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The maximum deviation of the radial distribution function g(r) from its asymptotic value, g(«)=1, is
used as an expansion parameter in calculating the properties of a degenerate boson system. The uniform
limit, defined by the condition 1—g(0)<1, holds at low densities under appropriate constraints on the
Fourier transforms of the interaction potential and also at high densities for the charged-boson system. In
the uniform limit a procedure based on (1) a Jastrow-type trial function, (2) the Wu-Feenberg functional
for the kinetic energy, (3) the Kirkwood superposition approximation, or the more accurate Abe form for
the three-particle distribution function, yields the Bogoliubov formulas for the ground-state energy and the
excitation energies of a degenerate or nearly degenerate boson system. Results for the ground state of the

high-density charged-boson system include

(KE) _ _1 (PE) T
N = 3N +0(’ s );
E 0.8031
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Numerical results are also computed at intermediate and moderately low densities (0.01 =7,=<100).

1. INTRODUCTION

E study a system of NV bosons confined within a
cubical box of volume Q2. The particles interact
in pairs through radial potentials »(r;). A general con-
straint on v(7) develops out of the analysis, but for the
moment we require only that v(7) possess a well-defined
Fourier transform. The Yukawa potential Voe="/%/(r/b)
is a possible form which includes the Coulomb inter-
action as a special case (Vob=¢?, b — ).

The present study yields a simple derivation in con-
figuration space of Bogoliubov’s formulas for the
ground-state energy and the excitation energies of a
degenerate or nearly degenerate boson gas. Some re-
sults going beyond the Bogoliubov approximation are
also given. The essential novel points are:

(1) use of the maximum deviation of the radial dis-
tribution function from its asymptotic value as a
physically meaningful expansion parameter,

(i) the explicit formulation of the uniform limit
(defined in Sec. 4),

(iii) proof of the relation (KE)=—%(PE) for the
ground state of the charged-boson system at high
density,

(iv) evaluation of the kinetic, potential, and total
energies of a charged-boson gas at intermediate and low
densities.

One way or another, the treatment is related to earlier
studies by Bijl;! Bogoliubov and Zubarev,?2 Abe,}?
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2. BASIC RELATIONS

To estimate the expectation value of the Hamiltonian
operator in the ground state we introduce a Bijl-
Dingle-Jastrow (BD]J) type correlated trial function
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This function can describe a wide variety of physical
states [depending on the choice of correlation function
U(r)] all the way from the short-range order of a
quantum liquid (as in liquid He*) to the long-range
order of a well-defined space lattice (as in the electron
system at sufficiently low density). We proceed to the
basic definitions and relations needed to complete the
calculation of the mean kinetic and potential energies.

Radial Distribution Function

N—1
QZ/‘IIOBZdrM...N. (2)
.

g(r)=

e

Three-Particle Distribution Function
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Kirkwood Superposition A pproximation (Ref. 10)

px(1,2,3)=p¢(r12)g (r23)g (1), 4)
in which p=N/Q is the number density.

Bogoliubov-Born-Green-Kirkwood-Yvon
Relation (Ref. 10)

g(712)v1U(712)
= vign)— (1) [ [p(1,23)Fglrlgrs)]
) XV 1U(r1)drs.  (3)
The substitution of px(1,2,3) for $(1,2,3) in Eq. (5)
reduces it to the explicit form
8(r12)v1U(r12)
=vigro [ [1=glra)JsCr)g(rn)
X V1 U(riz)drs.  (6)
Expectation Value of the Kinetic Energy

hz ©
(KE)=Np—47r/ va-vgridr. 7
8m 0

Expectation Value of the Polential Energy

0

(PE)=2xNp / g()v(r)r*dr. (8

0

3. EVALUATION OF THE KINETIC ENERGY

In Secs. 7, 8, and 9, the integral in Eq. (7) is evalu-
ated by a systematic iteration-variation procedure em-
ploying Eq. (6) and the functional J(va) introduced
in Ref. 9. A related, but less accurate, variational
method is also used in Sec. 8. In this section we take
some steps in the direction of an explicit analytical
evaluation of the kinetic energy. First, the radial dis-
tribution function is written in the form

¢(1) = 1—aG(a3p) ©)

KE h?
<———>= — (ap)2’3—/V‘y(5) -vG(s)ds
N 8m

ﬁ2 (a )2/3
= | #7@F @

h%ﬁ%/

(4mymL

F(g)
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subject to the normalization conditions

) / [e()—1Jdr=—ap / G357 dx

-—/G(s)ds= -1,

G(0)=1.

