will follow that of Ref. 2 where
possible; but before starting, let us review briefly the
ideas on which the calculation rests.

Suppose that one has a Hamiltonian H and a
Schrodinger equation

H=Ho+ V, (2.1a)

(2.1b)

for which the eigenstates and energies of the un-
perturbed Hamiltonian Hp are known:

Hppn= &npn ~ (2.2)

1t (r) =P dkA„(k) p„(k,r) (2.5)

then their equation analogous to (2.3) is

+ ' )5';+v';-
2m

e V;„V»'m
A;(k) =EA, (k), (2.6)

'3 L. D. Landau and E. M. Lifshitz, Quantum 3/Iechanics
(Addison Wesley Publishing Company, Reading, Massachusetts,
1958), p. D7.

Among the energies ~„are some which are very close to
Ii. These will be called the degenerate energies and will

be labeled by a subscript i or j= 1, 2, , r. The other
energies far from E will be labeled by a subscript
P=r+1, r+2, To solve (2.1), one expands iP in
eigenstates of Ho, iP= P A „q„,and arrives in the usual
way" at

V'&VS
e, &,,+&,, Q — A, =EA; (2 3)

3—1 y=7+1 6p

as the equation determining the energy and that portion
of the wave function within the degeneracy set. The zero
of energy has been taken at the average energy of the
degeneracy set.

The motion of the electron in a perfect crystal under
the inQuence of a magnetic 6eld is assumed to be
governed by the Pauli Hamiltonian,

H = (p —eA/c)'/2'+ U(r)
+(k/4m'c')(p eA/c) e—xp'U(r), (2.4)

where U(r) is the periodic crystal potential, p is the
actual momentum, A(r) is the vector potential giving
rise to the magnetic field K= ~ x A, and o are the three
Pauli matrices, the last term representing the spin-orbit
coupling. I.uttinger and Kohn4 introduced a useful set
of states q„(k,r) for expanding the wave function. If
their expansion is written as

where v;, are matrix elements of the velocity operator
evaluated at a fixed kp, the e; are band energies at kp

and the ~ are differential operators

oo = k(k —ko) —-A(i(8/8k)) . (2.7)

Equation (2.6) is general and must be specialized to
describe bismuth by assigning the energies e„and the
Inatrix elements v;, in accord with what is known about
the bismuth band structure and symmetry. Time re-
versal and a center of inversion in the bismuth crystal
results in a degeneracy such that there are two states
rpoi(kp r) and &p»(ko, r) with the same energy op at kp the
minimum of the conduction band. These two states are
time-reversal conjugates of each other, that is,

o oo(ko, r) = Uo oi(kor),

U= (ioo)CI, .

U'2

(2.8a)

(2.8b)

(2.8c)

I denotes spatial inversion and C denotes complex con-

jugation. The operator i o-„C is the time-reversal operator
in the presence of spin. The operator U plays an im-

portant role in restricting the form of the velocity
matrix elements.

There are also two states q, i(kp, r) and op,o(kpr)
= Uop„(ko, r) with the same energy o at the top of the
valence band. These four states and these two energies
will be our degeneracy set j to be used in Eq. (2.6). This
split into a degeneracy set and other states far removed
is a basic assumption of the model. The evidence for the
remoteness of the other states is again the validity of the
simple two-band model in which the other states are, in

effect, infinitely removed in energy.
Since energies are to be measured from the average

energy of the degeneracy set,

The operator U which causes the degeneracy also leads

to the relations between the velocity matrix elements'

(01I vI a1) =t= (a2I vI02),

(»
I
vlo2) =u= —(o1I vl02).

(2.9)

where P is the projection operator out of the degeneracy

set, i.e., it acts to restrict the sum over intermediate

If at this point we were to ignore the second and
fourth terms on the left of (2.6), we would have exactly
the equations of the two-band model as studied by
%ol8. Our main interest, however, is in just those two
terms in Eq. (2.6) which augment the standard two-

band model.
The last term on the left of (2.6) may be regarded as

composed of the matrix elements of the tensor operator

5 p= V PHp 'Vp,
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states to states p outside the degeneracy set. From the
de6nition, Hermiticity, and the fact that velocity but
not energy changes sign under time reversal, it follows
that 5 p~=Sp, U5 pU '=5 p. These relations and the
time-reversal conjugacy relations between the two states
in each band lead to the following restrictions on the
matrix elements of S:

W p
(0 i

S p i
0 ) =i, (2.10a)

(Wp*= —W p* Vp =V p*

X p
I"

p

(a iS pia )= . (2.10b)
stc

There is some evidence that the electrons occupy three
rather than six ellipsoids. "In this event, the vector ko

must be at a point of high symmetry in the Brillouin
zone such that the states have definite parity, with both
states of a given band having the same parity. The
strong curvature of the conduction band means that it
interacts strongly via the velocity operator (odd parity)
with the valence band. Hence, conduction band and
valence band are of opposite parity. It follows that the
operator S (even parity) cannot connect valence and
conduction states, and therefore that all elements of v
and S other than those given in (2.9) and (2.10) vanish.
This establishes that the effective Hamiltonian, the
operator on the left of (2.6), is a 4&&4 matrix of the form

+Vi ~
i2m

x5'x

(1
+V*i ~

&2m i

(1—e+w
~

-+X) n

&2m
x Yx

(2.11)

(1—+-I +x*i-
&2m i

It is convenient to regard this operator as a 2&2 matrix,
each of whose elements is, in turn, a 2)&2 matrix,

(e+H„Hi
H =

i
. (2.12)

k Hit —e+Hi

The entries in (2.12) are conveniently regarded as linear
combinations of the four Pauli matrices, with vector or
tensor coefficients, dotted into the x operators. For
example,

The Pauli matrices in (2.13) have nothing to do with
the spin of the electron; they are introduced only to
facilitate the considerable amount of manipulation yet
to come.

