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Internal Field in General Dipole Lattices*
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The calculation of the internal Geld in dipole lattices necessitates summing the contributions due to all
dipoles in the crystal. These dipole sums are conditionally convergent, which means that they depend on the
order of summation (i.e., the shape oi the crystal). Rapidly converging expressions for these sums are ob-
tained with the method of planewise summation, for lattices of arbitrary symmetry and arbitrary dipole
orientation. With these expressions one can evaluate the internal Geld at an arbitrary point of complex dipole
lattices. As an example, the internal electric Geld at the positions of the water molecules is evaluated for
potassium ferrocyanide LK4Fe(CN)z 3H207.
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FIG. 1. Field quantities E; t, E, and P, and charges q, t and
q~, & in a parallel plane condensor (plate distance d) which is con-
nected to a battery of voltage Uo.
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I. INTRODUCTION

'HE internal electric field produced by electric
dipoles located at the lattice points in a crystal

is of central importance in the theory of dielectric
phenomena. An example is the molecular field theory
for ferroelectric materials which has had some success
in explaining the phase transitions in barium titanate, ' '
rochelle salt, ' ' and other materials. Ferroelectricity is
mentioned as an example because of the wide attention
the 6eld is receiving at the present time, and because
of the direct application of the method of this paper to
the necessary theoretical calculations.

The problem with which we are concerned is the
evaluation of the contribution to the internal (local)
field E; ~, due to all the dipoles in an arbitra, ry dipolar
lattice. First, however, a remark concerning the cus-
tomary expression for the internal field E;„t is in order,
since there are some ambiguities in the literature on
this point. For this purpose it suffices to consider a
cubic crystal with equal parallel dipoles y at the lattice
sites. The internal electric field at a lattice position is
then usually expressed as

E;.,=E+yP.

Here P=1Vp is the polarization (Ã is the number of
dipoles per unit volume) and y is the so-called Lorentz

factor. For a monatomic cubic lattice, as in this ex-
ample, y =4s./3. E is the macroscopic electric field in the
medium, i.e., it is the E that appears in the Maxwell
equations. In expression (1), however, E is often called
the externally applied field 'Th. is usage derives from the
fact that in the customary experimental setup (see
Fig. 1) the value of E is related to the applied voltage
Vs by the relation E= Vp/d. When the condenser is
connected to the battery, E has this value whether the
dielectric material is in the condenser or not. But to
call E the exterttul field, or to say that E results only
from the external charges, as is sometimes done, is
incorrect, because according to the Maxwell equations,
the field E is due to both the external charges on the
condenser plates md the polarization charges on the
surface of the dielectric. Thus, in the example of Fig. 1,
E is due to the charges q t,

—q~, i while the external
Geld is due to the charges q, t alone. Therefore, in order
to avoid confusion, it would be preferable to use the
term electric field exclusively for E.

A second remark concerns the dependence of the
various quantities in (1) on the shape of the crystalr
(henceforth called "shape dependence"). Although
E; t, , E, and P in general are shape-dependent, the
Lorentz factor y does not depend on the shape of the
crystal; it depends only on the crystal symmetry. This
can easily be seen by recalling the customary procedure
for deriving (1) for a homogeneously polarized dielectric

~ For a monatomic noncubic crystal a relation equivalent to
(1) can in general only be given for the x, y, and z components of
the Gelds separately, i.e.,

~int, g —~.+~v pa, vP. ,
where a and v indicate x, y, z. If the crystal contains a number of
di6'erent sublattices, then the g component of the internal Geld at
a site of sublattice i is given by

Z&'&;.t, „=E'„+ 2 Z„p„„' P( &„.
j(sublattices)

P&»„ is the n component of the polarization of sublattice j.p„,„
and y„,„' & are generalized Lorentz factors, forming matrices. The
remarks in the text about the shape independence of & equally
apply to y, , „and p, , „' I. In the Appendix we express the Lorentz
factors in terms of the dipole sums as evaluated in this paper.

See for instance W. Kanzig, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1957),
Vol. 4.

7 These matters have been discussed earlier by B.R. A. Nijboer
and F. W. de Wette, Physica 24, 422 (1958).
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(which we are considering throughout) with polari-
zation P. One has

Eint= Eext+Eout+Esyh+Ein q (2)

where E,„i is the electric iield arising from the external
charges, E,„~———IP is the field arising from the polari-
zation charges on the outer surface of the sample (I. is
the depolarization factor), E,~i,

——(4~/3)P is the field
due to the polarization charges on the surface of an
imaginary sphere around the field point, and E;„is the
field due to all the dipoles inside the sphere. On the
other hand, the electric field E is due to the external
charges and, the polarization charges on the crystal
surface, i.e.,

t+ Eout = EBxt (3)

From (1), (2), and (3), it follows immediately that

yP= E,,i,+E;„. (4)

We notice that the explicit shape dependence, which
is embodied in the depolarization factor I., is not present
in (4), and the left-hand side of (4) is only implicitly
shape-dependent through P. In other words, the
I orentz factor y is shape-independent; it depends only
on the crystal symmetry. Another way of seeing this is
the following: E;„& is obtained by subtracting from E
the (averaged) field of the reference particle. That is,

E;„g—E=yP

is the field arising from the uncompensated polarization
charges on the surface of the little cavity that is created
by taking out the reference particle. This difference is
clearly a local eBect that can depend only on the crystal
shape implicitly through the shape dependence of P.

We now return to the purpose of this paper, which is
to calculate the total dipole contribution to the internal
6eld E;„&by a direct summation of the contributions of
all dipoles. In terms of the quantities in Eq. (2), this
means that we will be evaluating E.„&+E„i,+E; .
Since E,„~ contains the depolarization factor 1. which
depends on the crystal shape, it is obvious that this
contribution is shape-dependent. Mathematically, this
is a result of the fact that the lattice sums which we
have to evaluate are conditionally convergent, which
means that the value of the infinite sum depends on
the order in which the summation is carried out. ' These
sums are of the general form

S;=Pi f(xg, ;,y)„;;si;)ri;—',
where x),;, y~, ;, and s~,; are the Cartesian coordinates
of the lattice vector ri; and f is some simple, dimen-
sionless function of its arguments (the notation is

For a finite sum, corresponding to a Rnite crystal of given
shape, the result of the sum is unambiguous but, of course, shape-
dependent. If one goes to the limit of an infinite crystal while
maintaining the crystal shape, or in other words, goes over to the
in6nite sum while maintaining the same summation order, a
direct correspondence between the crystal shape and the sum-
mation order of the infinite sum is established.

explained in Sec. II). A direct consequence of their
conditional convergence is that these sums, as they
stand, are unsuitable for direct evaluation, except
perhaps on a high-speed computer.

The object of all analytical treatments of lattice sums
is to transform sums with poor convergence into other
sums with rapid convergence. In applying such a treat-
ment to a conditionally convergent sum one has to keep
i' mind that, although the resultant sums are always
absolutely convergent so that the summation order in
which they are evaluated in an actual calculation is
immaterial, the process of going from the original sum
to the rapidly converging one always corresponds to
introducing a specific summation order for the original
sum. For the dipole sums treated here this means that
a "processed" sum corresponds to a particular shape of
crystal. This, however, does not limit the applicability
of these methods since one can always find the value
of the dipole sum corresponding to a different shape of
crystal by adding or subtracting the appropriate de-
polarization fields. As an example, let us consider the
case of a slab-shaped crystal, since this is the crystal
shape that corresponds to planewise summation, which
is used throughout this paper. Suppose the crystal
contains parallel dipoles of unit strength and we want
to evaluate the component of the electric field, in the
dipole direction. There exist two extreme orientations
of the slab over which the summations can be carried
out: (1) the slab is perpendicular to the dipole direction,
and (2) the slab is parallel to the dipole direction. In
case (1) the value Si of the dipole sum contains the
depolarization field —47rX (1V is the number of dipoles
per unit volume), whereas the value S2 calculated
according to (2), does not contain this contribution.
Hence Si and S~ are related as follows

S2=Si+4~X.