(10)

(11)

A change to the s space of Eq. (10) now proves con-
venient. Let s= (ap)!/3 and

Y@ =u).

Equation (6) becomes

(12)

v Y0~ [ G5 —sDyEs—n(1-aG()
=—a/G(]s’—s!)G(s’)V"y(s’)ds'. (13)
In terms of the Fourier transforms

Flo)= / ¢ G (5)ds,
(14)

Z(9)= / ey (s)ds,

Eq. (13) assumes the partially solved form

Z(@[1—F(g)]= / ¢s In[1—aG(s)Jds

—aF<q>( ) [—F(lq aDZ@dd, (1)

an inhomogeneous linear integral equation for the
unknown function Z(q).

The mean kinetic energy can now be expressed in
terms of F and Z:

N ()
- / “iq'sIn{l—aG(s)}dsdq—a(i—) / q-q’l_Fq(g)F(l(I’—(IDZ(Q')dqdq’] (16)

The dependence of Y(s), Z(¢g), and (KE) on « can be made completely explicit by introducing the power

H. S. Green, in Handbuch der Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1960), Vol. 10.
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series expansions

Y(E) =3 a"Ya(s),

n=1

2()=% aZ:(0), (17)
/eiq‘s ln[l-—aG(s)]ds=-—i ?:LF,L((]),
n=1l N
in which
Z.(q)= / ey, (5)ds,
Falg)= / e Gr(s)ds (18)

= (21)3 f Fi(|q—q|)F.-1(¢)dq,

™

and Eq. (16) becomes

BE)__E g 2 [enomi
+<§%>3/q'q7"1(lq’—ql)Fl(q)

le<q>z%1<q'>dqdq']. (19)

Equation (19) involves two approximations, the
BD]J form of the trial wave function and the Kirkwood
superposition form for the three-particle distribution
function. The first is unavoidable in the present con-
text, but the second can be replaced by a better
approximation. Abe'! derives the form

pa (1:2,3) = p3g (7’12)5’(7’23)3(7’31)
Xexp[p / (g(r)—1}{g(ra)—1}
X {g(ra0)— 1} dret - ] (20)

for the three-particle distribution function generated
by the classical partition function describing equi-
librium states of a gas of interacting particles at low
density. The complete argument of the exponential
factor in Eq. (20) is a power series in the density with
coefficients which are functionals of g(r)—1.

The identity in mathematical structure of the classical
N-particle equilibrium distribution function and the
BD]J trial function has the consequence that Abe’s
derivation of p4 applies also to the three-particle dis-

1L R. Abe, Progr. Theoret. Phys. (Kyoto) 21, 421 (1959).
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tribution function generated by the BD] trial function
(under a suitable limiting condition on the density—
in the Coulomb problem p—w). The application of
Eq. (20) to study the ground state of a charged-boson
gas at high density is developed in Sec. 6.

4. THE UNIFORM LIMIT

The mean potential energy of Eq. (8) can be ex-
pressed simply in terms of F(¢) and the Fourier trans-
form of v(r). The latter quantity is

h(k)=/e“" (r)dr. (21)

Note that k= (ap)!/3q. Then
(PE)

N

—1oh(0)—F / F@h(a%g)¢dq.  (22)
472/

Suppose now that the correct value of « is small
(e<<1) so that only the leading term need be retained
in the mean kinetic energy represented by Eq. (19).
This condition defines the uniform limit in the sense
that the radial distribution function is nearly constant.
A physical basis for the uniform limit may be found in
low density and weak interaction as in the usual state-
ment of conditions for the validity of the Bogoliubov
approximation.

Also, as pointed out by Foldy® and Lieb,!? the uni-
form behavior is produced by high density in conjunc-
tion with some weak constraints on the potential. In
all cases, the assumption that the potential possesses
a Fourier transform rules out comparison of the present
development with calculations based on a hard core or
strongly singular potential. Under the assumed condi-
tion (a<<1) the energy formula reduces to

1 2.2/3 0 2
E zph(0)= Jo P / ¢F (Q)d
0

o q
N 167*mJ o 1—F(q)

ap %
——| F(Qh(a"p"?q)g*dq. (23)
47:2[0

Inspection of Eq. (23) reveals that the optimum
function F(g) can depend on « only through the com-
bination k= (ap)/3q. Consequently Eq. (23) can be
expressed simply in terms of the variable 2 and the
liquid structure function

S()=14p / o g () — 11dx

=1—F(q).
12 E. H. Lieb, Phys. Rev. 130, 2518 (1963).