A comparison of (2.13c) and (2.10) reveals that D(0)
is a symmetric tensor while the other three are anti-
symmetric. Therefore in the product ss D(0) ss, only
the symmetrized product of ~~ will appear:

es D(0) ss=P~ D p(0)sp=p D p(0)4 p, (2.14a)

+Y W
+ap s (s a7cp+'Irp7ra) ~ (2.14b)

(2.13a)

=ss LD(0)+s P D(r)o„j ss, (2.13b)

1
D(0) = I+ReY,

2m

D(1)=ImW,

D(2) =ReW,

D(3) =ImY.
'4A. I.. Iain and S. H. Koenig, Phys. Rev. 127, 442 (1962);

S. Mase, J. Phys. Soc. Japan 15, 454 (1958); 14, 584 (1958);

Similarly, in the product ss D(r) ss only the antisym-
metric product of mw will appear. This antisymmetrized
product is evaluated using the definition of w in Eq. (2.7)
in the well-known way:

ieh
(s s-p).,=——',(s..s p

—s-ps. )= P e p,X„(2.15)
2c

where e p~ is the completely antisymmetric tensor" and
where 3! is the magnetic field arising from the vector
potential A. Thus

ss D(r) ss=(seh/2c)P D.p(r)e.p„X,.
M. H. Cohen, L. M. Falicov and S. Golin, IBM J. Res. Develop.
8, 215 (1.964)."A useful form of the definition of ~ py is that A XB=0 is, in
component form, C„=e p~A pJ3~.
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so that the operator H„ in Eq. (2.13) takes the simple
foITI1

1 ek
II = I3":s—— +3'. L"(r)0,

255 2 fÃc
(2.16)

By the same steps, we also find

H~= (1/2m) Ii'. ch 2~(e—h/mc)+, 3! L'(r)o „. (2.17)

Finally, comparison of (2.11) and (2.12) gives

where

Hg ——

=[W(0)+i+ W(r)~„$ ~,

W(0) =Ret,

W(1)= Imu,

W(2) =Reu,

W(3) = lmt.

(2.18a)

(2.18b)

(2.18c)

Equation (2.18) is of a form used by Wolff to study the
two-band model. He showed that linear combinations
of the two conduction states and linear combinations
of the two valence states can be found which will cause
all three components of W(0) to vanish. A study of his
proof reveals that the time-reversal conjugacy is main-
tained and therefore that S retains the form (2.10) even
after W(0) is eliminated. Hence, H" and H~ retain the
forms (2.16) and (2.17) while Hq and H~t become

We may de6ne a symmetric real tensor g" and three
real axial vectors L~(r) by

P p"=2mD„p(0),

I-."(r)=m Z D-e(r) e-e. ,
aP

/

written as a two-component p„and a two-component q ~'.

=(" ) (3.2)

where the round bras and kets are matrix elements taken
with respect to the two-component functions.

Much algebra is required for the general evaluation of
these two component matrix elements. The amount of
work may be reduced materially by restricting attention
to those states for which there is zero momentum in the
direction of the 6eld. Fortunately, the level structure at
P,=O where the density of states becomes infinite is the
determining factor in interpreting both the Lincoln
Laboratory data' and that of SBR.' The bare minimum
of work required to evaluate those terms necessary for
the I',=0 lowest order calculation will be found in

appendices A, B, and C. It turns out that only the
excitation values of U are needed. If the states x are
labeled by e and $, the orbital and spin quantum num-

bers of p„, then the results of these appendices may be
summarized in the form

(es
I
tI

I
es) = '(1+e/~o—) (ns I

H-
I
~s)

+ ', (1—e/Eo-)(n+s, sj,H)[e+—s, —s)
lf Epy —6 )

if E,= —e, (3.4)=(0, —1~H, ~0, —1)
where

p = ~[c'y2c(n+ '+ 's)ek—X/-m*c]"" (»)
and where

(gs~H, ~ls)=(e+-', )(m*/m)& &; ~~
+s(m*/m)X. e;.XZ, (3.6a)

Written in this partitioned form (3.1b) and (3.2), the
matrix elements of U take the form

(x I
~

I
x') = (~- IH- I

~-')+(«IH~
I
«')

Hg i P W(r)~„~——= H,'. —(2 19) 'L= Q or

$=~1.
(3.6b)

(3.6c)

III. MATRIX ELEMENTS OF THE PERTURBATION

We now wish to regard the effective Hamiltonian II
of (2.12) as an unperturbed part IIO which is large and
exactly solvable and a perturbation U which is small.
We take for Hp the Hamiltonian of the usual two-band
model.