Generalization of this example to more complicated
cases is straightforward.

In this paper we derive rapidly converging expressions
for the internal field in the most general type of d,ipole
lattices. This is done by generalizing a method for the
evaluation of dipole sums which was proposed a number
of years ago by Nijboer and de Wette. ~ The present
method can be used to evaluate the internal field at any
point of the unit cell of lattices of triclinic symmetry,
made up of an arbitrary number of sublattices with
dipoles at arbitrary orientations. That is, there is no
restriction that all dipoles in the crystal be of the same
magnitude or have the same orientation. The results
may be reduced to any special case desired with little
effort and the number of terms needed for an actual
evaluation of the sums is found, to be small. The method,
is quite easy to use and offers advantages over earlier
summation recipes.

9 F, W. de Wette, Phys. Rev. 123, 103 (1961).
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Fio. 2. Choice of the
x, y, s directions with
respect to the triclinic
basis vectors a1, a2, a3.

and drop the subscript i, understanding that the calcu-
lation is to be performed for each sublattice separately.

The position with respect to the origin of some dipole
in the sublattice is given by rz, ;(rz,;,0&,;,gz, ;)=rz+r;.
8&, ; and pq; are the polar angles of rq, ;. For an un-
ambiguous choice of the x, y, and s axes refer to Fig. 2:
x is chosen parallel to the al triclinic axis while the y
axis is chosen so that the x, y plane coincides with the
al, a2 plane. s is, of course, perpendicular to the x, y
plane, completing the Cartesian coordinate system.

B. Principle of the Summation Method

A short discussion of the principles involved in
bringing lattice sums into rapidly converging ex-
pressions is given in Sec. II. In particular the method of
Planesoise sssmmation, which is used throughout this
paper, is outlined. In Sec. III this method is applied
to dipole lattices of arbitrary structure, in which the
dipoles are oriented perpendicular to the planes. The
case of general dipole orientations is treated in Sec. IV.
Dipole-wave sums are brieRy discussed in Sec. V, and
in Sec VI we discuss the practical use of the summation
formulas presented in Secs. III and IV. As an example
the dipole 6eld in potassium ferrocyanide is evaluated
in Sec. VII.

II. THE PLANEWISE SUMMATION METHOD

A. Notation

As was mentioned in the introduction, we treat the
case of a general dipolar lattice, in which dipoles of
varying magnitude and orientation may occupy many
nonequivalent sites in the unit cell. Such a composite
lattice can always be divided into a number of sub-
lattices, which are simple Bravais lattices, occupied by
dipoles of equal magnitude and orientation. The sub-
lattices do not necessarily have the same symmetry
as the crystal as a whole nor as each other, and the
sublattice unit cell dimensions are not restricted.

The basis vectors for sublattice i will be written as
al;, a2, , and a3,, so that the sublattice translation vector
is given by

rX'=~lal'+uses'+Xsas", Xs, Xs, As=0, +1,
&2, etc. (8)

The origin is chosen at the point where one wishes to
evaluate the internal electric field. The position of the
origin with respect to the origin of the sublattice unit
cell is given by

—r;;= —(js;sss;+j2 a2'+js;as;); 0 js;, j2
j'&1. (9)

The total internal field at the origin is found by per-
forming the lattice summation over each sublattice
separately, then adding the contributions. In what
follows we will treat a sublattice of triclinic symmetry

In order to make the paper self-contained, it is useful
to give a brief account of the principle underlying the
method of bringing a slowly converging sum into a
rapidly converging form. '

Suppose we wish to evaluate a sum of the type

~=K f(n)
n=l

(10)

S=g f(n)F(n)+g f(n)[1—P(n)).
n=l n=l

The first sum converges rapidly on account of 5, but
the second still has the same rate of convergence as
the original sum (10). However, if f(x)[1—S(x)] is a
slowly varying (smooth) function of x, then its Fourier
transform (FT) will be a rapidly converging function
in Fourier space. By using the property that the sum-
mation of a function over a lattice in real space is equal
to the summation of its I'ourier transform over the
reciprocal lattice (in Fourier space), the second sum
in (11) can be converted into a rapidly converging sum
over the reciprocal lattice. The necessary condition for
rapid convergence, namely that f(x)[1—P(x)j be a
smooth function at x=0 [the smoothness of the func-
tion for large values of x is assured by f(x)j, poses a
third condition on F(x). In particular, if f(0)=~,
then 1—P(x) has to approach zero in such a way that
the smoothness of f(x)[1—V(x)j is assured. The choice
of the auxiliary converging function P(x) is governed

by the conditions listed above, but is not unique for a
given f(x)

It is clear from the above that the use of an auxiliary
convergence function always leads to two rapidly con-
verging sums, one over the ordinary lattice and the
other over the reciprocal lattice. However, if the
function f(x) remains 6nite for x —+ 0, it may not be

"See B. R. A. Nijboer and F. W. de Wette, Physica 2B, 309
(1957).

where f(x) goes to zero slowly as x-+~ and may be
infinite for @=0. In order to improve the convergence
we introduce an auxiliary function P(x) which ap-
proaches zero rapidly as x —&~ and which is 6nite at
@=0. %e may now write
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necessary to introduce an auxiliary function. In this
case the entire sum (10) may be transformed into
Fourier space, and the result is only one rapidly con-
verging series which is over the reciprocal lattice. In
the following we will encounter both cases.

We now describe the particular method used in this
paper to 6nd rapidly converging expressions for sums
of the type given in Eq. (6). Since these sums are con-
ditionally convergent it must be kept in mind, first,
that the answers obtained depend on the order in which
the summation is carried out in the original sum, and
second, that this summation order corresponds to a
particular shape of crystal. It turns out that the p/ame-

~ise snmmatioe method, which corresponds to con-
sidering a slab-shaped crystal, has definite computa-
tional advantages. We 6rst choose the a3 direction in
some convenient way in the sublattice (remarks con-
cerning this choice are presented below and in the next
section). For fixed X3 we have a two-dimensional sub-
sum over X~ and )2. This subsum is brought into a
rapidly converging form by transforming it in its
entirety into two-dimensional Fourier space. It turns
out that the resultant sums can then be summed
analytically over ) 3, leaving us in the end with a rapidly
converging sum over the two-dimensional reciprocal
lattice. The whole method can be schematically indi-
cated as follows:

S=pg, ,g, , g, f(4,4,&g)

+4 +4 4 f(~4~~~~3) ~ Z4 Zw, ~a g(w~P»~&)~

Zvi. vm +4 g(p4p»~~) Zvi, vm G(iibp&) ~ (12)

where g(pi, p2, X~) is the two-dimensional Fourier trans-
form of f(Xi,'A2, X3). Since the Xi, X2 summation is
treated before the ) 3 summation, the method implies
that we 6rst sum the contributions of all dipoles in a
plane (Xs——constant), and next add the contributions
of all the planes. However, there exists one case which
cannot be treated by this method, namely, when the
origin is situated in one of the planes. The summation
over this particular plane has to be treated separately,
namely, by the first method outlined above using an
auxiliary convergence function.