(24)
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The new form is

E—%ph(0) n? ©[1—Sk)P
2 _ / L ] Lk
N 167®mp.) o S(k)

! wlSkhkk2dk 25
—@/0[— ®WEEE. (25)

The supplementary conditions

G<0>=(i)3 [r@aa-1,

/G(s)ds=F(0)=1,

(26)

become

1—S(&) |k%dk =272
/0 [1—S(&)] , o

S(0)=0.

The optimum liquid-structure function is determined
by the condition for minimum energy:

/0 w&S(k)Lﬁ—”;B( 1~$)+h(k)

K 8S(k)
+—F2 :|k2dk =0 (28)
dmp S%(k)
o Amoh (k)72
sw=[ 1+, (29)
h2R?
provided that
20h(k)+ (H2k2/2m)>0. (30)

The supplementary conditions are satisfied without
need for terms associated with Lagrangian multipliers.
Equation (30) requires £(0)>0; in addition, Eq. (27)
defines « as a function of p for given S(k):

1 = 4dmph(k)) ~1/2
/ [1— {1—[— } :|k2dk. 31)
27%.J o #i2k?

The Bijl-Feynman formula!®® for the energy of an
elementary excitation

e(k)=n*k?*/2mS (k)

a=

(32)
now yields

e(k)=[(W*k/2m)*+-2(#2k*/ 2m)ph (k) ]2 (33)

in agreement with Bogoliubov and Zubarev.? Notice
that the right-hand member of Eq. (13) is not involved
in the derivation of Egs. (23)-(33). This means that
the approximate (or incorrect) features of px(1,2,3) do
not enter into the derivations.

13R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).
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5. THE YUKAWA POTENTIAL

v(r)=(Ze)?e /7, (34)
h(k)=4n(Ze)*/ (k+k?). (35)
To simplify the notation, introduce
re=(3/4mp)',
) 1 h2 1/4
i= l: —*7’33:| k,
1272 me? (36)

1 h2 1/4
MESN
1272 me?

and measure 7, and ko' in Bohr units of length
(F*m1¢2=0.5292X10"8 cm if m and e are identified
with the mass and charge of the electron). Equation

(31) for & becomes
4 r4\14 o Lt 212

L I (L
7\3 0 (423t 4-p))»

4 4 1/4 poo t2
e A
w\3 0 (142

The equality in the second line of Eq. (37) holds only
in the limiting case of charged bosons (ko — 0) already
investigated by Foldy® using the Bogoliubov approxi-
mation and by Girardeau? using the pair approximation.
Our formalism is adapted to the charged boson gas by
omitting %(0) in Eq. (25) and introducing the limit
ko— 0 into Eqgs. (25), (29), and (31).

Using the notation of Eq. (36), the energy formula
for the charged-boson system reduces to

E 2 75k o AL
~—=—(12)1/4-—[ / {1— }(l—l—t‘*)l/%zdt
N o« ol (142

—~ /0 w{1—(1+t;)1/2}d;} (38)

with energy in Ry (27'me*#r2=13.60 eV) and length in
Bohr units.

We show in Appendix A that the three integrals
appearing in Egs. (37)-(38) can be reduced to beta
functions and have the values

o0 tZ
/[1— ]tzdt=0.6180,
0 (1_'_14)1/2
o0 t2
[l
oL atsye

0 2 2
=5 / [1— :l (1414)122d4=0.8472.  (40)
0 (1_'__14)1/2

(37)

(39)
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Equations (A3a) and (A3b) verify the surmise that
the second integral in Eq. (38) is five times as large as
the first one. This surmise is based on Eq. (23) giving
E as a function of « following the replacement of
h(at3p13q) by 4w (Ze)*(ap)~23¢2 With (KE) propor-
tional to @%® and (PE) to a!/3 the condltlon for minimum
energy with respect to « has the consequence

(KE)=—%(PE). (41)

The derivation of Eq. (41) calls for a brief comment.
The function F(q) is treated as given and only « is
varied. Observe the contrast with Eq. (28) where «
does not appear explicitly and F(g)=1—S(%) is varied.
The explicit development of this derivation [and the
proof that it yields a formula for a consistent with
Eqs. (37)] appears in Appendix D. Final results for «
and E are

a=0.845623% 34,

E/N=—(0.8031Z52/r31).