The erst term on the right of (3.6a) amounts to a change
in the cyclotron mass and the second term on the right
of (3.6a) amounts to a change in the g factor, or in the

spin mass. Eo is the unperturbed energy of the two-band

model and no~ is the cyclotron mass of the two-band

H=HO+V, (3.1a) (m/m+) = [det(n) 2 n ' &$' '. (3.7)

(3.1b)

Kolff has studied the solutions to the unperturbed
Schrodinger equation

Hog=~ox

by considering the four-component function x to be

The unit vectors 2 are in the direction of the magnetic
field. The real, symmetric tensors e, and & have the
same form, each being determined by the symmetry of

the bismuth structure. The tensor e is the inverse effec--

tive mass tensor which would be found in the absence

of "other band" contributions, and the other four
tensors (S„,S~,P„,F~) are complicated combinations of

components of 0, and matrix elements arising from other
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U,„U,pq+(
—e+ p —2 ~A EA, , =(4.2)

E(p) &IV. LANDAU LEVELS AT P, =O

bands. Each of the tensors has four independent corn- Uo&U&i)
ponents so there are 16 new parameters in all which are
brought in by the other bands. The reader is referred to
the appendices for further detail.

The simple two-band model predicts that the two
levels Ep(n, s) and Eo(n+s, —s) will be degenerate. The
experiments indicate that the degeneracy between these
states is lifted slightly, their separation being of the
order ~'~ to 3 the spacing between the degenerate pair
and the next degenerate pair. ' To solve for the wave
functions and energies of H (3.1a) using an expansion in
terms of the eigenfunctions x of H p (3.1b), we write

(&o+U)0= E4

P= P A(n', s')x(n', s'),
n'a'

and again, the energy is determined by annulling a 2)&2
secular determinant.

We will not have to carry out in detail. the program
just outlined for reasons which will soon be evident, but
it is 'useful nevertheless to consider the sort of results
which might emerge if we did. In particular, we wart to
think about the energies of the two m=0, s= —1 levels
as the Geld magnitude is changed without altering its
direction. We Gnd, in the notation of (31),"that

(Npg( —1)) ( 0

l 0 I leo&( —1)I
Hpy(n', s') =Ep(n, s )x(n s ) .

where uo is the m=0 harmonic oscillator wave function
and P(—1) is the s= —1 two-component spin function.
Hence, the perturbation U has elements

Ugg
——(-', A —B)X, Ug2 ——0,

Upp= (AC—D)X;U'uvu~
A =(E—Eo)A' (4 1) where

u Eo(p) —Eo

Then, choosing the two states X~——X(n, +) and
Xp ——X(n+1, —) as the degeneracy set leads to an equa-
tion analogous to (2.3), namely,

where i= 1, 2 and where p runs over all n' and s' other
than those in the degeneracy set. The energy E is thus
given by solving a 2)& 2 secular determinant. Note that
each of the terms on the left of (4.1) is proportional to
the strength of the magnetic Geld and therefore the level
shift (E—E,) is linear in X, while the coefficients A,
are 3C independent.

For the n =0, s= —1 level (which is not degenerate)
it would be natural to take the level shift equal to the
expectation value of the perturbation in that state, as
conventional Grst-order perturbation theory prescribes.
There is some evidence that the m=0, s= —1 state of
positive energy e (the lowest conduction-band Landau
level) drops in energy as the magnetic Geld is increased,
at least for some orientations of the Geld. If the N=O,
s= —1 state of negative energy —e (the highest valence
band Landau level) rises in energy, then there is the
possibility that these two states will approach each
other, giving rise to a new degeneracy. To treat this
possibility, we set up the 2)& 2 determinant between the
two v=0, s= —1 states of energy ~e.

Now, we let X~ be the state of energy & and X2 be the
state of energy —e. The equations analogous to (2.3) are

( Ug„U„g
I

e+U» —2 Ai
l E(p)

Ug„U„2
+(i/„—Q A, =I'A, ,

E(p)

o+cX E— —=0
7 (4.4)

where a= (—',A B), and c= (xpC——D), and bX represents
the small UU/E terms. The energies resulting are

E=-', (a+c)X&()e+-',(a—C)X)'+bb~X')'" (4 5)

which, considering the smallness of b, is approximately

Eg= e+(', A B)X p+hE(+-), — —
Ep = —p+ (-', C—D)X=— e+hE( ). — —(4.6)

The eRect of b becomes important only if u and c are
such that the two energies E~ and E~ approach each
other. At that Geld. X for which (4.6) indicates that the
two levels would cross, the term in b in (4.5) pushes the
levels apart. As the field is increased the levels repel

"Appendix 8, Eq. (B1).

A=(m*/m)X ~ii- X, C=(m*/m)X e~ Z,'
(4 3)

B=( m/m)X F X, D=(m*/m)X f'X.
The 12 and 21 elements of U vanish, and hence, any o8
diagonal elements in (4.2) arise from the UU/E terms.
These terms are smaller than the diagonal terms of (4.2)
by roughly the factor U;;/h~, which is about the amount
by which the degeneracy is lifted, and therefore, quite
small. Because of their smallness, there is no reason to
include the out-of-degeneracy set contributions to the
diagonal terms, and the secular equation takes the form

bK
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each other, E2 becoming asymptotic to the linear de-
pendence established by E~ at low fields, and vice versa.

