
P HYS ICAL REVI EW VOLUME 137, NUMBER 3A 1 F E B RUARY 1965

Calculation of Crystal-Field Energy-Level Splittings of the Ti + Ion in RbA1(SO4) 2 12H,O
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By considering a crystalI-Geld model of D2p, point-group symmetry, the Stark energy-level separations of
the Ti'+ ion in RbAl(SO4}2 12H&O have been calculated. Previously reported results of EPR experiments
have revealed the existence of an orthorhombic crystal Geld, and through the application of group theory
and quantum-mechanical perturbation theory, splitting values of 1050, 1320, and 20300 cm ' have been
obtained. In these calculations the contribution of the upper doublet E, produced by the octahedral compo-
nent of the Geld has been included and its importance is clearly established. The calculated value of the cubic
splitting matches the result of optical spectroscopic measurements with Ti'+ in similar environments, re-
ported by other workers. The magnitudes of the smaller orthorhombic splittings are compared with the pre-
dicted value of 1075 cm ' which was obtained from an earlier calculation by Van Vleck applied to a model
with trigonal symmetry. The Jahn-Teller effect is discussed as a possible cause of the orthorhombic distortion.

INTRODUCTION

OR the trivalent titanium ion in rubidium alum,
the crystal electric field is produced mainly by an

octahedron of water dipoles which surround the
paramagnetic ion. According to Lipson, ' the octahedron
has a slight distortion along the trigonal or (111) axes
of the lattice. However, since three different g factors,
i.e., 1.895, 1.715, and 1.767 have been measured for
Ti'+ in RbA1(SO4) & 12HsO, s it is undoubtedly true that
a further displacement of the ligands takes place when
Ti'+ is substituted for AP+, resulting in a crystal field
of less than axial symmetry. Of the work previously
reported in the literature on the g factors of Ti'+, the
contributions which have direct bearing on the subject
of this paper are those connected with the experiments
on CsTi(SO4)s 12HsO, ' in which an axially symmetric
crystal fieM was observed, with gll

——1.25 and g&
——1.14.

Attempts to relate these values of g to the crystal-field
energy-level structure have been made by Bleaney, "
Bose et ul. ,

' and Rei. ' In each case the calculations
involved only the lower triplet T2, of the 0& component
of the crystal field (see Fig. 1).

In this paper, the results of the calculations differ
considerably from those reported by the above authors,
as would be expected, since the paramagentic resonance
spectra bear little resemblance in the two salts. How-
ever, it is very significant that the inclusion of the upper
doublet E„although it complicates the work, is neces-
sary in order to properly relate the experimental g
factors to the crystal field structure. In the previous
attempts to calculate the crystal-field splittings the

effect of E, has been assumed to be negligible owing to
the large cubic splitting ( 20 300 cm ')'. To illustrate
the contribution of these upper levels, three methods of
perturbation theory have been applied, each clearly
establishing the need for considering the upper doublet.
For the most part, the methods used are standard since
the construction of molecular orbitals was not necessary
in this case.

GENERAL THEORY

The general Hamiltonian for a paramagnetic iron-

group ion in a crystalline environment may be written as

se=sec+U, +xL S+pH (L+g,s),
where X&——Coulomb energy, U, = crystal electric field
potential energy; g, =spectroscopic splitting factor of a
free electron=2. For simplicity, the terms involving
nuclear interaction have been omitted, since they do
not affect the calculations to follow. For Ti'+, the
ground-state orbital term is 'D, which describes a
fivefold orbital degeneracy. When the ion is subjected
to the electric field produced by the surrounding octa-
hedron of H20 molecules, the coupling into the orbital
a,ngular momentum L results in a removal of this
degeneracy (Stark effect), the nature of which depends
on the strength and symmetry of the crystal electric
field. In Fig. 1, the splittings of the levels caused by
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FIG. 1. F,Beets of
crystal electric Gelds
on the 2D orbital
term.
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CALCULATIONS AND RESULTS

A. Syin-Hamiltonian Method

By applying XL S+PH (L+g,S) as the perturbation,
Pryce" developed the spin Hamiltonian in which the
following relations were derived:

rn. 2. Octahedra of H&O dipoles: (a) 0& symmetry, (b) D4p
symmetry, and (c) D21, symmetry. neo

(olz„l ~)(~la.;I o

En Eo
(3)

I4) =-;I3s'—r ),
I 3)= 2v3 I*'—x')

I
»=v3 lvs),

I 1)=&3[xs),

I0) =&31*y).