(42)
(43)

The exact value of the numerical coefficient in Eq. (43)
is

(8(12)1/4/5732)I2(2) = 0.8030786- - -

The same value is given by Lieb and Sakakura.?
Girardeau” gives 0.8037 because of small errors in the
evaluation of the integrals occurring in his calculation.

With Z=1, r,<{% Bohr units appears to be safely
within the range of useful accuracy of Egs. (29), (33),
(42), and (43) and the corresponding Bogoliubov and
pair approximations.

With S(k) known as an explicit function of %, the
inverse Fourier transform of Eq. (24) serves as an
integral representation for the radial distribution func-
tion g(r). Plots of g(r) against r, computed by numerical
integration, appear in Fig. 1 f01 r,=0.01, 0.03, and 0.06
Bohr units.

We have not used the notion of single-particle orbital.
However, the occupation number N, of the ground-
state orbital in the problem of the charged-boson
system is related to the density through Foldy’s
equation®

(N —No)/N220.2114252 314, (44)

Equations (37) and (39) yield immediately the
connection
a1,

(N—No)/N=a/4, (45)

A general translational formula (for arbitrary inter-
action potential) connecting « and N, is not apparent
in the general integral relations defining & and NV,.

Consider now a general potential v(r) with Fourier
transform /(%) subject to the inequality of Eq. (30).
Suppose a parameter Ze can be chosen so that z(k) is
dominated by 4w (Ze)*k~2. Equation (37) then applies
with the inequality holding more or less strongly. In
this case, uniform limiting behavior occurs at sufficiently
high density.

A 735
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F1c. 1. Radial distribution function g(r).

To find a sufficient condition for associating uniform
behavior with low density let 4, denote the maximum
value of |%(k)|. Assume also that %(k) vanishes outside
of a spherical region in k space [4(k)=0, k> k;]. Equa-

tion (27) implies
1k Amph,) ~H2
a<l— [1—— {1—!— } :|k2dk. (46)
27%.J o n2k?
In the low-density limit, Eq. (46) reduces to
mhmk1 1 2m
AU 2n? itk 2

A sufficient condition for <1 in the low-density limit is

hmki®. 47)

Ik 32 (W2 2/ 2m) . (48)
Note also that Eq. (48) implies
lo(r)| < 4—Ie13hm< <= R (49)
(2m)® 3 3 om

These relations illustrate how low density and weak
interaction together produce a special case of the
uniform limit.

6. FIRST-ORDER CORRECTIONS IN
THE UNIFORM LIMIT

In the uniform limit, Abe’s form for the three-particle
distribution function [Eq. (20)] reduces to

PA(1,2,3)
=p(1—aG(512))(1—aG (s25) ) (1 —aG (s31))

XI:l—a2/G(S14)G(824)G(S34)d84+ .. :] (50)
The sequential relation

1—aG 12)—
¢ N—=2)ap®

/p(1,2,3)ds3 (51)

may be used to test the accuracy of Eq. (50) with the
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result that the relation fails by terms of order o? (the nential factor of Eq. (20) do not contribute to the

Kirkwood form gives an error term of order @). We term in a? in Eq. (50).
have verified that the neglected terms in the expo- Using $4(1,2,3), Eq. (13) is replaced by

v] Y- / G(15'=s)Y(s)is ~In{1-aG (5} |

= —a/G(]s’—sl )G(s’)v"y(s’)ds’—}—a/G(s”)G(| s"—s|)G(|s"—¢§'|)V'Y(s')ds'ds"+ - - - .