If the motion, of say, level E; is being followed by
some optical transition technique such as cyclotron
resonance or interband transitions, then this repulsion
may not be observed. Instead, the optically active level
will appear to move (nearly) linearly with field, as given
by (4.6).This happens because the selection rules which
determine the optical activity are determined by the
wave functions X& and X~, of which state E~ is a linear
combination. The state E; which, at low fields, was
predominantly X& becomes predominantly X2 at high
fields, and thus, the optical activity switches gradually
from one state to the other if they approach and repel
each other. If the region of closest approach is not ob-
served, the optically active state will appear to have
moved linearly with field. If the region of closest
approach is observed, there will be deviations from
linearity, doubling (simultaneous activity of both levels)
and a change of intensity as the activity of one of the
levels is transferred to the other. If the levels approach,
then the transition region (range of field where this may
be seen) will be largest for those orientations of magnetic
field for which b is largest relative to a and c, i.e., where
U;;/hpp, is largest. This is where the lifting of the de-
generacy is most pronounced.

Now let us consider the lifting of the degeneracy of
the two levels Ep(n, s) and Ep(e+s, —s). A study of
Appendix B indicates that here too, the off-diagonal
elements of U vanish and that the out-of-degeneracy-set
contribution to the off-diagonal terms of the secular
equation may be neglected except if an apparent level
crossing is indicated. Thus, as in (4.6), the energy shift
is given by the expectation value of U in the state. From
(3.4) and (3.6), using the notation (4.3), we have

AE(n, s) = —,
' (1+p/Ep) $(pp+-,')A+ sB]X

+-,'(1—p/E p) ((I+s+ ,')C sD]Se.-(4—.7)

The splitting of the degeneracy is the energy difference
between the two formerly degenerate states:

68,=—E(v+1, s= —1) E(n, s=+—1)
= (1+p/Ep)(-', A —B)SC—(1—p/Ep)(-,'C —D)Se, (4.8)

and is closely related to the energy shifts of the two
m=0, s= —1 Landau levels (4.6)

It is interesting to see how our expression for the
energy levels is related to the formulas given by Cohen
and Blount. If we let the gap become large with respect
to the magnetic energy, then Eo=e and the nonpara-
bolicity of the conduction band will not be important as
may be seen by expanding the square root in (3.5).
Combining this expression with (4.7) gives an expression
for the Landau levels of the conduction band similar in

form to that of Cohen and Blount:

h(n, s) = p+(e+ ,')(-M.+3K)+s/2(tv, +BSC)
= p+(n+-', )hQ, +-,'shO, . (4.10)

=n+n ~ +(E /c)n

n, =n+n, &'&+ (E./p) n, "& .
(4.12)

This energy dependence is a new feature, not included
in (4.11) as used by SBR.

These remarks do rot apply to the energy of the n= 0,
s= —1 level. For this level, the SBR formula (4.11),
with its parabola-like field dependence, is just not right.
The motion of this level is, as we have seen, either linear
or hyperbola-like.

It may be easier to use (4.7) and (4.3) directly to
interpret experiments, rather than go to the inter-
mediary of an energy-dependent shift of n. In such case,
it is useful to know that an analysis of the transforma-
tion property of the wave functions leads to the result
that the real symmetric tensors S and F have the forms

bg 0 0

0 b2 b4

0 b4 b2

and

gi 0 0

0 g2 g4

a4

for one of the three electron ellipsoids. The other two
ellipsoids may be obtained by rotation of the above
tensors by ~120' about the 3 axis.

Cohen and Blount give explicit formulas for evaluating
what we have here called 0, and 0,. If, in their formulas,
the contribution of valence band is treated as large
compared to the contribution of the other bands, then a
power series expansion of their results is possible. The
first two terms of that power series reproduce exactly
our Eq. (4.10) and those equations needed to relate A
and 8 to the "other band" velocity matrix elements.

It is interesting to see how our expression for the
energy of the Landau levels compares with the empirical
form used by Smith, Baraff, and Rowell for the analysis
of the magnetoresistance data. The SBR expression
was essentially

B(N,s) = (p'+2p(hpp. (e+-', )+-', shpp, ])'" (4 11a)

hpp, = (eh'/mc) L(detn. )2 n ' ~ 2]'~' (4.11b)

~,= (ehX/mc)L(detn, )X n '2]' ' (4.11c)

where e, and e, were tensors whose components were
adjusted to fit the data. Although this does provide a
useful way of describing the magnetoresistance data, it
has no firm theoretical basis. ga

In Appendix D, we show that for Eo'4e', the SBR
energies are the same as ours provided that the inverse
spin mass tensor and inverse orbital mass tensor are
regarded as being energy-dependent with the form
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The operator H* is the effective mass Hamiltonian of
the two-band model, as studied by Cohen and Blount,
Its eigenfunctions are the well-known products of
harmonic oscillator states I„for the transverse motion,
plane waves for motion parallel to the field, and two
component spin functions $(s), s=+1, which diago-
nalize the spin operator in (A.9a). The eigenvalues

E*(e,s) are degenerate, with

APPENDIX A

In this Appendix, we wish to restate results first ob-
tained by Wolff and to establish the notation which we
shall need in the subsequent appendices. Consider the
unperturbed partitioned form (3.1) and (3.2) as a pair
of coupled equations:

E*(e+s, s) =—E'(e,s) .