As we pointed out above, the planewise summation
method is equivalent to considering a slab-shaped
crystal with faces parallel to the a&, a& planes. This
means that the total internal field in the origin contains
the depolarization field of a Qat slab. This field is
—47rP n, where P is the polarization in the sublattice
and n is the unit vector normal to the surface. In
certain cases it may be necessary or advantageous to
choose differently oriented sets of a~, a2 planes for
different sublattices. " In that case corrections for the
depolarization 6elds of the different sublattices have

"For instance, if a certain choice of a1, a2 planes would cause
the origin of one of the sublattices to be in one of these planes, it
may be advantageous to make a different choice of a&, a2 planes
for that particular case, because the treatment for the plane con-
taining the origin is more laborious.

to be made so that all correspond to the same crystal
shape before they are added together. Similar cor-
rections have to be made if the crystal used in the
experimental measurements is not slab-shaped, or is
slab-shaped but with the faces in an orientation different
from the planes chosen in the summation method. In
Eq. (7) we have indicated how the result of the cal-
culations should be corrected to be applicable in such
situations.

~ii, im, ia(&~P~) =2&
2E2 (cos8y, i)

~X

(13)

where Pi, is understood to include sums over Xi, X2,

and )3. For j&——j2= j3=0 the sum must be written
with a prime to exclude the dipole at the origin. For
convenience we will define the dimensionless lattice
vector gq, ,=rq;/ai, where ai is the length of ai. Then

1 282 (cosgi„;)
~i&,is,i a (s~P ~) =

ay p), ~

In the method of planewise summation the X~, P 2 sum-
mation (in the ai, a2 planes) is treated before the X3

summation is carried out. As we mentioned in the
previous section, two cases must be treated separately:

Case1. The origin lies outside the a~, a2 planes
(is&0)

Case Z. The origin lies in one of the a~, a2 planes
(ia=o)

In the second case the plane that contains the origin
must be treated separately; the rest of this particular
sublattice can be treated as Case 1, excluding the term
X3=0.

Since the various conditions necessitate treating the
sums differently, we will now introduce a notation
consistent with the summation conditions. S;,,;,,;,(~,p„)
is defined to be the a component of the field due to unit
dipoles in the v direction, where ~ and s indicate x, y,
and s. If j3——0, two summations are performed sepa-
rately, as we just pointed out: 6rst, a summation over
all planes not including the plane ) 3

——0, indicated by
5;,,;, o"'(i~,p„); and second, over the plane Xa ——0, indi-
cated by S,, ,;, oo(~,p„).

1

A. Case 1:j3&0
In Fig. 3 it is shown how the vector yq, ;=ri„;/ai is

decomposed into vectors in the aj, a2 plane and a vector
"Cf. Ref. 9 and the paper immediately following this one.

III. SPECIAL CASE: DIPOLES PERPENDICULAR
TO PLANES

As a first example we will evaluate the field com-
ponent in the s direction due to unit dipoles in the s
direction in a lattice with triclinic symmetry. This
problem is closely related to that of evaluating the
s component of the 6eld gradient in a point-ion lattice. "
The lattice sum to be evaluated is
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perpendicular to this plane. We have 0)„)„——X)(a)/a))
+Kg(a, /a, ), and e, , ,;,=j,(a,/a, )+j2(a,/a, ). Referring
to Fig. 3 we find

o'iah iat2+OXat& Xae2= (X3+j))L$1(al/al)+$2($2/al)]

where

$~——(a3/a)) (sin5) (cose—sine coty)
&

f2 —(a3/a2) (slnl) (slue)/ (sin'r) .

(16a)

(16b)

FIG. 3. Decomposition of the lattice vector gq, ;
in lattices with triclinic symmetry.

From the same figure we see that cose&; may be written
as

cosa), ,= (Xa+g3) (aa/ai) (cos5)/p), ,;. (17)

We are now in a position to treat the lattice sum (14).
As we mentioned in Sec. II, the X~, X2 summation can
in this case (j3QO) in its entirety be converted into a
summation over the two-dimensional reciprocal lattice.
The reason that we do not need an auxiliary conver-
gence function is that in each of the planes the summand
is well behaved. Using (17) we can write the l&, ), X2

summation as a two-dimensional integration

~ii,i&„is(s&P~)= ZI s

Qy

A'2d 0 {EX&,X2 ~ (o oil, &2 o (Xg+&3) $1, (Xa+i8) $2 +~1,X2)}
2P, ((l),,+j,) (a3/a)) (cos5)/{o'+ (Xa+ j3)'(a3/a&)' cos'l) }'i')

{0'+(Xe+j3)'(a3/a))' cos'8}'i'

We now apply Parseval s formula to the two-dimensional integral. This formula states that if F(h) and G(h) are
the (one-, two-, or three-dimensional) Fourier transforms of f(e) and g(e), respectively, then

F (h)*G(h)dh= f(a)*g (e)da. (19)

As the functions f(a) and g(a) we choose P)„,)„f)( ) and the remainder of the integrand in (18), respectively.
The two-dimensional Fourier transforms (FT,) of these functions are (see Refs. 10 and 7)

[FT2{Z~1~2 ~ (+ +i& iu &0 3+is) h (&3+i&&)h +4.&2)}]
=0, ) p exp( —2~i{Lj)+(X3+j3)(i]i&)+t j~+()&3+j3)$~]p2}]~(h hp, ») (2O)

IJ 1 r P2

where 0, is the two-dimensional unit cell area (normalized to a~) in the untransformed two-dimensional lattice,
and P»» is a summation over the reciprocal two-dimensional lattice. The basis vectors b) and b2 of this reciprocal
lattice are related to a& and a2 by

(a'/ai). »=4. (21)

Further, it can be shown that" Lcf. (I.12) of Ref. 13]

282((X3+je) (a3/a)) (cos8)/{0' +(Re+ j3) (aa/a)) cos 8} )
FT2 =4m'h exp[ —2~k(ae/a)) (cos5)

~

(&),e+ga)
~ ], (22)

{0'+(X3+j,)'(a,/a&)' cos'8}3~'

'3 Space limitations make it impossible to include the derivations of the two-dimensional Pourier transforms of the various functions
used in this paper. A multilith copy of appendixes giving these derivations as well as a table of the incomplete gamma functions
&(~,x) for a= —',, —,', ~, ——,', which are used in the numerical evaluation of the lattice sums, may be obtained by writing to the
Secretary of the Solid State Science Division, Argonne National Laboratory, Argonne, Illinois, 60440. This material has also been
deposited as Document No. 8127 with the ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress,
Washington 25, D. C. A copy may be secured by citing the Document number and by remitting $2.50 for photoprints, or
$i.75 for 35-mm micro61m. Advance payment is required. Make checks or money orders payable to: Chief, Photoduplication
Service, Library of Congress.
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where h= (h,'+h„')'I'. Applying Parseval's formula (19) to (18), using (20) and (22) we 6nd

S;,,;, ,;,(sp, ) =4)r'ai 0 +Xi Q l)i ) ih ) i ) iexpL —2iri( (ji+ja)i)pi+ (j2+ j2$2))ti2) —
27rA3 ($ilii+ $2Ii2)

—27rh~i, ~i(~3/~i) (co»)
I (~3+js) I 3 (23)