The corresponding replacement for Eq. (15) is

Fi(q) -q
O O N =z

_/q.q Fi(ld'—q|)F:1(¢)Z(¢)dg'+ - -

q2
Equation (53) yields
Fi(g)

Z(Q)=———,
(Q) 1—F1(‘])

Fs(q) Fi(q) (INT [ad Fi(q") q-q Fi(q)
Za(g)=— ' Fi(lq'—q|)—————dq'— (o —q))———d
©) >[/ (ld'—al) q / ; Fi(lq q|>1—~F1(q’) q

1=Fi(g) 1=Fip\2e/ L) ¢ 1—Fi()

These functions in Eq. (19) generate the mean kinetic energy per particle:

(KE) WGl [ ¢FeQ)
= a d
N (dr)pml / —Fyg)

2) 1—Fi(q) o 1—Fi(q)

In the &, S(k) notation, the first-order correction to the mean energy per particle is

SE 72 1 1
TW[E / 5 (S(k)~1)(1_s<k ) A—S(| K —k|))dkdk

azll/wdq_< 1 >3/q,qfﬂﬂpl(|q,_q[)Fl(q,)dq,dq]+_.

|

I

1
— | k- kK —U— 2(1—S(F — kK—k Kk’ .
/ s (SRS =S K kD) dk}

The zeroth-order S (%) of the Coulomb problem from Egs. (29) and (36) gives

0E /2 \¥1
== (2) 5[ catromna- ey ma— - e

(52)

(53)

(54)

(55)

(56)

- / (1+t~4)1/2(1—(1+¢—4)—1/2)2(1—(1+z’—4)—1/2)(1—(1+[t’—t]—4)—1/2)t-t'dt'dt} (57)

in Ry. The integrals in Eq. (57) have been evaluated The superscript 4 in Eq. (58) designates the correction

by numerical integration with the result

generated by the Abe form of the three-particle dis-

SE/N = (Z/x)\[1X7.6096— (1.8812—0.80614)] tribution function. While the correction is not large it

=0.028022* (58)
and

is essential to the interpretation of Eq. (59) as placing
an upper limit on the true energy at high density.
We may characterize the numerical value of the con-

E/N=—(0.8031/ r33/4)Z5/2+0.02802Z4—|—0(1',;3/4). (59) stant term in Eq. (59) as the best possible within the
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Tasre I. Numerical values of 8(p).

? 1 2 4 8 )
B(p) 0.909 1.241 1.406 1471 1.500

range of BDJ-type trial functions. With inclusion of the
remainder O(r**) Eq. (59) is an exact expectation
value leaving only the limitations of the BDJ trial
function to introduce error into the computed energy.
A Dbetter trial function may reduce-the coefficient of
the constant term and/or possibly generate a term
Clnz, in the energy (with C>0 so that C Inr;<0 for
7,<1).

At this point an informative comparison can be
made with results obtained by Girardeau’” and by Lieb
and Sakakura® in the high-density limit. The former,
using a pairing-type trial function, finds

(E/N)g=— (0.8031/74)Z52— 1 Iny,+0(r9). (60)

Notice that the logarithmic term raises the energy (since
7.<<1). Girardeau’s calculation is completed by a
demonstration that the leading nonpair corrections are
of higher order than the logarithmic. This appears to
establish the logarithmic term as the correct second
term in an exact formula for E/N. For sufficiently
small 7, our formula gives a lower energy than
Girardeau’s. Since our result is obtained by the ac-
curate evaluation of an expectation value it should lie
above the correct energy. There is a contradiction here
between two apparently rigorous procedures.
Lieb and Sakakura® obtain

(E/N)ps=— (0.8031/r34)Z5240.05972¢.  (61)

Again our energy is lower (a smaller constant term)
showing that the procedure used in Ref. 8 to evaluate
the energy is accurate only for the leading term in the
energy formula. '

7. VARIATIONAL FORMULATION OF THE
CHARGED-BOSON PROBLEM

A family of radial distribution functions
ga(s)=1—ae/a? (62)

are used to compute the expectation values of the
kinetic and potential energy operators. The normaliza-
tion condition of Eq. (10) requires

a=[3/4x (3/p)! 1.

In atomic units the mean potential energy per particle is
(PE)/N=—[B(p)/r:Jo® (64)
B(p)=32/p)!/L(3/p)I T, (65)

Numerical values of 8(p) appear in Table I.
For given p and sufficiently low density (r.>1) the
kinetic energy becomes negligible (even with a=1) and

(63)
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the minimum value of (H) with respect to a occurs at
a=1. It is clear that the best value of p is then a
monotonic increasing function of 7, so that p=o (a
rectangular distribution) is associated with 7,= oo,
Equation (64) and Table I give the proof. The limiting
value of 8, B(0)=1.5, falls short by 209, of the correct
value 1.792 derived from Wigner’s static body-centered
crystal model.** This discrepancy points to the need for
an oscillatory behavior of g(s)—1 for large 7, at low
densities. Preliminary studies have shown that great
care is needed in choosing oscillatory forms of g(s) to
avoid conflict with necessary conditions implied by the
definition [Eq. (2)] relating g(s) to a many-particle
state function. We believe that reasonable approxima-
tions to the monatonic functions g(s) defined by Eq.
(62) can be generated by many-particle trial functions
of the Jastrow type.