(2)

These wave functions correspond to those in Fig. 3,
where the complete energy level scheme is presented.
The details of the representations and basis vectors were
obtained from Wilson, Decius, and Cross. To complete
the problem, the splitting parameters b1, 52, and 6 can
be related to the g factors by considering XL S and
PH. (L+g,S) as additional perturbations in the manner
to be described in the following paragraphs.

C. J. Ballhausen, Introduction to Li gand E~'~eld Theory
(McGraw-Hill Book Company, Inc. , New York, 1962), p. 64.

9 E. B.Wilson, J. C. Decius, and P. C. Cross, iVolecular Vibra-
tions (McGraw-Hill Book Company, Inc. , New York, 1955),
p. 333.

crystal Gelds of 0&, D4I„and D2& symmetry are shown,
as determined by a straightforward application of group
theory. This picture represents the orbital energy level
scheme of the Ti'+ ion after the U, perturbation is
applied; the parameter 10Dq depends on several factors
which determine the field strength and is usually found

by experiment.
To relate this theoretical discussion to the physical

concept of a distorted octahedron of H20 dipoles, one
may consider the models sketched in Fig. 2. For con-
venience, the axes of the octahedra have been chosen
to coincide with the x, y, and s axes of the magnetic
complex or g;; tensor. In reality, this relationship may
not be correct, but, since there is no available crystallo-
graphic information to clarify this question, these
models may be considered as adequate to represent the
origin of the crystal field of Ti'+ in RbA1(SO4)2 12H&O.

In addition to the orbital energy level structure,
group theory also provides the basis vectors or eigen-
functions of the various levels. For the present problem,
the holosymmetric point group D» of the orthorhombic
system has been chosen to represent the crystal electric
Geld symmetry and the orbitals may be expressed as
follows':

where g,=2 in Pryce's definition, IN) refers to the
orbital wave functions (2) and the i and j subscripts to
an x, y, and 2 coordinate system. If the x, y, and s axes
represent the principal axes of the tensor, and the wave
functions (2) are used in Eq. (3), the following expres-
sions for the g factors are obtained:

g,=g, (1—X/bi),

g„=g, (1—X/82),

g, =g, (1—4X/~),

where 81=E1—Eo, 82=E~—Eo, and A=E3—Ep. By
choosing g, = 1.895, g, = 1.715, and g„=1.767, with

154 cm ' (free-ion value) and g,= 2.0023 for better
accuracy, the splitting parameters may be calculated
to be

81——1070 cm '

82 ——1310 cm ',
6=11500cm '

B. Nondegenerate Perturbation Method

In order to reduce the error inherent in the above
calculations, more complete relations between the g
factors and the splitting parameters may be obtained
by applying nondegenerate perturbation theory, as

TABLE I. Crystal-field energy-level splittings. '

Perturbation
method

Spin Hamiltonian
Nondegenerate
Degenerate

I,imit of
validity

X«81
X&81
X&81

cm '

1070
1050
1050

82
cm '

1310
1320
1320

cm '

11 500
17 000
20 300

a In the above table, X =154 cm I
~

M. H. L. Pryce, Proc. Phys. Soc. (London) A63, 25 (1950).

A~s indicated in Table I, the spin-Hamiltonian rela-
tions are valid only if X&&E„—Ep, this inequality is not
well satisfied in this case.
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outlined in Pake." By this method, the perturbations
'AL. S and PH (L+g,S) are treated separately, with
nondegenerate theory used to correct the ground-state
wave functions through the relation

/
a,

I2

X2

(uI&L SIm&

2D
laDq

where Im) refers to IOn) and IOP) and Ik) is any of the
other wave functions (2) with the Ice) and IP) spin
functions included.

If the normalization constant is ignored (the error
introduced is negligible), the corrected wave functions
of the orbital ground-state J31, of Fig. 3 are

S3I yz8~ f xz
I

8g 3)
, e, l i ~ hsr-gPH,

I 6)=
I «)—i(~/2t'~)

I 1P)—(~/»2) I
2PH-~(~/~) I 3~),

I A) =
I oP& a(~—/»~)11~&+(~/2~2)12m) a(~—/~)13P& (8)

FIG. 3. Energy level structure of Ti in Rb 4
'+ l SO 2. 12820.

By a similar procedure, it may be shown that

To calculate the Zeeman energy splitting of this
ground-state Kramers doublet, it is only necessary to
use degenerate theory in the usual manner by forming
the 2X2 matrix with elements of the type Q;IPH

(L+,S)
I
P.). Since this energy level separation

AR=gPH, expressions for g„g„, and g, may be
by solving the matrix for II along the x, y, and z axes
separately.