At this point we have completed the 6rst part of the planewise summation method, namely, the treatment of the
two-dimensional sums Pz, ,z,. Since the series (23) is absolutely convergent in X& as well as in p& and p2, the sum-
mation order is no longer essential and may be reversed. This gives rise to a geometrical series in P 3, which can be
summed directly to give:

4m'

SJ1 1i 18(s p ) E)l,))2h)))1,))2 expL —2)ri( (ji+ j3tl))iil+ (j2+j3$2)P2)
0 aI'

expI 2iri(pip&+$2p2) —2irh„, ,„,(a3/a&) (cos5) (1—j3))
X

1—eXpL2)ri(&i)tii+ bye) —2~h„,„(a3/a, ) COSb]

exp
I

—2~h„, ,„,(a3/ai) (cosh) ja)

1—expL —2)ri((~i+(2+2) 27lh„, , (G8/si) cos5j
(24)

This completes the transformation of Eq. (14) into a rapidly converging expression for the general triclinic case.
For lattices of monoclinic or higher symmetry, 5=0, $&= $2

——0, and Eq. (24) reduces to Eq. (14) of Ref. 9 (where
n= aa/ai). The exponentials involving ji, j2, j3, $&, and $2 usually have the effect of a multiplying constant when
terms with the same h„, » are added together. In simple cases they merely determine the signs of such terms.
tAthenever these exponentials give rise to a complex term, there will always be a complex conjugated term so that
their sum is real. This can be most easily checked in (23) by pairwise combining terms for p&, y2 and —yi p2.
This ensures that the total result is real as it must be.

B. Case 2:j3——0

In this case the origin is situated in the plane ).3 ——0. Since the Fourier transform (22) does not exist for X3 ——ja——0,
the summation over the plane ) 3=0 has to be treated separately with the aid of an auxiliary convergence function.
The contribution due to all other planes Lfor which (22) is valid) is found by subtracting the term X3——0 from
Eq. (23) which, after carrying out the X3 summation, gives:

S)'i,)2,0" (s p ) = z)1,)2h)))1.)))2 expI 2i7(rj lvl+j 2Ii2)5
O,ag' expL 27ri(pi—pi+ $2Ii2)+27lh„, i(8'3/81, ) COSI5] 1

(25)
expI +2irz()i@i+$2@~)+2xh»,»(a3/ai) cos5$ —1

The summands in (24) and (25) will be used frequently in what follows, so we will abbreviate these equations as:

S;,,;,,;,(s)pg) = P„,,„,h„,,„,n;, (pi)p2) ) (24a)
0 ag'

S)i,))„0 (s)pz) Q))i, ))Q h))i, ))iflo()iil))M2) ) (25a)
O,a~'

where the subscripts on the functions 0 indicate the
case for which they are to be used, i.e., j340 or j3——0.

We will now treat the dipole summation over the
plane which contains the origin. The s component of
the 6eld due to these dipoles oriented in the s direction
is given by:

S;),;,, o'(s)p.) = —ai ' p&),)„~~,; '. (26)—FIG. 4. Vectors and angles pertinent for the treatment of
lattice sums with origin in the aI, a2 plane.

The decomposition of the vector 0), ,;, which lies in the a~, a2 plane is shown in Fig. 4.
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As we mentioned earlier, in order to 6nd a rapidly converging expression for this sum we have to use the first
method outlined in Sec. IIB.A suitable choice for the auxiliary convergence function P(o) is the incomplete gamma
function": P(o) = I'(s,so')/I'(ss). Introducing this F(o) into (26) we have

1 1
o'(» p ) =—— Qi i I'(-' «i ')~), '+ d'oui, i ~(~—~~i, fs

—~i, is) jLv(s,«')~ 'j (2&)

where we have written the second series in the form of an integral. The function y is defined by y(e, x) =I'(ts)
—I'(n, x). The first sum is rapidly converging and the second can be converted into a rapidly converging sum over
the reciprocal lattice by the use of Parseval's formula. The method has been worked out in Ref. 7, and the calcu-
lation will not be repeated here. The final result is

4x 2 2x'I'
S;,,;,,o'(»,p.) = ———+ Zi, .i, I'(-,',«i,p)~i, ; '+ Pl P2 hill Ps~( 2& ~~Pl l42 )

XexpL —2ors(jtfii+ jsps)j, (28)

where we have used I'(-,') =-',+or. The Xi, Xs summation is over the two-dimensional real lattice; the pi, ps sum-
mation is over the two-dimensional reciprocal lattice. For convenience the term pi= ps

——0 (h», »——0) is separated
from the rest of the summation (indicated by the prime on the summation sign), this term being —4n./0 .

If, in addition to j3——0 also j&
——j2——0, we are performing the summation over the sublattice to which the origin

belongs. This means that we have to exclude the dipole at the origin, i.e., we have to subtract out the term for
Xt ——Xs——0, which is —(4»./3) (see Ref. 10). We thus have

1
So,o, o (»,p~) =

Gy

4z kr 2 2m ~

+ + P', , I'(-', , ') -'+ Q'„,,„,h„,,„,l'( ——',, h„, ,„,')
3 0 Qs. ' 0.

The total sum at the origin for the case j3——0 is Fig. 5, the dipole moment is decomposed as follows:

Si .~ .o(» P.)=Si,~', o"'(»,P*)+Sf,~;,o'(», P*) (30)

if either ji or js (or both) NO, and

p, =pn, sino' cosc,

p„=pn„sino sine,

p, =pn, cosa',
(32)

So,o, o(»,P~) =So,o, o"'(»,P~)+So,o, o (»,P&), (31)

if ji——j& ——jo=0. So,o, o" follows immediately from (25)
by substituting j&

——j2——0.
For js/0 the complete sum is always given by (24).

where n, n„, and I, are the unit vectors in the x, y,
and 2' directions.

The field component in the I(:-direction due to a unit
dipole in the p direction (~, v indicate x, y, or») at a

IV. GENERAL DIPOLE ORIENTATION

We decompose the dipole moment p into its com-
ponents along the x, y, and s axes, then calculate the
x, y, and s components of the field due to each dipole
component, obtaining a total of nine sums. This may
at erst seem to be a rather cumbersome approach to
the problem, but it turns out to simplify the calcu-
lations and the use of the Anal results. Referring to

'4 The incomplete gamma function f' (n,x) is detined for Re(a) )0
by

I'(, )=f 'l' 'll

However, in connection with the conver ence difBculties for
Re(a) ~(0 of the complement function 7(n,x =I'(n) —F(n,x), the
dehnitIons in terms of the conQuent hypergeometric functions are
to be preferred. Cf. Bateman Manuscript Project: Higher Tran-
scendental Functions, edited by A. Erdelyi (McGraw-Hill Book
Company, Inc., New York, 1953), Vol. II, Chap. IX, p. 133. X

Z

Pz ~
JL y

P

Py
Y/

FIG. 5. Decompo-
sition of a dipole p of
arbitrary orientation
into p , p„, p, .
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distance r is given by
(y„r)(r n„) y„n„

Z(ro, y„)= 3
5

(33)

where p„=n„. The nine corresponding sums for unit dipoles in the x, y, and s directions become

S(x,P.)=al—' P), {3(arl,j),'p)„j—'—p)„j-'),

S(y p.)=al 'Zl {3(ol.j).'pl. r
' pl,j—'}

S(s,p.)= al ' pl {3(X3+jo)'(ao/al)'(cos'la)pl, j '—pl, j—'),
S(~p.)=S(yP*)= al ' Zl 3(~1 j)*(o1,j),pl, j-',
S(,p,)=S(.,p,)=; p. ( „,),(,+j,)(,/, )(.o )„,—,
S(y,P,)=S(,P.)= -'Z. 3(.,j).(&+j.)( / )(.o &). ,j—,

(34)

(35)

(36)

(37)

(38)

(39)

where we have suppressed the subscripts j&, j2, j3 on S.
The derivations to obtain rapidly converging expressions for S are completely analogous to the derivation given

for S(s,P,) in Sec. III. We will therefore merely quote the results. As in Sec. III, we consider the cases ja&0 and

j3——0 separately.