From this degeneracy, it follows that if

~,.= I-&(s)

q i
——ng. ((s)+pl„+,$(—s),

(A.10)

(A.11a)

(A.iib)

ep~+HiA=Eopo &

&Pt =~age ~

From the second of these, one obtains

v'&=(E&+&) Hi 0'~i

which, inserted into the first, gives

HiHit y„= (Ep' —e') (p„.
(A.12b)

(A.12c)

(A.12d)

(A.12e)

kv, = e3CA/es*e,
(A.4)

(re/m*) = $(detn) X n—' ~ X$'",
Had we chosen to eliminate q„, the equation for q~
would have been 0 =K/K,

m, =X, e 'X.(A.S)Hi Hi&pl (EO e )pl.

where n and. p must be chosen to satisfy (A.3).In writing

(A.10) and (A.11), the plane waves for the motion

(A 2) parallel to the field have not been written, nor has the
dependence of E*, q „or q ~ on P (the momentum parallel
to the field) been shown. The dependence of E* on I',
however, is'

0

E*(e,s,P)= bio.(e+i2+ is)+P'/2re. , (A.12a)

with the result

orlop= ~~e+& Z v e evov &
(A.7)

HiHi =~ (C(0)+i+ C(r)o„] m, (A.gs)

C;;(0)=g W, (p)W, (p), (A.gb)

C' (r) =Z }}"(p)~;(q),, (A.gc)

Again, the symmetry of C(0) and the antisymmetry
of C(r) may be used to set

IrgIIg~ 1 1 eh=H*= n: a—— P R—G(r)o.„, (A.9a)
2e 2m 2 mc

If y„ is normalized to unity, then the normalized four-
component X is

I=L."(1+ /Eo)j'", (A.6)
(Eo+ e)

—'H, t (p„

The operator in (A.4) or (A.5) is readily evaluated using
(2.19) and the multiplication rule for the Pauli matrices

APPENDIX B: MATRIX ELEMENTS OF
THE PERTURBATION

This Appendix contains the evaluation of those matrix
elements (3.3) which are actually needed for the lowest-
order P=O calculation. From (A.3), (A.6), and (A.11),
we have

N. )(s).(, )=-:(1+/E. ) "
«-k(s)+ pg-+. k( s)&—

and therefore, the matrix elements of U are

(es [ U
(
e's') =g(1+e/Eo) (1+e/Eo')]'"

X{(es [ H„)e's')+n*n'(es
[ H( )

e's')

+n~p'(es IHg [e's', —s')

+P'n'(e+s, s)Hi )e's')—
+P*P'(e+s, —s~H~je'+s', —s')}. (3.2)

The round bras and Bets on the right denote matrix
elements calculated with respect to the two component
functions I $(s). To evaluate these, we must first evalu-

ate the matrix elements of the operators A@and o.„which
appear in (2.16), and. the coeKcients n and P.

Consider first the spinor operator. It cannot change
the orbital quantum number, and we have

n= (es/e) C(0),

G ( )=(re/2 )2' ~'s( ) ' .

(A.9b)

(A.9c)
(es i ~„ie's') = 8.„.(Pt(s),o.„P(s'))

=8 „(s)o.,)s'). (& 3)



To evaluate the spin matrix element here, we use the
fact that the states $(s) diagonalize the spin operator
in (A.9a). By dividing that operator by the magnitude
of the eigenvalue we obtain

~,=S,a+S;~at+r;P. (8.11)

parallel to the transformed 6eld. The result of these
stretchings and rotations is that the operators x; can
bc regarded as linear combinations of a, at and P:

where

k(s)=f( )

j.=3' G(r)/{2 [I' G(p)7'}'".

8.4a
These linear combinations will be such, that when

(8.11) is substituted into the orbital part of H*, the

(8.4b) result is

&sla'l ls)=sji . (8 5)

Note that from (A.9a), the eigenvalue of the spin part
of H*is

W-', (eh/mc) {PPe G(r)]'}'".