For H =H„ the matrix elements

~;,=«;IP~.(~.+g.~.) I ~,)

are as follows:

n„= ' — -' —+—)+' se. ,
2 6 25182 8 51' 822 252

22 11 )

3C12=BC21=0.

The secular equation becomes

(12)

2X g X' 1 1 2X' g,X'——+
5h

(13)

81——1050 cm ',
62——1320 cm ',
6=17000 cm '.

It is interesting to note that Eqs. (11), (12), and (13)
essentially reduce to the spin-Hamiltonian expressions
(5) when the terms with X' are neglected. From the
results of the calculations, it is evident that these higher
order contributions signi6cantly affect the value of A.
Since the validity of these latter calculations sti
depends on ) being less than 51, a better value for 6
may be obtained if this assumption is not made.

On substituting the values for g„g, g„, , an g„and, which
were used for the spin-Hamiltonian equations, trial and

f the s littinerror calculations yield the values o t e spi ing
parameters given in Table I,

3C$3 Er
=0 or E= &BCu. (10) C. Degenerate Perturbation Method

0 —3C11—E

As a result, DE= 23Cs~ ——g,PH, and

.= g
———

I

—+—I+
8X X' g.X'f 1 1 ) gP'

s,')
"6 K. Pake, Pararnagnetec Resonance (W. A. Ben~annn, Inc. ,

New York, 1962), pp. 55—62.

In the two previous cases, the crystal electric- eld
potential energy U, has been treated as part of the
unperturbed Hamiltonian, with the result that the
spin-orbit coupling energy was assumed to be smaller
than U, . To avoid making this assumption, the prob em
may be solved by treating U, and XL S together in
a degenerate perturbation approach. By this metho,
the wave functions of the ground-state Kramers dou-
blet must be found from the diagonalization of the fo-
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lowing 10)(10matrix:

On OP

4p
30!
2P
1P
On

0
0
0
0

0

—i~/2
X/2

0
a,/2

iX/2
Z/2

0 0
X/2 —iX

—8,/2 X/2
h4 iX/2

—a,/2 0

KS~/2 iVSX/2
0 0
0 0
0 0
0 0

0
0

—iVSZ/2
—V3X/2

0
(15)

OP

2A

3P
40.

0
vSX/2

—iv3X/2
0
0

0 0 0
0 0 0
0 0 0
0 0 0

iVSZ/2 —V3~/2 0

0 —iX/2 —X/2 iX—

k/2 h4 iX/—2 —X/2
—X/2 iX/2 hg iX—/2

iX —'A/2 iX/2
0 0 0 0

0
0
0
0

A brief examination of this matrix reveals that two S)&5 diagonal blocks are very weakly coupled to each other
by small oif-diagonal elements linking the I4c4) and I4P) states with the I1n&, I1P), I2a&, and I2P) states. In order
to make the solution manageable, it will be a,ssumed tha, t the effect of this upper level is negligible and the ma, trix
will be reduced to

On

Oa

1P
2P
30!

OP

1A

2'
3P

0 —a,/2
iX/2 h4

X/2 —a,/2—iX X/2

X/2 iX

iX/2 Z/2
h2 —iX/2

iZ/2

0

0
0

0
a/2—X/2
iX

—k/2
5j

8/2
—X/2

—X/2
—iZ/2

6,/2

—iX
—X/2
—a,/2

(16)

—,'X' —X(hi —E) (h2 —E)—4'X'(hi+h2 —2E)
Q=1 gd,

-' '( —
~
—2+ )— ( ~

—')( 2
— )

(17)E4+AE'+BE'+CE+D= 0,
-'X'( —E)—-'X P —E) (h, —E)

6= Xd',
4'X'(3E—hg —h2+X) —E(hg —E) (h2 —E)

where

A =—(hg+h2+ 6),
B=hyh2+h45+hgh —$X',

C= 4X'(5hi+Sh~+2A) —bgh2d+SX',

D= sX'(2d, —4hg 3h,) 4X—'(h, 5+—h, 5+4h,h,)+4K'

—;~(~—E) (h, —E——,'~)
C=$ Xd'.

-'&'(3E—4—h, +X)—E(h, —E) (h, —E)

Equation (18) may now be treated in the same
manner as (8) to determine the Zeeman energy splitting
and the three g factors. In this case, g, will be treated as
2 in the perturbation PH. (L+g,S) in order to simplify
calculations. For the dc magnetic field along the s axis,
II=H, and the matrix elements X;;=Q, I

pH. (I-.+25,)
X

I P;) are equal to

For the ground-state Kramers doublet, the eigenfunc-
tions for the two matrices become

I 6)= a
I
0~&+b

I 1p&+c I 2p&+d I
3~&

IA&=aIOp&+bl 1~&—cl2~&—~13p&, (18)
XU = L (a+a—b+b c+c+d+d)+—2i (a+2 a+a)—

i (b+c c+b)MPH „— —
where a+a+b+b+c+c+d+d=1 for normalization. The
relations between these coeKcients follow directly from
the matrices of (16), the signs being slightly different X»——X»——0.