A. Case 1:j3&0
As in the corresponding case in Sec. III, the two-dimensional X&, X2 summation can in its entirety be equated

to a summation over the two-dimensional reciprocal lattice by the use of Parseval s formula. The necessary Fourier
transforms are given in Ref. 13 Lcf. (I.12); (I.15)—(I.17) of Ref. 13].We obtain:

Sjl jaja(XrP,z)= —42r Oa al Zpl pa (hpl, pa)z hpl, pa Qja(jalrjaa) r

Sjl,ja 1'3(yrpo) = 4& Oa al Zpl, pa (hpl, pa)rr Iapr, pa Qjl(jalrjaa) r

Sjl ja,ja(slpz) =4& Oa al Zpl, pa &pl, paQja(jal jaa)

jr, ja,ja(,po) = jl.ja,ja(y,p*)
= —42r Oa al Zpr, pa (hpl, pa)a(hpl pa)okpl lpa Qja(jalrjaa) 2

Sj,,j, ,j,(x,p,) =Sj,,j, ,j,(z,p,)
24r Oa al Ppr, pa (hpl, pa) Qj z(j213ja2) rr

S,, ;, ,(y,P*)=S, (s,p )

Zpl p2 ( pl pa)@ja(pari 2)

(40)

(41)

(42)

(43)

(44)

(45)

S;, ;...(s,p, ), which was evaluated in Sec. III Lcf. (24) and (24a)], is repeated here for the sake of completeness.
From the form of (44) and (45) it is not immediately obvious that the sums are real, as they must be. However,
one can show the reality of end results in the same fashion as outlined for (24) in Sec. III.

For a dipole p with arbitrary direction, the three field components along the coordinate directions are given by
t cf. (32) and Fig. 5]

Ejl jaja(~ly)=p{Sjl jaja(~rpz) 'nO co C+Sjljaja(~rp. ) sinO s ne+Sjll jaja( rpz) M 0)
(ll indicates x, y, s).

B. Case 2:ja ——0

(46)

The 6eld components due to all dipoles other than those in the plane containing the origin are obtained by the
same method as used in Case 1, but omitting the term ) 3

——0 in the X3 summation. The resultant formulas are
obtained from (40)—(45) by replacing Qja(jal, jaa) by Qo(jal, jaa):

Sjl,ja, o (+rPz) 42r Oa al Zpl pa (hpl, pa)z Iapl, pa. Qo(jalrjaa) r

Sjl,ja 0 (yrpo) ~ Oa al Zpl, pa (hpl. rra)v hapl p2 0(jalrjaa) r

Sjl ja, O (Srpz) = 42r Oa al Zpl, pa 73pl, paQO(jalrjaa) 2

S,;.0"'(*,P.)=Sj,j.,o"'(y,p.)
42r Oa al Zpa pa (hpl pa)z(hpl pa)ohpl pa Qo(jalrjaa) 2

(47)

(48)

(49)

(50)
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S;,,;,, o"'(x,p, )=S;,,;,,o"'(s,p,)
L42r 0 lsl Pz', z2 (hzl ») Qo(jil j22)

S,, ;,,o"(y,p.) =S;,,;,, o"'(s,p„)
=24 'O. '~ p„, „, (h„,,„,)„n (j„j ). (52)

S;, ;, o12(s,p,), which was evaluated in Sec. III [cf. (25) and (25a)], is repeated here for the sake of completeness.
We now evaluate the field components S;,,;,, o (s,p„) due to the dipoles in the plane which contains the origin

For these calculations it will be easier to express the functions to be summed in terms of p1 j and 01 j (see Fig. 4)
rather than in terms of (lri„j), and (221 j)„.However, the final results will be written in terms of (221,j)„(o1,j)„,
(h»»), and (h»»)„ to preserve a consistent notation.

Since the s direction is perpendicular to the plane containing the origin (x, y plane), it follows immediately from
(33) that

~(*p*)=~( P.)=~(y p')=~(,p.)=0;

hence the corresponding sums Sjl 1jo,oo(s,p,) and S;...oo(s,p„) are zero (s is x or y). The remaining sums are

Sil j2, 0 (slpz) — +1 Zxl, 12 +x,j

which was evaluated. in Sec. III Lcf. Eqs. (26) and (27)], and

(53)

Sjl.jz,o'(»P ) =&1 ' Z», 12 (3 cos'41.2
—1)/~1,j'

= 2&1 Qx, 12 cos2$1 j/&1 j +2g (54)

Sj,,j,, o'(y, p„)=111-' p1, ,)„(3sinopia, j—1)/~1 jo

281 p~l, 12 cos2q»j/0&j + 2 g'l p)„12o), j

Sjl,jo, o (szpo) =Sjl jz, o (ylpz) =3lsl +11,12 sin/1, j cos$1„j/oi, ,j
=sar p1, , 1, sin2$1, j/o. 1 j .

(55)

(56)

Equations (54)—(56) are expressed in terms of cos2&&, j and sin2&1 j to facilitate the evaluation of the necessary
integrals. Notice that the second sum in both (54) and (55) has been evaluated in Part B of Sec. III (cf. (26) and

(28)].Because the summand in the 6rst sum of (54) and (55) depends on a.1,j 2, we use for these sums the auxiliary
convergence function F(—',,2ra2)/P (-', ). The method is completely analogous to the one that leads from (27) to (28).
The necessary Fourier transforms are evaluated in Ref. 13. Using F(—',) =soF(22) =—', 12+2r, we have

1 2' 2
Sj,,j,, oo(x,P,)=——+ Q, , LP(-', or, j) cos2y j+-,'P(-,', )] „;—'

alo 0, 2r

2~3/2

»,» ~pl, »LP(2zor72»» ) cos2'Pzl, » 2P( 2 2r72zl»)] expt, . 2 (j2rl2jll+ j2j22)] (57)
0

in which the result (28) for the second sum in (54) has been incorporated. The prime on the jll, j22 summation is

justified since limz o hP (—,
' 2rh2) =0, as is easily verified.