Then using (8.4a) and the multiplication rule (A.7) to
evaluate the s'=s element gives

&sly. ls)=&slosZ. j,o Is)=sj „+i&e „j (sla„ls).
Since the expectation value of Hermitian operators must
be real, the sum which is pure imaginary must vanish,
leaving

(1/2m)n: 4—= (1/2m)m" a ~
+ ')+P'-/2 „(8.12)

while when the commutator of the x is evaluated using
(8.10), the result is

[n,p;]= (ieh/c)P e;;gXg. (8 13)

It is clear from these equations, even without a detailed
calculation of the coe%cients, that 5; is proportional to
BC'~2, and that r; is real and independent of the strength
of BC.It is also known that the functions N„which diago-
nalize (8.12) satisfy

Setting this equal to W~Aco„ the known spin energy in
the two-band model gives, using (A.12)

a aQn =sin,
a'u„= (++1)'"u„+l, (8.14)

{P(BC G(r)]'}' '= K(m/m*) . (8.6)
aln =g Nn-y.I /2

&sl~„ls)=s(m*/m)X G(p) (8 7)

Thus in terms of 2, the unit vector parallel to the
magnetic field,

Using (8.11), the operator 6;; becomes

Ail. E;,aa+H. c——.+N;;Pa+ H.c.
+1.@P'+M@(ata+-,'), (8.15a)

and the expectation value of the spin part of the
perturbation is

E;,=S;S, , M;j ——S;S,*+5;S;*,
I;,=r,rj, jU,,= ', (r;S,+-r;S,)

(8.15b)

&sl-,'(eh/mc)P I.'L(r)~, .
l s)
= —$X(m*/m)X V 2, (8.8a)

where

P=——(eh/2mc)~ P [L(r)G(r)+G(r)L(r)7. (B.gb)

Now consider the orbital part of perturbation. Since
it cannot change the spin quantum number, we have

The most direct, but rather cumbersome way to
evaluate the quantities defined in (8.15b) is to study in
detail the stretchings and rotations which finally reduce
the orbital Hamiltonian to the form given in (8.12).
For our purposes here, however, only 3f;, is needed and
this can be obtained quite simply as follows:

Inserting (8.11) into the left of (8.12) and comparing
the coefficients of (ata+ ,') on both -sides of the resulting
equation shows that

(jets
I 6;jl n' )s= 8„(u.',4;,u;) (8 9) (1/2m)Q n;;&V;j ha&„——

Let us recall, for a moment, one of the methods used
to obtain the eigenfunctions and eigenvalues of the
orbital operator in H*. The method involves 6nding a
coordinate transformation which reduces the inverse
mass tensor to the unit tensor by appropriate stretchings
of the coordinate axes, then rotating the transformed
coordinate system so that the transformed magnetic
field lies along the 3 direction. When this is done, only
the primed momenta x~' and x2' fail to commute. Linear
combinations a and a~ can be formed from x&' and x2'
such the, t

or, using (A.12b),

P n;;M;;=(2ehBC/c)(m/m*).

This may be differentiated with respect to o.„„

P Mu(8n, j/8„„)= (2e Xh/)clj(m/m*)/8n„„(8. 16).

Using (A.12c)

(m/m*) = [2 p k~jaklamneikmej ln]

[a,at] = 1 and [a,P]=0, (8.10) we have

where I' is the notation for w3', the component of m' ij(m/m*)/Bn„, = (m /2m)Q );X,(Bnl, l, Bcl„„)a „e;l, ejl„.



MAGNETIC ENERGY LEVELS IN Bi CONDUCTION BAND

Inserting this into (8.16) gives

M„„=(elm*/mc)Q X;X,n e;„„ep„, (8.17)

where
= (n+-', )(m*/m)X (il" XSe, (B.isa)

S;,"=(ek/2mc)g e;k e, ~~n~~P,„„" (.8.18b)

Now, we must choose the coefficients n and P of (A.11)
so that (A.3) is satisfied. Using (2.19) for H&t gives

nu„t(s)+ pu„, ((—s)

i(Ep—+e) 'Q W(r) zoo„zz„&(s). (8.19)

a result which may be verified with considerable labor
by studying the transforrnations directly.

Using (8.14), (8.15), and (8.17), we have

(
1 q 1

ns p":5 ns I= (n+-', )p,, p;,"M;;
2m ) 2m

and therefore, that

nn*= (2eP'/2m. )/(Ep+ e)',

PP*=
I

2«koo. (n+-'+-'s) j/(Eo+ e) '
= (Eo—e)/(Ep+ e)

(8.24a)

(8.24b)

Evidently, in the limit P~ 0, 0,0.* approaches zero
unless (Ep+ «) =0. For this special case, rz =0 and s= —1
so that, 8 is zero and nn*= 2«E*/(E+ c)'. Although this
diverges as P= 0, the divergence is exactly canceled by
the coefficient in front of (8.2). Putting all of these
results together gives, for the expectation value of U
at P=O, the expressions

(nsl Ulns)= ', (1+e—/Ep)(nsIH lns)
+-', (1—e/Eo)( n+s, sI Hg—

l n+s, —s)
if Ep& —e (8.25)

=(0, —1IH(lo, —1), if Ep —e (8.2—6—)

while, deleting the subscript or superscript u or /,

The effect of zr on the orbital function follows from
(8.11) and (8.14) sm* mX F XK. 8.27

zr;u„= S;n'"u z+S;*(n+1)'"u„+,+r;Pu„,

while the effect of p.„on the spin function, using (8.5),
may be written

(8.20)

|t.=—&+ I ~. l
—).