(20)

It can be shown that the secular equations of both in the two wave functions, and may be expressed as
4X4 submatrices are identical (as expected, since the
result should be four Kramers doublets) and take the
form
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In the x and y directions, the expressions for the g
factors are

g,.= 2 (a+a+ b+b c+c—d+d—) 2i (—a+b b+a)—

+2i (c+d d+c)—, (22)

g„=2 (a+a —b+b+ c+c d+d)+—2 (a+c+c+a)

2(b+d—+d+b) . (23)

The determination of the orbital energy level separa-
tions Sj, 62, and 6 must be carried out by trial and error,
beginning with the secular Eq. (17) and continuing
until suitable values for the g factors are obtained.
To illustrate this approach and to verify the values
given in Table I,

5~=1050 cm ' 6~ ——1320 cm ' 6= 20 300 cm ' and
X=154 cm ' will be substituted into (17), with the
result that

where
L'4+HI, "+CE+D=0,

3= —2.267X104 cm ',
8=4.949X10~ cm ',
C= —2.782X10'-' crn ',
D= —3.032X10~~ cm 4.

The solution of lowest energy is E~= —10.72 cm '. If
this value is used in Eq. (19) and d is chosen as real
and positive, after normalization

d =0.007868 )

a= —i0.9961,
5= —0.06899,

c= i0.05412.

Finally, from (21), (22), and (23) the g factors are
found to be

g, = 1.892, g = 1.715, gy
——1.767.

If the value for g, of 2.0023 had been used, all of these
values would be greater by about 0.002 and would fall
within the estimated experimental error of +0.002.'

DISCUSSION AND CONCLUSIONS

Before any comments are made concerning the results
of these calculations, in which eA'ects of covalent
bonding have been ignored, it is important to note that
the value of X=154 cm ' is for the Ti'+ free ion. In a
crystalline environment this value could be reduced by
covalent bonding. As a result, the values of the energy
level separations calculated in this paper may be
correspondingly higher than they are in reality. How-

Thus, d,E= 2JCii g,P——II, and

g, = 2 (a+a b—+b c—+c+d+d)+ 4i (a+d d—+a)

2i—(b+c c+—b) . (21)

ever, it should also be mentioned that Van Vleck" has
shown that 0- bonding should not exist in this case
and Bleaney et al.' have pointed out that there is
little evidence of x bonding in hydrated iron-group
compounds.

According to Hartmann and Schlafer, ' the value
of 10Dg (or 6 in this case) is approximately 20 300
cm ' for the Ti'+ ion in the field of an octahedron of
HgO dipoles. This measurement was the result of optical
spectroscopic experiments with several compounds,
including CsTi(SO4)2 12H20 and TiC1~ 6H20. Within
the validity of the crystal electric field model and the
assumptions made in the calculations, this agreement is
remarkably good. Further indication of this consistency
lies in the fact that the Rb fAlTi) (SO4), .12H,O
crystals have the characteristic violet color of the
Ti(H20) 6'+ ion.

Kith regard to the smaller splittings, the values of
6y = 1050 cm ' and 52= 1320 cm ' represent a great
departure from the trigonal splitting estimated at less
than 100 cm ' for CsTi(SO4)2 12H20, ' ' based on the
EPR results at liquid-helium temperatures. On the
contrary, these values make reasonable agreement with
the calculation of 800 cm ' ' based on the magnetic
susceptibility measurements between 100 and 300'K of
Dutta-Roy et u/. "with the same,'CsTi alum. It has been
suggested by Bose et al. ' that a change in the degree of
crystal electric-field distortion may take place between
100 and 4.2'K to account for this large discrepancy in
trigonal splitting values.

For the Ti'+ ion in rubidium alum it is evident that a
further distortion of the H20 octahedron has destroyed
the trigonal symmetry which normally exists at the
trivalent sites. However, it is reasonable to expect that
the magnitude of this distortion is small in relation to
the trigonal one and can be thought of as a perturbation
On it. This is verified partly by the fact that the values
of 6~ and 52 are close, indicating that the doublet 8, in
the trigonal field is only slightly split (see Fig.
where the D4y, field can represent a trigonal or D~q field
since the Stark level scheme is the same for these lower
three orbital levels). As a result, the foregoing results
for the cesium salt should be considered as pertinent,
if only on a qualitative basis.