For an actual evaluation of the sums in (57) it will be found more convenient to make the substitution cos2&
=2 cos2&—1, with cos2&1,j——(elj),2o1 j ', ,cosolj», „,——(h„, ,„,),'h„, ,» '. Since the expression for S;,,;, oo(y, p„) is

obtained from S;..., oo (x,P,) by simply replacing (221,j),by (22&, j)„,and (h»»), by (h», »)„, we can use the following

combined expression for both these sums:

2' 2
S, ,o'(,p.)= —+ 2, ~

—LP(-', ,')(2(, ).', '—1)+lP(-', , ')]
alo 0, 2r

2~3/2

p'„, ,„,h„, , »(I'(-,',2rh„, ,„,2)(2 (h„,,„,) 2h„, ,„, '—1)——,'P (——,', 2rh„, ,»2)] expL 22r2 (j 1j21—+j 2j22)], (58)
0,

where ~ is either x or y.
The expression for S;, ;, oo(x,P„)=S;..., o'(y, P,) is obtained from (56) by an analogous derivation. (For the

necessary Fourier transform see Ref. 13.) Using sin2&1, j——2(2r1,j),(221,j)„o1j ' and sin2lp„, ,»——2(h», »),(h»»)„



INTERNAL FI EL D I N GF N ERAL D I POLE LATTI CES

Xh»» ', we obtain

S&', ,j,o'(x,p,) =S&', ,&',o'(y, p.)
4 3/2

XexpL —2&ri(jinni+ jojxg)j (59)

If, in addition to j3=0 also j&=j&=0, we are performing the summation over the sublattice to which the origin
belongs. This means that we have to exclude the term l&,i——l&. o

——0 from the summations in (54)—(56).The expressions
for Sp p p'(», p„) and Sp, p, p'(», p„) (», v indicate x or y) are then obtained from (58) and (59) by priming the Xi, P, o

summations, and in the case of (58) by also subtracting the term 2&r/3, which results from "priming" the sum

o Qi„,i„oz Lcf. (29)].Priming of the sums involving cos2& and sin2& in (54)—(56) does not give any extra terms.
We thus have

1
So,o,o (»&p~) =-

Cy

2' 2' 2
+ + Z, Lr(-' ')(2( ) ' '—1)+-'r(-', ')]

3 0.
2' 3/2

p'„, ,„,h„, ,„,Lr (-,', h„, ,„,') (2 (h„,,„,).'h„, ,„, '—1)——',I'(—-'„h„,,„,')j, (60)
0,

where ~ is either x or y, and

So. .o'(*,P )=So. .o'(x,P.)

The total sum at the origin for the case ja——0 is

S&&,&o,o(»&p&) =S&1,&'&, o (»&p&)+S&&,&&, o ("&p )

(K && indicate x, y, or s) if either ji or joA0 (or both), and

So o o(»&p&) =So,p, p (»&p&)+So, p, p (»&p&) &

if j&=j2= j3=0.
For jo&0 the complete sums are given by (40)—(45).

(62)

(63)

SimpMcations

We conclude this section by noting a general relation between dipole sums, and by listing some simplifications
which occur when the lattice symmetry is higher than the triclinic symmetry, for which the expressions in this
and the previous section were derived.

(1) We notice that
S(x,p,)+S(y,p„)+S(s,p,) =0

for any set of subscripts and superscripts. In other words, this relation is valid for the sums S,, ;,,;„S,, ,;,, 0~', S;,,;,,0',
or Sp, p, p . Relation (64) follows directly from the fact that for given X, the corresponding terms in (34)—(36) add
up to zero. For the sums S;...,„Eq. (64) can be verified by adding (40), (41), and (42); for the sums S;,,;,,

p"' by
adding (47), (48), and (49), and similarly for S,, ;, oo and Sp, p, p'.

(2) For lattices of moeoclieic or higher symmetry, the quantities 5, $i, and $o Lcf. (16a) and (16b)j are all zero
and the equations simplify accordingly.

(3) For lattices of orthorhombic, tetragonal, and cubic symmetry a number of sums vanish, as can be easily
deduced from (37)—(39).

S,,,;,;,(x&p.) S;&, ..;,(»&P—g) =0&

&1 &2 &&(y&p&) S&1,&2,&3( &P&&)

S&1 &2 &3(z&p&&) S&i &2 (&&&P»)&=&0 &

for jy ——0, 2 if Kisyors.
for j2——0, ~ if & is xor s.
fol j3=0) 2 1f K ls x or p.

(65)

(66)

(67)
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Sjl,js P (ZvPv) =Sjl js P (K)Pz)

=S, , op(s,p.)=S,,;., '(,p;) =0

Sppp, (KP„)=Sp 3 p"s(KvP„) =Sp, p, p (KvP„) =0 v

Si/2, 1/2, 1/2(Kvpv) =0
v

if ~isxory, (68)

(69)

where ~, v are x, y, or s and z& v.

(4) For square 12(/0 dim-esssiossaL /attices, which occur in the case of tetragonal lattices (if the s axis is chosen
along the c axis), and of cubic lattices, (58) simplifms for cases for which ji——js——j, to

S;,;,p'(K, p„)=-
Cy

2'—+—&1 1 I'(-' ~~), ')~1
0,

m
l2

Z», vs k», »1'(—2, kus, ~s') expl —2sri j(/sr+/32)], (70)
0,

(K is 2: or y). The corresponding expression for
Sp, p, p (K,P„) is obtained by priming the l11, l12 summation
and adding the term —22r//3 inside the curly brackets.

V. DIPOLE-WAVE SUMS

In this section we brieQy mention a type of dipole
sums of a slightly more general for~ than the sums
(34)—(39), namely

following changes: (1) replace k», » everywhere by
~
h„,,„,—ss~, (2) replace (&1/31+&2/32) by (&1/31+&2/32+ks).

Corresponding changes are to be made in the expres-
sions (40)—(45), and (47)—(52) if these sums contain
exponential factors. In the sums (58)—(61), one only
has to make the change (1).

In Sec. VII we mention an example in which an
exponential factor can be used.

S=+1f(xi, j,yi, „:,zi,j) exp)22rik 91j, (71) VI. USE OF THE SUMMATION FORMULAS

where k is a reciprocal space vector, and f is any one
of the summands in (34)—(39) L9=9(x,y,s)j. These
sums, which for instance appear in the theory of crystal
spectra, and the theory of dipolar ferromagnetism, have
been called dipole 7///ave slms b-y Cohen and Keffer. is

The practical importance of the factor expL22rik 917
is that it allows for a wave-type variation of the dipole
strength through the lattice. A description of a lattice
in which the dipole orieetatioe varies in a wave-like
fashion, can be obtained by multiplying the summands
in S(K,p,), S(K,p„), and S(K,p,) (K indicates x, y, or s)
by exponentials with the proper phase differences.

The way in which the exponential factor modifies
the lattice summation formulas is as follows. In the
sums over the ordinary lattice the exponential factor
simplv enters as it is. In the sums over the two-dimen-
sional reciprocal lattice, the exponential factor gives
rise to a shift in the origin, as well as to a phase factor.
This is easily seen by combining the exponential factor
with the 6 functions when the Fourier transform is taken.
Writing 91——(r», »+lisasai ', and k=2(+ksbs, so that
k 91=L sri, ,»+ksl13 (ss is the projection of k in the
two-dimensional reciprocal space), we have instead of
(20)

I FT2fZ». 12 ~((r (rjijs +(&a+/3)31,,(&s+js)rs +»»)
Xexp(27rik 91)}]*=O,' P„,,» exp) 27ri—
X(fji+ ps+ js)r, j/ 1+ad js+ p3+ js)/ 2+kslis}j

X5(h —(h„,,„,—ss)}. (72)

The final result, corresponding to (24), which we denote
by Sj, j, js(2,P, ~

k), is obtained from (24) by making the

"M. H. Cohen and F. Kefkr, Phys. Rev. 99, 1128 (1955).

With the summation formulas given in the preceding
sections one can evaluate dipole fields in arbitrary
dipole lattices. Owing to their generality these formulas
look rather formidable, but they are actually rather
easy to use, especially since summing over 3 or 4 shells
of neighbors is normally sufhcient to obtain accuracy
within 0.1%. And of course, as we mentioned above,
for lattices of higher than triclinic symmetry, the
equations simplify greatly. Fortunately, triclinic sys-
tems are not encountered too often.