These results, used in (8.19) give

n= i(Ep+ e)—'sP Q r;W—;(q)zz„

(8.21)

(8.22a)

p= i(Ep+e)—'$(n+1) jU 'QS;*W;(-q)go, if s=+1,
= —i(Eo+e) 'n'~z+S;*W;(q)8o*& if s= —1. (8.22b)

Now observe that the normalization of p& implied by
(A.3) and (A.4), namely,

APPENDIX C: LANDAU LEVELS AT P=O,
DEPENDENCE ON FIELD DIRECTION

We must consider how the four constants A, 8, C, D
of Eq. (4.3) depend on the direction of the magnetic
6eM. This means, in effect, a detailed study of the
tensors S and 5 appearing in (4.3). The form of these
tensors is determined ultimately by the transformation
properties of the four states on which our effective
Hamiltonian (2.11) is based.

Our assumption of three electron ellipsoids means
that the conduction band minimum is at a point of
twofold rotational symmetry in the Brillouin zone. '~

The Bloch wave states in the presence of spin transform
according to the double group representation, for which
(Cz) '= —1, Cp being the symbol for the twofold rotation.
Hence, it is possible to choose a linear combination

I 01)
of the two states q pz(kp, r) and ppz(kp r) such that

(v ~ p ~) = (Eo' ")/(Eo+e)'= 2—«E*/(Eo+«)' c, lo1) = —zlo1) (C 1)

requires, via (A.11b), that

(Eo+«)'(nn*+PP*) = 2«E*

Inserting (8.22) here gives

If we apply the time reversal operator U to this equa-
tion, we obtain

C&UI01) =iUI01),

so that we are at liberty to take another linear combina-
tion I02) of the states popz(kp, r) and popo(kp, r) such that

2eE*=
I + SzW;(q) go~

I

z

XL(n+1) or nj+P'lg r;W;(q)zzol'.

Comparing this with (A.12a) indicates that

Io2) = UI01),

C, IO2) =+zlO2).

(C 2)

(C.3)

lg S,w;(q)e, 'I =2,a .,

Ig r;W;(q)zzol'= e/m„
(8.23)

Similarly, the two valence band states can be combined

"Reference 5, Table I.
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such that
C2( a1)= —i

~
a1),

C2)a2) =+i~ a2),

I
a2) = IJl a1). n2

n= 0
0

0 0
n2+y2 l2P+y5,
~p+v8 P'+82

(C.4c)
(C.8)

The time-reversal conjugacy (C.2) and (C.4c) guarantees
that all steps from (2.9) through (2.18) remain valid,
while the transformation properties (C.1), (C.3), and
(C.4) place additional restrictions on the elements of the
vectors and tensors t, u, V, etc. , of Sec. II. We take the
C2 axis in the x direction: then

e(~~ P7) 0
0 rj(a8—CP) rj8, (C.9)
0 .(~—A~)

8= 2(b8 -dP+—cn ay)—

the entries on the right being independent real
(C.4a) quantities. Using these in (A.8b, c), (A.9b, c) and (B.gb)

give (to within constant multipliers)

C2V.C2
—' ——(—1)"V,

C&-ec2 '=(—1)"~ e

Now consider a rotation in the ys plane such that n is
diagonal in the new 2:y's' coordinate system. Evaluated
in the new system, we would have found

where X is the number of times y and s appear in the
subscripts on the left. Matrix elements of v and. S be-
tween states ( p~ and

~ p) vanish for X odd, elements
between states ( 1~ and

~
2) vanish for X even. Thus,

in the notation of (2.19) and (2.10), our operators have
the form

Qy= g

Q2 c22+p2

—P2+ $2

0=nP+y8.

(C.10)

V, 0 0 0
0 Vy„V„, W„,
0 Vy V„S'„

a2P33+~3P22
0
0

0
&3pll+&1P33—121P23

0-
—

121P23

121P22+&2P11

(C.11)with X being similar in form to V and Y being similar
in form to W.

The only question which arises is whether the linear
combinations

~
nP) of states 32nl and 32n2 which resulted

in these forms is compatible with the linear combination
YVoM would have had us take in order that t be purely
imaginary. The m.swer is clearly that they are com-
patible: by choosing states so that C2~ np) = &i~ np) as
we have done, the vector t is reduced to one nonzero
component whose phase (reality) can be adjusted by
adjusting the phase of the valence band function

~
a1).

This can be done without further linear combination,
and can give Ret=0. Thus, Eq. (2.19) is also valid, as
are all following equations. %e may therefore thread
our way back through the string of equations diningI and F in terms of the vectors W(r), (2.18) and tensors
D(r), (2.13), and obtain useful information about the
elements of and 5.

From (C.6), (2.18), (2.13), and the equations just
preceding (2.16), we have

APPENDIX D

Consider the tensors n, and n, as having the form

n.=n+ 8n.(E),
ci, =n+ bn, (E),

(D 1)

that is, they dier from the n of the two-band model by
a small, energy-dependent term. This energy depend-
ence is a new feature, not included in (4.11) as used by
SBR. If we expand ~, and or, to 6rst order, we obtain

Ale = (eAX/nlc) [2 p 4Xj(cE+8Go) kl(12+ 8Qo)mneikmej ln5
= (eAX/rj3c) [22Q XAnkicl eik 3;1

+2 ~~~j&kl(piro)mn&ikm&jln5

= (eAX/nkc) [(jn/n3*)'+Q &; 3;1.7'"
= (eAX/nk*c)+ 8.(E)X, (D.2a)

O'.„S'., ~. 0 Evaluating 8 (B.18) in this new coordinate system
0 0 0 23 (C 6) gives, again to within constants,

0 0 0 I,

x 0 0
)=0 y

0 G7

where

8,(E)= (eA/2nlC) (n3*/n3) P—X,A,nkl(8no) 3;k 3;1 (D.2b).

