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Tunneling Density of States for a Superconductor Carrying a Current*
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A current flowing in a superconducting film has a tendency to break pairs similar to the effect of para-
magnetic impurities in a superconductor. The effect of the current on the tunneling density of states for a
normal-superconducting tunneling junction has been computed by the Green’s-function method of Abri-
kosov, Gorkov, and Maki, and found to be identical (for a short mean free path) to that of paramagnetic
impurities. A simple relationship between the current parallel to the junction and the equivalent para-
magnetic-impurity concentration is derived. Passing various amounts of current through the sample in the
one experiment gives the same information as is obtainable in the other experiment only by preparing dif-

ferent samples with various impurity concentrations.

I. INTRODUCTION

T has been known since .the work of Rogers' and
Bardeen? that a current in a superconductor, which
requires a finite pairing momentum for the electron
pairs, provides a mechanism for breaking the pairs. In
this respect the effect of a current is comparable to
that of paramagnetic impurities® and to that of a
strong spin-exchange field,* where the pair breaking
mechanism is provided by the interaction of the elec-
tron spins with the spins of the impurities or with an
imposed field, respectively. The most striking effect of
the inclusion of paramagnetic impurities in a super-
conductor is known to be the change in the tunneling
density of states as measured by Reif and Woolf.® It is
therefore of interest to calculate the tunneling density
of states for a superconductor, if the latter is part of a
superconductor-normal-metal tunneling junction and
carries a current flowing parallel to the junction. In
order to have a uniform current distribution in the
superconductor one has to deal with a thin film and
hence to assume a finite mean free path in the calcula-
tions. The problem is solved by using a Green’s function
formalism developed by Abrikosov and Gorkov® and
Maki.b For the limiting cases of very short and infinitely
long mean free path, simple expressions for the density
of states can be derived. For short mean free path the
density-of-state curves obtained in this way are iden-
tical with those one obtains for paramagnetic impuri-
ties in a superconductor. A simple relation will be
derived which connects the supercurrent flowing
parallel to the junction with the equivalent paramag-
netic impurity concentration giving rise to the same
tunneling density of states.

* Research supported in part by the U. S. Air Force Office of
Scientific Research.
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II. TUNNELING DENSITY OF STATES

Throughout the paper we are concerned with an
experimental situation as depicted in Fig. 1. A current
is flowing parallel to a tunneling junction in a super-
conducting film. Furthermore, we will restrict ourselves
for simplicity to the zero-temperature case.

In order to determine the tunneling density of states
N7(w) of the system we make use of a simple relation-
ship noted by Kadanoff and Schrieffer” between Nr(w)
and the single-particle Green’s function G(pw), and
which can be written as

N@©) M du
AIT (w) = / dép/ — ImG (p7w) .
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N (0) denotes the density of states of free electrons at
the Fermi surface and u is the cosine of the angle
between p and the direction of the current flow. In
Eq. (1) it has been assumed that the single-particle
Green’s function is translational invariant, which is not
quite true if scattering centers are present; but an
average over all of their positions will make the Green’s
function translationally invariant and allow the use of
the above formula.

The Green’s functions for superconductors in the
presence of impurities were calculated by Abrikosov
and Gorkov® and later extended to nonzero pairing
momenta by Maki.® If the electrons are paired around

Fic. 1. Schematic
representation of the
proposed experiment
for which the tunnel-
ing density of states
is calculated. By
varying j/jmax dif-

J/jmﬂx

T

ferent density of
states curves can be
measured.
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7 J. R. Schrieffer, Rev. Mod. Phys. 36, 200 (1964). (This paper
gives a reference to unpublished work of L. P. Kadanoff.)
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the pairing momentum — ¢ in momentum space, it is ad-
vantageous to write the Green’s function and Gorkov’s

F function in the form
G(x—x)=¢iv 3G, (x—x),
FH(x,x')=¢ v OF +(x—x').

)

The Fourier transforms G (p,w) and I+ (p,w) of G,(x—x")
and F;+(x—x’) have a simple form and were calculated
by Maki to be

a+qurnt£,
G(pw)=
(@4qupn)?— &2 —
. (3)
—1A
P (p) = .
(Otqupn)?— £ — A

If one compares these expressions with those derived
by Gorkov?® one sees that Eq. (3) can be obtained from
the latter by adding to w a Galilean term govpu and re-
placing @ and A by @ and A. The latter quantities are
functions of w and A and take the self-energy caused
by the impurity scattering into account. £, is the single-
particle energy e, minus the chemical potential.