The lattice sums over the plane containing the origin
are the most troublesome to evaluate, since one must
use incomplete gamma functions, which are not ex-
tensively tabulated, as is the exponential function. For
that reason we have tabulated in Ref. 13 those in-
complete gamma functions that enter in the lattice
summation expressions, which were derived above. In
the table we have chosen a reasonable density of values
of the argument. However, in most cases interpolation
will have to be used which necessarily limits the ac-
curacy of the calculation.

In some cases it is possible to avoid these difEculties
by rechoosing the a&, a2 planes, so that none of the
planes pass through the origin. As stated previously,
if differently oriented sets of a&, a& planes are used for
different sublattices, corrections for the different de-
polarization fields of these sublattices have to be made,
so that all correspond to the same crystal shape when
they are added together.

In these derivations all lengths have'been normalized
to the length of the sublattice basis vector a~, which at
the same time indicates the x direction. The lengths of
the two-dimensional lattice vector and the reciprocal
lattice vector are given by ai,j=$((ri,j),2+((21 j)„sj)/2



I NTERNAL FI ELD IN GENERAL DI POLE LATTICE S A 89

TAELE I. Quantities used in the evaluation of lattice sums for lattices of various symmetry. The symbols are explained in the text.
)l stands for the two indices )ll and X2. For jl and/or j2 unequal to zero, they must be added to )ll and il2, respectively.

Lattice
symmetry

Cubic
Tetragonal'

Orthorhombic
Hexagonalb

y=60'
y = 120'

Monoclinic
Triclinic

Xq+2) 2

)g —P2
)ll+X2 (a2/al) cos+
lll+X2 (a2/al) COSY

Xg

X2

X2a2/a1

—,'VSx,
)l2 (a2/al) sing
ll2(a2/al) sing

(h»») & (hrl, P2) 2

P2

pga1/a2

(—tsl+2t 2)/~3

(»+2& 2)/~
tll Cot Y+l42 (al/a2) Csc'Y

tll Cotp+tl2 (al/a2) CSC'Y

Oa

1

a2/al

—,'V3

-'&3

(a2/al) Sln'Y

(al/al) sing

1
al/al

a2a2/al

—22%3a2/al

-', v3a2/al
(asa2/al2) sing

(asa2/al2) sing'cess

a For the case in which the s axis is chosen along the as axis (c axis) of the crystal. If the s axis is chosen along the as axis, use the expressions for the
orthorhombic lattice with as =1.

b We have listed the quantities for two different choices of the unit cell.

and. It„,,» ——t (h», »),'+ (h», ») „'Jts, respectively. Since
the summations are carried out over X1 and X2, and p~
and p2, which measure distances along the basis vectors
of the ordinary two-dimensional lattice, and the recip-
rocal two-dimensional lattice, respectively, the x and y
components of aq, ; have to be expressed in terms of )1
and ) 2, and those of h», » in terms of ttt and t42. This
has been done in Table I for the various lattices. For
simplicity it has been assumed that j1 and j2 are zero.
For nonzero jl and/or js simply add their values to
) & and X2, respectively. Further, we have listed the
values of O„which is the area of the untransformed
two-dimensional lattice unit cell in the a1, a2 planes
(in units 4tl ), and V„which is the unit cell volume of
the ordinary space lattice (in units 4222).

The evaluation of the lattice sums has now become a
relatively simple matter. One chooses the proper ex-
pressions from Table I for the sublattice symmetry
under consideration, substitutes these into the appro-
priate lattice summation expression, and performs the
straightforward arithmetic calculation.

and
a&, .;=!(4+jt)'+4(~2+ j2)'$'"

he l,l» = [ t 1 + 4t42 ]

shifted an amount 2ap in the a direction from the
locations shown in Fig. 6, preserving the orientations.

In Fig. 6, the solid lines outline the a, c face of the
unit cell, while the broken lines outline the a, c faces
of three of the sublattice unit cells which are used in the
calculation. The sublattices are chosen so that each
contains dipoles of one orientation only. The desig-
nations e, ft, and f2 indicate dipole positions as well as
dipole orientations for these three sublattices (e and f
are the occupied positions in the Csas symmetry). Since
the dipoles in the planes z= ~-,'bp, ~-,'bp, etc. , are shifted
a distance —,ap in the a direction three more sublattices
must be introduced to include these dipoles, giving a
total of six sublattices. For all sublattices the basis
vectors are at=-'2ce, as ——as, and as ——bs. Normalizing to
al we have a2/422 ——2.00 and as/al ——3.614. Further,

VII. EXAMPLE: POTASSIUM FERROCYANIDE

As an example we calculate the dipole field at the
dipole positions in potassium ferrocyanide. This com-
pound, K4Fe(CN) e 3H20, is monoclinic, pseudote-
tragonal, with basis vectors's tts=cs=9.32 A, and
bs 16.84 A."T——he electric dipoles under consideration
are those of the water molecules. The water molecules
are located and their dipole moments are oriented in
the a, c planes which occur at the positions z=0, &gbp,

~bp, etc. The positions and orientations' of the dipoles
in the planes z=O, &bp, &2bp, etc., are shown in Fig. 6,
while the dipoles in the planes z= &—,'bp, &~bp, etc., are

"Cf. Strlctgre Reports, edited by A. J. C. Wilson (Qosthoek,
Utrecht, 1952), Vol. VI, p. 421.

'7 We use the customary designation a0, b0, co for the unit cell
basis vectors, to distinguish them from the sublattice basis vectors
81) 82) $3.' T. Tsang, G. K. McCormick, D. E. O'Reilly, and G. K.
Schacher, Bull. Am. Phys. Soc. 9, 503 (1964). The dipole orien-
ga&ions qsed here age dggivqd from high-temperature NMg. datq, .

FIG. 6. Location
and orientation of
the dipole moments
of the water mole-
cules in a plane s=0
of potassium ferro-
cyanide.
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TAnLE II. Values of the dipole sums 0, a»S, , i» i3(s,p,), 0, a»S;,, ; s..(y,p„), 0 a»'Si» i», i»(s,p,) for selected points in
the sublattice unit cell of potassium ferrocyanide. aq/a» =2.00, a»/aq =3.614.

Point' J2 Ors81 Sj1, j2, j3 (S~px)

9.6126
8.2585

—0.5791
8.2585

—0.0016
0.0016

—0.0016
0.0016

O.a13S,,, j., j.(y,p„)
—1.5136

8.2585
10.5559
8.2585

—0.2732
0.0016
0.2700
0.0016

Oea» Si», i&i»(siP~)

—8.1015
—14.0996

20.5406
—14.0996

0.2748
—0.0032

0.2685
—0.0032

The numbering of the points corresponds to that in Fig. 7.