To compute the kinetic energy we employ the Wu-
Feenberg functional®

J=271—Jsa—J 2,

. [edgdy
J1=41r/ ———SZdS,
o ds ds

0 d ty 2
Joa=4r f g(—) sids,
0 ds

1
Jap=- / Ce(sm)— 1g 1) (1)

(66)

dY(s12) dY(s13)

ds1s

d513
X cos(12,13)ds.ds3,

in which s= (ap)“?r. One verifies easily that the re-
quirement that J be stationary with respect to varia-
tions in Y(s) yields Eq. (6) [with Y(s)=u(r)] as the
appropriate Euler-Lagrange equation. Also, if Y satis-
fies Eq. (6), J reduces to Ji. In atomic units [as in
Eq. (38)] the expectation value of the kinetic energy
per particle is

(KE) 1 (6)2/3 1

7'32(1” 3

(67)

J. extremum .

N 16\r
Any trial function Y(s) in J may be replaced by Y(s)
and v determined to give J an extreme value:
'Y=J1/J2, J=J12/Jz.

J2=J 2+ J 2, (68)

The BBGKY relation was first applied to a pure
state by Ryuzo Abe? in a study of the ground state of
liquid He*. Wu and Feenberg?® introduced the functional
J and found by numerical trials that the extreme value
is a maximum in physical problems. The proof that
Jextremum 15 @ maximum is trivial in the special case

14 E. P. Wigner, Trans. Faraday Soc. 34, 678 (1938).
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g(s)=1. We find

d 2
| Jos] é/gz(s)(——y) ds= Ja,.
ds

Consequently J, is positive and the extreme value in
Eq. (67) is 2 maximum. Spurious solutions may occur
using the homogeneous form of Eq. (68). These have
J1=0 and need not concern us.

A slight modification in notation proves helpful in
evaluating Jss. Let

dW (s)/ds=g(s)[dY(s)/ds],

and fix W(s) by requiring W (e )=0. This defines a
function which can be characterized in a qualitative
manner on the strength of Eq. (6) as generally resem-
bling g(s)—1. The integrals making up J now become

©1dgdW
]1=41r/ - ——s%s,
o gds ds

©1/7dW\?
]2a=47r/ —(———)ﬁds,
o g\ds

1
]2b=—/V1W(512)'V1W(Sls)[g(523)_ljds‘ldsi‘l'

a

(69)

(70)

(71)

The last integral can be expressed simply in terms of

LEE AND E. FEENBERG

the Fourier transforms of g—1 and W: S(g) and

R(g)= / eI (s)ds (72)

lead to

1 00
Tam— / CRQSO—11dg.  (73)

8. APPROXIMATE EVALUATION OF
THE KINETIC ENERGY

With g(s) given by Eq. (62) a suitable trial function
for W(s) is
W (s)= —ye =l (74)

The amplitude parameter vy disappears from the homo-
geneous form of J [Eq. (68)] leaving the scale factor z
as the only free parameter.

The function
n

K,,(a,z)=nz=:o ————~——(n+1+z)2+1/p (75)
occurs in both J; and J,. We find
Jl:hzad(ﬁ_l—l)(1/P)!Kp(ayz)7 (76)

Tra=4ma(p+1)(1/p) [k (e, 25)+ (22) 21171,

The function Jgp is evaluated in Appendix B. Explicit
forms are given for the special cases p=1 and 2 and
p>2. Explicit formulas for J at p=1,2, and p>2
follow :

p=1
J=32r"32{K (az)}Z/[SK( 2z)+ I S ] (77)
, ARG PO a1 21 Gt s(1)5)
p=
1\ 52 1 5/2
J=6ma*{ K2 (,2)} /|:aK2(a,ZZ)+<‘2’Z'> —(z(z—}—Z)) :l; (78)
p>2
J= (P+1)41r(3/41r)”3], Jl= a2{Km (ayz)}2 (79)
’ aK o (a,22)+1/(22)F

These functions vanish at 2=0 and z= « and attain
a single maximum at some intermediate value z,(a).
The same behavior is expected at p=4. Numerical