If we restrict ourselves to s-wave scattering of the
electrons by the impurities the relation between &, &
and w, A is given by

/ / desG (0
27r7' 1 2 J e

Hdy [t
A—A= / de, It (pw).

21rT 1

4)

Here r is the mean free time between collisions. This
allows us to write the tunneling density of states as

Nr(w)=N(0)-27-Ima. 5)

In order to determine Ny (w) we have to establish a
relation between @ and w, A. To do this we calculate the
integrals in Eq. (4) and obtain

—1
{{(@+que)*—

o= B[ 6= g~ ET2),
4rqur
~ (6)
N A d+qur d—qup
A—A= [sin“1 — sinl—— } .
4rqur A A

For very long mean free path we can replace in both
equatlons on the right-hand side @, A by w, A. This
gives the desired relation between & and w, A immedi-
ately. We will investigate Nr(w) in this limit later, but
we first want to concentrate on the more interesting
case of a very short mean free path. In proceeding we

81, P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
[English transl.: Soviet Phys.—JETP 7, 505 (1958)]
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I16. 2. Plot of the function
w/A=[1— (x/27A)12[1—4 (rqur)?/3x].

The function vanishes at ==x1===(7A) and x2=4%(rqur)? and has
a maximum e,/A at Xmax. For the special case #1==&max=x2 Wwe
find qup/A= (3/27A)'2.

adopt a notation used by Maki and define two new
quantities x, ¢ by

&/A=sing cosy,

N 7
qur/A=cos¢ siny. @
This simplifies the Egs. (6) to
w=a(1— (1/27quvr) tany), ®)
A=A(1—x/2rqur).
Combining (7) and (8) we obtain
w qur\? x \27V% 27qup cotx—1
Lo ()T
A A 27qur 2rqup—x

This equation together with Eq. (8) establishes the
desired relation between @ and w, A. Nr(w) will be
different from zero for all w’s which have complex x
solutions. In order to see where the onset of density of
states will occur we first look for the real solutions of
Eq. (9), assuming rquy<<1. Writing

x=2rqur(1—2x), (10)

and expanding sin?x and coty, we see that x has to be
of the order rgvr or smaller in order to obtain real
solutions for . Equation (9) therefore simplifies to

w/A=[1— (x/27A) 2 [1—4(rqur)?/3x]. (11)

The real solutions of this equation are sketched in
Fig. 2. The right branch has a maximum e,/A for

Yuax= (4(4) (rqur) /V3)*E. (12)
1f we define the quantities Z and & by
2= 3w/ 8) (rque) " i~

Xr= xmax'a-: 3
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then we can write Eq. (11) for x values of the order
of ®max as

w/A=[1—FZ 21— Z/F). (14)

Since this is an algebraic equation of fourth order inZ, we
see from Fig. 2 that for w/A> e./A we will obtain two
complex and conjugate Z solutions and hence two com-
plex @ values. The onset of density of states is there-
fore at

em/A= (1—2)32. (15)

em Will be called the excitation gap. For Z=1 this gap
vanishes. The formalism used here is not restricted to
Z<1 values.

In order to calculate Ny (w) for all w, if a certain Z
value determined by the experiment is given, we
express & in terms of £ and Z. Expanding tany in Eq. (8)
and expressing x in terms of £ we obtain

o=w/A[27Z'*(E—Z)]. (16)
The tunneling density of states therefore finally becomes
Nr(w) o 1 1
=——1Im .
N@O) Az (z—-Z)

a7

Z is connected with w/A by Eq. (14) which we also can
write as

1/7w\2 1
az4—2zz3+az2[—(—) ——~+22]+2gz—2:0. (18)
Z\A Z

For an especially simple way to find the solutions of
this equation we refer to Ref. 9. Results are plotted in
Fig. 3. The different curves correspond to Z=0.1;
0.448; 1; 1.2

Up to now we have dealt with the pairing momentum
of the superconducting electrons. But it is known from

F16. 3. Tunneling density of states in the limit of short mean
free path for es/A=0.854(Z=0.1); en/A=0.410(Z=0.448);
en/A=0(Z=1); enx/A=0(Z=1.2). The dashed line represents the
BCS density of states. en/A=0.410 corresponds to j/jmax=1. In
order to measure smaller e,/A values a setup as proposed in
Ref. 10 has to be used.