The dipole orientations are given by

p, =p(nt —ns)/K2, (73a)

Qp
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FIG. 7. Points in
the sublattice unit
cell of potassium fer-
rocyanide at which
the sums

Oaa1 Sj1, j2, j3 (tc,pir)

(ff: indicates g, y or s)
have been evaluated.

pi = —Pi =p(nt+ns)/K2, (73b)

where p is the strength of the permanent dipole moment
of a water molecule, and n~ and n2 are the unit vectors
in the a~ and a2 directions, respectively. Since there are
six sublattices and we want to calculate the field at the
six dipole positions, it would, in general, be necessary
to perform 36 separate calculations. However, since
all six sublattices have the same basis vectors the
problem can be reduced to evaluating lattice sums for
the eight points in the sublattice unit cell which are
shown in Fig. 7. Further, because the sublattice unit
cell is orthorhombic and because the points at which
the sums are to be evaluated are located in reQection
planes in the sublattice unit cell, all the "mixed" sums
vanish Lcf. (65)—(67)]and the only sums left to evaluate
are S;, ;,,;,(s:,p„), where ~ is x, y, or s. The results of the
calculations are compiled in Table II, where we have
listed the indices j&, j2, j3 of the eight points and the
values of the sums at these points. At this point we
re-emphasize the fact that the value of S;, ;, ;,(s,p,)
contains a depolarization contribution, while

S;,,;,,;,(a,p„) for a=x or y does not contain such a
contribution. This, as we recall, is due to the fact that

the planewise summation is carried out over the x, y
planes, which corresponds to summation over a slab-
shaped crystaj perpendicular to the s axis. Conse-
quently, the electric fields in the x and y directions,
given in Tables III and IV, do not contain a depolari-
zation field. For any other shape of the crystal one has
to correct the numbers in the tables with the appro-
priate depolarization contributions.

Ke are now in a position to evaluate the components
of the electric field at each dipole site. The e dipoles in
the plane s= —,'bo are related by a lattice symmetry
operation to the e dipoles in the plane s=0; the same
is true for the ft and fs dipoles. Therefore, in tabulating
the results we need not consider the planes s=0 and
s= sbs separately (it should be pointed out, however,
that this does not mean that the calculations could have
been carried out with three sublattices rather than six).
In Tables III and IV we give the x and y components
of the electric field at each dipole site, listed according
to the dipoles that produce the field. Since the dipoles
have no component in the s direction, the s component
of the electric field is zero. As an example of how the
numbers in the tables are obtained we have

E,(at e, due to ft) = (pi,),LS„», s(x,p,)+S„»,s(x,p,)j,
where (pi, ) =p/v2. The numbers in the Tables III
and IV are in units of P/(&20, at»).

We note that the ft and f, dipoles together produce
a zero net field at the e sites. This is due to the fact that
the ft and fs sites are related by inversion with respect
to any e site, and the fact that the f& and f, dipoles a,re
antiparallel.

TABLE III. x component of the dipole 6eld in potassium ferro-
cyanide at the e, f1, and f2 positions (see text). The numbers are
in units P/(v20, a»»).

Source
dipoles

Field+
point

J V
2

fl
f2

9.6110
8.2601
8.2601

8.2601
9.6110—0.5807

—8.2601
0.5807—9.6110
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TABLE IV. y component of the dipole 6eld in potassium ferro-
cyanide at the e, ft, and f& positions (see text). The numbers are
in units p/(@20,gts).

urce
poles

point

e
fl
f2

1.2436—8.2601—8.2601

8.2601—1.2436
10.2827

—8.2601—10.2827
1.2436

APPENDIX: THE LORENTZ-FACTOR MATRIX

In this Appendix we express the elements y„,„'& of
the Lorentz-factor matrix in terms of the dipole sums
S(x,p„) which were treated in this paper (x, v indicate
x, y, s). For brevity we are suppressing the subscripts

Example of the Use of the Factor expt 2ssik i}},]
The fi and fs sublattices in potassium ferrocyanide

may be combined into one single sublattice by the use
of an exponential factor, as introduced in Sec. V. It is
seen in Fig. 6 that, starting from either an fi or fs site,
the dipole direction reverses when going a distance —,ap

in either the ap or cp direction. If we choose new sub-
lattice basis vectors ai' ——ai, as' ———,as (cf. Fig. 7), then
the choice of the reciprocal space vector k=-,' (bt'+be'),
where the b"s are related to the a"s according to (21),
gives rise to the exponential factor

exp[2srik y},'$= (—1)(i'+'»,

where y~' is expressed in the basis vectors a~', a2', a3
(normalized to (ti'). In the lattice sum this factor has
the effect of changing the sign when going from an fi to
an fs site and vice versa. This properly represents the
reversal of the dipole direction. The choice of a~' and
a2' means that we have two-dimensional sums over
square lattices. Furthermore, the sum over the recipro-
cal lattice has to be performed with respect to the point
k= —,'(bi'+bs'), which is the center of the square.

Note added in proof. Recent dielectric measurements
and NMR results indicate that the water molecule
dipole orientations shown in Fig. 6 for potassium ferro-
cyanide are incorrect. The values of the dipole sums
presented in Table II are of course valid since they do
not depend on the dipole orientations. However, the
values of the 6eld components presented in Table III
are incorrect, since they are dependent on the dipole
orientations. Of course all results are valid for the model
shown in Fig. 6.

One of the authors (G. E. S.) is in the process of
writing a comprehensive zoRTRAN program for the nu-
merical evaluation of the lattice sums treated in this
paper. Information concerning the program may be
obtained from this author.

on S, but in each case it will be evident which subscripts
are appropriate.

First, we consider a system with parallel dipoles

p(p„p„,p, ) of one kind only $i.e., there is only one
sublattice; the complete notation for S is So,o, o(tt,p.)$.
In the absence of external charges the components of
the internal electric field, in a slab-shaped crystal
perpendicular to the s axis, are

E;nt, .——V, Q„S(x,p„)P„, (A1)

where P„=p„/V, are the components of the polari-
zation (V, is the volume of the sublattice unit cell).
On the other hand, expressed in the Lorentz form Lcf.
Eq. (1)j we have for the internal field components

P.;„t,„P.„+P——„p,, „P„. (A2)

In deriving the rapidly converging expressions for the
dipole sums S(t(,p„) we have carried out the summations
over a slab-shaped crystal perpendicular to the s axis.
Since there are no external charges the only sources
of the 6eld K are the polarization charges on the faces
of the slab, hence E,=E„=O, E,= —4mI', . Equating
Eqs. (A1) and (A2) we thus find

p„,„=V,S(t(,p„) (t(= v= s excluded)

p, , ,= V,S(s,p,)+4tr.

The tensor y, „has the following properties:

(1) y„„is symmetric, because S(it,p„)=S(v,p,),
(2) Tr(y. ..) =P„y„,„=4ir, because of Eq. (64).

(A3)

(A4)

Vs,s"'= V."'Srt,vs, ~s(s~ ps)+47r. (A8)

As we have pointed out in the introduction, the Lorentz
factors p„„are independent of the crystal shape; they
are exclusively determined by the crystal symmetry.
Equations (A3) and (A4) relate the shape-dependent
dipole sums S(x,p„) as evaluated by the method of
planewise summation to the shape-independent Lorentz
factors p, ,„.

For the case of many sublattices we have for the ~

component of the internal 6eld at a lattice position of
sublattice i

int, s 2 j(sublattices} Vs Zv Sit js js(xrp )P (A3)

The index j labels the sublattices, V (&' is the volume
of the sublattice unit cell and Pi&'„=pl&'„/V "' is the
polarization of sublattice j. The subscripts j&, j2, j3
on S, however, indicate the origin of the unit cell of
sublattice j with respect to the origin of sublattice i.
Equation (A2) is replaced by

int, s=+ +2sj(sublattices} Zv |s, v
' P v ~ (A6)

Again E,=So=0, E,= —4sr P; P('}„hence

y. ..' '= V "}S;,,;s,;s(x,p„) (it= v=s excluded) (A7)