TABLE II. Values of z,, and associated numerical values of J/a!53.

p N e i1 0.2 0.4 0.6 0.8 1.0
1 2n 0.65 0.65 0.66 0.67 0.68 0.70
J/aM® 1432453 0.1024 0.3423 0.7168 1.256 2.065
2 Zm 0.60 0.60 0.60 0.60 0.60  0.60
J/a® 5895054 0.4163 1.379 2.874  5.055 8.644
4 2m 0.77 077 077 077 0.77  0.77
J/adR  12.5845% 0.8958 3.001 6.350 1144 20.90
©  Zm 1.02
T’ [l 0.6450

calculations verify this expectation. Plots of J/al/3
against z (for p=2) are exhibited in Fig. 2. Values of
Zn(e) and associated numerical results appear in
Table IT.

In the extreme case p>>2, the parameter p can be
determined as a function of z.(a), «, and 7,. First of
all an explicit formula for B(p) as a function of p can
be derived from!%:16

xl=[ (1 —2)mrx/(14x) sinzx J/2eA
A(x)= c1Xx— c3x3+ e

15 JTahnke-Emde-Lésch, Tables of Higher Functions (McGraw-
Hill Book Company, Inc., New York, 1960), 6th ed., p. 5, p. 298.

6 N. Nielsen, Handbuck der Theorie der Gammafunktion
(Teubner, Leipsig, 1906), p. 38.

(80)
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valid for x<<'1. We find

3 m?
B(i))=—(1——+~-), Pp>2. (81)
2\ 6p?

The total energy is now an explicit function of p: in
atomic units

N 4r? 2

6%

Minimum energy with respect to p and « is found at
a=1 with

Eo 3?]’ 3 1I'2 Ol”s
oy

7s

p= (2n%,/37")3=2.169r,"3 (83)
and has the value
E() 3 7['2 1
S
N 2 20 rs
(84)
3 1.574
- —Z _,,85/3 ’

Equations (81)-(83) are valid provided that Eq. (83)
determines p in agreement with the initial premise
$>>2. This requires 7,3>1 (in Bohr units).

The exact energy formula at low densities, incorpor-
ating the potential energy of the body-centered electron
lattice and the associated zero-point vibrational en-
ergy® is

E 1.792  2.65

N 7s

(85)

7302

Our formula [Eq. (84)] exhibits a certain family re-
semblance to Eq. (85); however, the differences are
important (209, deficiency in the potential energy and
75,18 instead of »,7%¢ in the vibrational energy) and
indicate the difficulty in generating a quantitative
description of the low-density system starting from the
BD] trial function.
p=4
207%3(%) lo?
O
% {Ki(e,2)}?
aK 4(e,22)+ (1/22)%4— (32/5V2x25712)1 (2)

with 7(z) defined and tabulated in Appendix B.

86)

9. EVALUATION OF THE ENERGY AT INTER-
MEDIATE AND LOW DENSITIES

Equations (64) and (67) give the total energy per

particle )
E 176\ 1 B(p)ats?
—-(5) e )
N o16\x/ rZlB 7

. value of a.

LLIQUID Ai739

F16. 2. Plots of
J /ol against z for
p=2. The maximum
value of J is attained

at 2=0.60 for each

The approximate procedure based on Egs. (62) and
(74) can be tested in the high-density region where the
energy is known accurately. In this region

J ext=2a?L(p) (88)
and hence minimum energy as a function of @ occurs at
a= (m/6)"*[168 (p)rs/SL(p) J*/* (89)
with the value
E/N)min=—A4 R
(E/N) (®)/r (90)

A(p)=4(x/6)°[168(p)/SL(p)]"8(p)-

Numerical results appear in Table III. For p=2, A(p)
exceeds the correct value 0.8031. This is possible be-
cause the approximate evaluation of Jey underestimates
the mean kinetic energy. The actual closeness to the
correct value offers support for the view that the
approximate procedure is at least moderately accurate
in the intermediate and near low-density range. Nu-
merical results over the range 0.01=r,<100 for p=1,
2, 4 and p>>2 are plotted in Fig. 3.