?* L. Collatz, Handbuch der Physik, edited by S. Fliigge (Springer-
Verlag, Berlin, 1955), Vol. II, p. 325.
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Refs. 1, 2, and 6 that the maximum current measured
in an experiment as shown in Fig. 1 does not correspond
to the largest pairing-momentum compatible with super-
conductivity. This implies that in such an experiment
not all density of states curves shown in Fig. 3 will be
realizable. Maki has shown that the Z value correspond-
ing to the maximum current is Z=0.448 and that
(€m/A) jmimax=0.410. In order to measure also the
density-of-states curves corresponding to larger pairing
momenta, especially those in which the excitation gap
vanishes, one has to use an experimental setup as pro-
posed in Ref. 10.

Since the density of states in Fig. 3 is scaled with
respect to the order parameter A, it is important to
know how this order parameter depends on the current
j. We have, therefore, plotted in Fig. 4 the dependence
of A/Ao, Z and also (1—en/A) on the reduced current
7/ Jmax. In doing this the following relations derived by
Maki for Z<1 were used:

A/Ao=exp (4rZ31) (19)
5/ = 0.947 2314 (- — 4 23/%) exp (— §w Z0%2).

Ay is the order parameter in the absence of a current.
Thus if a value for j/ jmax is given, Fig. 4 yields immedi-
ately the order parameter, the excitation gap and the
Z value. These parameters in turn specify the density-
of-states curve.

III. PARAMAGNETIC IMPURITIES

We want to show now that the tunneling density of
states for a superconductor carrying a current is in the
limit of a short mean free path the same as for a super-
conductor containing paramagnetic impurities. Using
the theory of Abrikosov and Gorkov?® we write for the
Green’s function of a superconductor with paramag-
netic impurities

Gpw)= (@+&)/ (@&~ A7), (20)

10 P, Fulde and R. A. Ferrell, Phys. Rev. 131, 2457 (1963).
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where
o=w+ (1/2r)u1—u?]2, 1)
o=A+(1/2r)[1—u?]12,
The quantity » is defined by
u=a/A. (22)

711s the inverse total scattering rate and 75 is the inverse
difference between no spin-flip and spin-flip scattering
rate. Using Egs. (1) and (20) we obtain for the tunneling
density of states

Nrz(w)=N(0)-Ima/ (A2—a?)'2, (23)
In terms of the quantity # this can be written as
Nyp(w)=N(0) -Imu/(1—u)'2, (24)

The relation of # with w, A is given by combining Egs.
(21) and (22). We obtain

w 1 1
—=ul:1-a~ :I
A 70 (1—u?)1?

Here 7, is proportional to the inverse spin-flip scattering
rate and is defined by

1/7.=1/271—1/275.

(25)

(26)

In order to show the equivalence as stated above we
have only to write Egs. (17) and (18) in such a way
that they look similar to Eqgs. (24) and (25). This can
be done by setting

ZWg= (1—u2)12, (27)
With this substitution Eqs. (14) and (18) read
w/A=u[1—Z32(1—u2)~ 1], (28)
while Eq. (17) can now be written as
Nr(w)=N(0) Imau/(1—u>)'">. (29)

This shows that a superconducting film carrying a
current j/ jmax will have the same tunneling density of
states as a superconductor containing such a concentra-
tion of paramagnetic impurities that

1/r,A=2372, (30)
The dependence of the order parameter A on 7, is
derived in Ref. 3.

This equivalence shows that a tunneling density of
states as defined by Egs. (17) and (18) is more general
than originally thought. It suggests that other depairing
mechanisms also will lead to such a density of states in
the limit of a short mean free path. Among these the
case of a superconducting film in a magnetic field is of
special interest and calculations of the tunneling
density of states are under way. If we compare the two
equivalent experiments analyzed in this paper, it would
seem that the experiment on a current carrying film

FULDE

would possess some practical advantage relative to
the experiment on impurity-containing films. In the
first case, the relevant parameter can be varied without
changing the sample while in the second case the
equivalent measurements can be carried out only by
comparing different samples containing different con-
centrations of the paramagnetic impurity.

IV. INFINITE MEAN FREE PATH

As mentioned in the discussion of Eq. (6) the relation
between @ and w, A is easily found in the limit of long
mean free path. We obtain in that case from Eq. (6)

b=0w+ (i/4rque){[ (wtque)*— A ]
—[lo—gqur)*—A 17}, (31)

where we have not yet passed to the limit 7 —c. With
the help of Eq. (5) the tunneling density of states
becomes now

No(@)= (V(0)/2908) Re([ (@+qur)— 47T
—[(o—quey— A7},

independent of 7 in the limit 7 — . It is convenient to
add a small positive imaginary part to w in order to find
the right branch of the square roots. Using the above
formula we have plotted in Fig. 5 the density of states
for different values of the parameter gug/A (qvr/A
=0.146; 0.646; 1.20). The values were chosen such
that the onset of density of states occurs at the same
point as for Z=0.1; 0.5; 1.2 in the short mean-free-
path limit. A comparison with Fig. 3 illustrates the
effect of the mean free path. Although there are quanti-
tative changes in the density of states for the two
limiting cases, the essential features of the latter are
independent of mean free path.