One final aspect of this lower symmetry crystal-field
splitting involves the calculations of Van Vleck.""In
these papers, Van Vleck discusses three contributing
factors in the trigonal distortion of the Ti'+ crystal
field in an alum lattice: (i) the direct effect of distant
atoms, which represents the lattice in general, (ii) the
indirect effect of distant atoms, which represents the
mechanical distortion of the H2O octahedron by the

"J.H. Van Vleck, J. Chem. Phys. 3, 807 (1935)."S. K. Dutta-Roy, A. S. Charkravarty, and A. Bose, Indian J.
Phys. 33, 483 (1959)."J.H. Van Vleck, J. Chem. Phys. 7, 61 (1939)."J.H. Van Vleck, J. Chem. Phys. 7, 72 (1939).



lattice in general, and (iii) the Jahn-Teller eftect. The
results of his calculations based on a dipole model for
the trigonal field give a total splitting from all three
sources of 7075 cm ' of which 550 cm ' is due to a
Jahn-Teller CBect.so This work of Val Vleck is interesting
not only because his prediction of the energy level
splitting closely approximates the values calculated in
this paper, but also because of the implication of the
Jahn-Teller effect. In one of his papers, "he points out
that a linear combination of tetragonal and trigonal
types of distortion could produce a lower energy than
either acting alone. The suggestion being made here is
that such a Jahn-Teller distortion, which would be less
than axially symmetric, could account for the observed

"J.H. Van Vleck, Phys. Rev. 57, 435 (1940).

crys ta 1 field. SfmIlle tr) ol Tl + Ions ln RbA1 (S04)I
~ 12H20. However, since there is no direct evidence
of this effect and ample reason to expect an additional
ligand displacement because Ti'+ is a l.arger ion (0.76 A)
substituted for a smaller Ap+ ion (0.51 A), a Jahn-Teller
effect in this material must remain in the realm of
speculation.
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The heat capacity of indium has been measured between 0.08 and 4.2'Kin the normal state (II=1000Oe)
and between 0.1'K and the critical temperature in the superconducting state. At
C&=0.001011 '+1.69T+1..42T'" mJ mole ' deg ' and at T ~&0.35'K, C,=1.22T' mJ mole ' deg . The ab-
sence of the hyperQne contribution to C, is a consequence of the long spin-lattice relaxation time. Below
0.35'K, where the superconducting-state lattice heat capacity can be measured, the normal-state lattice heat
capacity is only a small part of C„and calorimetric measurements alone cannot exclude the possibility that
the lattice heat capacities in the two states are equal. However, the excellent agreement between the elastic
constants and the apparent normal-state lattice heat capacity supports the conclusion that they are not. .The
apparent discrepancy in the lattice heat capacities is less than that. reported by Bryant and Keesom but the
difference is largely accounted for by differences in analysis of the normal-state data and by their assumption
that the measured C, included the nuclear quadrupole term. The measurements of C, extend to temperatures
well below that at which the electronic contribution becomes negligible and therefore permit a comparison
with theoretical studies of the superconducting-state lattice heat capacity. The heat capacity of tin was
measured only below 1'K. Below 0.45'K, C,=0.246T' mJ mole ' deg ', in good agreement with the elastic
constants. Within the experimental error, C„=1.78T+0.246T' mJmole ' deg '.

I. INTRODUCTION

l
+RIOR to thc 1cpolt. b)r Br/ant and Kccsolll on thc

heat capacity of indium, ' the heat capacity of
superconducting metals had generally been interpreted
as the sum of separable electronic and lattice contribu-
tions, the latter of which was assumed to be unchanged
by the superconducting transition. This interpretation

*This work was supported by the U. S. Atomic Energy
Commission.

/Present address: E. I. duPont de Nemours and Company,
Wilmington, Delaware.

f Alfred P. Sloan Research Fellow,' C. A. Bryant and P. H. Keesom, Phys. Rev. Letters 4, 460
(1960).' C. A. Bryant and P. H. Keesom, Phys. Rev. 123, 491 (1961).

can be summarized by the equations

C =yT+Ct,
C,=C..+Ct„

(~)

(2)

Cln Cle )

in which C„and C, are the heat capacities in the normal
and superconducting states, C~„and C~, are the lattice
contributions, C„ is the superconducting-state elec-
tronic heat capacity, and the electronic heat capacity
in the normal state is the product of the constant y and
the temperature T. At low temperatures the lattice
heat capacity can be expressed as a series in odd powers
of T. The first term is the T' term and its coefficient is