0
L(2)= c,

0
L(1)= a,

5 h(n, s) = (e'+23Pnoo(n+2+2s)+(n+2)8, +21s8,7)'
= (E32(n, s)+2e[(n+~)8.+2s8,5K}»2 (D.3).

0 0
W(1)= n, W(2)= y, W(3)= 0,

0
For all levels except m=0, s= —j., Eo' will be large
enough so that we may expand the radical, and, to

A similar expansion is used on Puv, . Using these expres-
sions in (4.11a) gives

L(3)= 0, (C.7)
0
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lowest order,

8(ts,s) = W{Ep(rs,s)+(e/Ep)DN+~)8. +ps8, )X) . (D.4)

Comparing this with (4.7) shows that the energy shifts
for the conduction band levels will agree provided that
the energy dependence of 0, and 9, satis6es

8.= st (~—C)+(Ep/e)(~+C)1
8,= $(B C+D—)+(Ep/e)(B+C D)J.—(D.5)

Returning to (4.3), we see that the right side of (D.5)
has a directional dependence of exactly the form re-
quired by (D.2b), and hence establishes that 8u is a

linear function of (Ep/e). Thus, the (SBR) formula
(4.11) will provide a satisfactory account of all Landau
levels except the e=o, s= —j. level provided that we
understand that

cry= ir+ 8(r~ + (Ep/e) brio

n, =n+n, P+ (Ep/e) 8n, '. (D.6)

The experimentally determined values of 0. in bismuth
(and the extreme smallness of rrs in particular) must
now be regarded as a feature of o., and n„ that is, of the
complete expression (D.6), rather than of the single rr

contribution to it.
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behavior of First- and Second-Kind Suyerconducting Films
Near Their Critical Fields*

J. P. BURGER, G. DEUTSCHER, E. GUYON, AND A. MARTINET

Service de I'hysigue des Solides, Pacll/e des Sciences, Orsuy, Seine et Oise, Prance
(Received 2 September 1964)

The upper critical magnetic field of thin superconducting films has been studied as a function of its
orientation with respect to the surface of the sample and as a function of the film thickness compared with
X(T) and P(T), for second-kind (Sn-In, In-Pb, Ph-Bi) and first-kind (Sn) materials. The results have been
obtained by resistivity, dynamic-susceptibility, penetration-depth, and tunneling measurements.

I. INTRODUCTION
' 'N erst- and second-kind superconductors, it has

appeared that the upper critical field, defined as
when the erst trace of superconductivity appears in
decreasing Geld, depends on the orientation of the field
with respect to the sample as well as on the sample size
compared, with ) (T) and $(T),'' where )~(T) is the
penetration depth and. $(T) is the temperature-
dependent correlation length. To study these effects,
we choose the simple geometry of a thin film of thick-
ness d. The domain of length of ),(T=O) and $(T=O)
extends from 300 to 2000 A in the alloys which we have
studied, but both ) (T) and $(T) increase drastically
near T, :Thus with films of thickness 500 A(d(10 000
A and with/= T/T, varying from/= 0.99 to 1(&1,a wide

range of ratios d/), (T) and. d/$(T) can be explored. The
upper critical field, H„(8), is a function of the angle 8

between the Geld and the surface, but in most of the
experiments to be discussed here we studied only the
critical fields B»(8=0) and P, (8=s/2).

*Research supported in part by the General Electric Company,
the Cie des Machines Bull, the Commissariat a l'Energie Atomique,
and the Direction des Recherches et Moyens d'Essais.

'D. Saint James and P. G. de Gennes, Phys. Letters 7, 306
(1963).' M. Tinkham, Phys. Letters 9, 217 (1964).

These results can be interpreted in terms of the
Ginsburg-Landau theory' and some extensions of it to
lower temperatures, in dirty superconductors. 4'

Section II is devoted to the experimental technology.
In Sec. III we present and discuss the results obtained
for second-kind superconductors. Section IV gives a
brief review of the experimental data on pure metal
films (first kind). This will contrast the behavior of the
two types of superconductors.

II. EXPERIMENTAL

a. Preparation of the Samples

Our work has been devoted mainly to the study of
Sn and Sn-In alloys in thin films, up to the limit of
solubility of In in Sn( 6 at.%%uq) . Alloy sof Inan dB i in
Pb have also been studied.

The materials were evaporated by joule effect in
a conventional evaporator where the use of a booster
di6usion pump, a liquid N2 trap, and a Meismer trap
in the evaporation room allowed us to work in a static

Gennes, Physik Kondensierten Materie (to be
published).

4 K. Maki, Physik Kondensierten Materie (to be published).
~N. R. %erthamer and K. Helfand, Physik Kondensierten

Materie (to be published).