It might be mentioned that the tunneling density of
states in the limit of an infinite mean free path as
represented by Eq. (32) can also be obtained without
the use of Green’s functions. One can start directly
from the excitation spectrum. The latter is identical to
that of the BCS theory plus an additional Galilean
term which takes the nonzero pairing momentum into

F16. 5. Tunneling density of states in the limit of an infinite
mean free path for different values of the parameter qur/A
(qvr/A=0.146; 0.646; 1.20).
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account. Because of the asymmetry of the excitation
energy in momentum space one has to take an average
of BCS-type density-of-states curves with the origin
on the w axis shifted by the amount of the Galilean
term. In this way one obtains the same results as with
the method used above. For further details we refer to
Ref. 4 where the second method has been applied.

Note added in proof. A simple calculation using a
Green’s function formalism as developed by K. Maki,
Progr. Theoret. Phys. (Kyoto) 31, 731 (1964), shows
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that a superconducting film in a uniform magnetic
field parallel to its surface gives again the same type of
tunneling density of states in the limit of a short mean
free path as do paramagnetic impurities or a uniform
current. There is again a simple relationship between
the paramagnetic impurity concentration and the size
of the magnetic field.
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Some properties of the reduced density matrix are considered in their general relation to the current pro-
duced by a system of charged particles in a thin-walled long cylinder. The common connection of persistent
currents and off-diagonal long-range order to the velocity distribution function will be particularly stressed.
Essential features of this function, characteristic for the superconducting state, are discussed and ex-
emplified by applying an analogous procedure to the case of boson and fermion systems.

I. INTRODUCTION

Y introducing the concept of off-diagonal long-range
order (ODLRO), Yang! has furnished an im-
portant key to the characteristic features which under-
lie the phenomena of superconductivity and flux quanti-
zation.?? Based upon his considerations, the present
paper shall serve to further illustrate the usefulness of
this concept and to show its direct bearing upon the
existence of persistent currents under particularly
simple conditions.

For this purpose we consider the axially symmetrical
equilibrium state of V identical particles with mass m
and charge e in a circular cylinder of length L, large
compared to the outer radius R and the wall thickness
d. This geometry was used by Bloch and Rorschach
(B.R.)* in an earlier investigation of the ideal charged
boson gas at zero temperature according to Schafroth’s
model, and their method to account for magnetic effects
will be likewise applied here. For simplicity, the dis-
cussion will be restricted to very thin cylinder walls,®
i.e., to the case where d is assumed to be small not only
compared to R but also to the penetration depth AKR.
While the modifications necessary for thicker walls are

* Work supported by the U. S. Office of Naval Research.
1C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

(12B.) Deaver and W. M. Fairbank, Phys. Rev. Letters 7, 43
961).
3R. Doll and M. Nibauer, Phys. Rev. Letters 7, 51 (1961).
4F. Bloch and H. E. Rorschach, Phys. Rev. 128, 1697 (1962).
& Reference 4, Sec. IVA.

of considerable interest, they would not add essentially
new elements to the considerations presented below
and, therefore, will be mentioned only briefly in the
last section.

On the other hand, the following treatment refers to
a system of arbitrarily interacting particles at any
temperature and obeying either Bose or Fermi statistics.
It leads to quite general qualitative conclusions, and
Schrafroth’s model, as well as a corresponding example
for the fermion system, will be used primarily for the
purpose of illustration.

II. REDUCED DENSITY MATRIX, VELOCITY
DISTRIBUTION, AND CURRENT

Starting from Yang’s general defintion® of the reduced
density matrices p; and ps, each of the indices 1, j, - -
stands in a complete coordinate representation for a
set of three position variables and, generally, of an
additional spin variable {. In view of the chosen
cylindrical geometry, two of the former, denoted by »
and z, shall measure the distance from the cylinder
axis and a distance in the direction parallel to the axis,
respectively. Instead of the angle 6 around the axis, we
use the length x=76 as the third position variable and
denote the corresponding tangential direction as the x
direction. Since » varies within the cylinder only by the

6 Reference 1, Egs. (1) and (2).