The use of a specific trial function W (s) in evaluating
Jext 18 an unnecessary approximation. We obtain a

-06~ .

o) b —— N

Z
¢ Z
s
5 5,
L 2F ———— p=i [
p=2
FYI| S p=4
e p»2
-L6F —-—-EQ.(85) T
1 1 1 L Il 1
0.0 0.03 Ql 03 | 3 10 30 100

fs

Fic. 3. Ground-state energies computed by the approximate
method. Values of #»34E/N and 7,E/N are shown over the ranges
0.01=7,=1 and 1=7,=100, respectively. The exact low-density
formula [Eq. (85)] is also plotted.
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T T
-08k T~ -
- -
- T
-04 o
_Lo-.
z
~
w z
g S
B -l2}- — — _ _ GIRARDEAU s
K K
p=2
7 pd
——EQ.89) ~
-16k -
) L 1 L 1 L
00l 003 . al 03 i 3 0 30 100

Ts

F1c. 4. Ground-state energies computed by the variation-
iteration procedure. Values of 7,#*E/N and r,E/N are shown over
the ranges 0.01=7,=<1 and 1=7,<100, respectively. The exact
low-density formula [Eq. (85)] is also plotted as well as
Girardeau’s results.

correct numerical evaluation of Jext(p,¢) by a variation-
iteration procedure applied to Eq. (6). The iteration
process begins with the starting approximation Y(s)
=Ing(s) and continues until two successive values of
Jexy differ by less than 0.29,. At each stage a best

TasLE III. Numerical values of L(p), a/7:*4, and 4 (p).

? 1 2 4
L(p) 1.432 5.895 12.58
afrdlt 1.231 0.5380 0.3347
A(p) 0.7790 0.8072 0.7811

linear combination of all available successive approxi-
mations is determined by making the associated J as
large as possible. Numerical results appear in Tables IV
and V. Figure 4 exhibits the results of these computa-
tions. Points computed by Girardeau are also shown as
well as the exact low-density behavior [Eq. (85)].

TaABLE IV. a/r8* and —r34E/N for r.<1 by
the variation-iteration procedure.

? 2 4 Exact
afrdt 0.503623%2 0.28782%2 0.84562°%2
—rSRE/N 0.7897Z572 0.7427252 0.8031Z25/2

Our energies fall below those computed by Girardeau.
The comparison is between ‘‘expectation values” ob-
tained from nearly optimum BDJ-type trial functions

00, t2 1 1 51/2(1_5)—3/4
- _— - JE— 2 3 1y — 1 — e
fo [1 (1+ﬁ>1/2]m /; di=(1/252)B(3,2)=T%(3)/124/7=0.6180248 - - ,

b (+em

D. K. LEE AND E. FEENBERG

TABLE V. @ and —E/N for intermediate density by the
variation-iteration procedure (Z=1).

p=2 p=4 Girardeau

7s a —E/N a —E/N —E/N
0.01 0.016 25.0 24.6
0.03 0.036 11.0 10.5
0.10 0.089 4.44 0.052 4.17 4.05
0.30 0.20 1.94 0.12 1.83 1.65
1.0 0.46 0.776 0.29 0.738 0.582
3.0 0.83 0.327 0.58 0.319 0.211

10.0 1.00 0.115 0.93 0.120 0.0666

30.0 1.00 0.0404 1.00 0.0445

100.0 1.00 0.0123 1.00 0.0138

and expectation values with respect to the pair-type
trial function of Girardeau. At high densities the quotes
on “‘expectation values” should be omitted [as is clear
from the discussion following Eq. (59)]. We hesitate
to draw a strong conclusion from the apparent su-
periority of our method because the use of px(1,2,3) in
evaluating Jex; means that our computed energies are
not true expectation values (except at high densities).
Nevertheless the behavior at very high and very low
densities is consistent with the statement that the use
of px(1,2,3) in evaluating Jex in conjunction with a
family of monatonic trial function for g(r) does not
falsify the interpretation of our computed energy as an
upper limit on the true eigenvalue (over the entire
density range).
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APPENDIX A: EVALUATION OF INTEGRALS
OCCURING IN SEC. 5

The integrals in Egs. (37)-(38) are readily evaluated
with the aid of an identity in the theory of beta

functions!7:
e (-6t B(x,y)
f dim (A1)
o (atg)=tv (1+a)*av
With the change of variable
g=2/ (1
the integrals in Egs. (37)-(38) reduce to
(A2)

17 W. Magnus and F. Oberhettinger, Formulas and Theorems for Mathematical Physics (Chelsea Publishing Company, New York,

1949), p. 4.
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gra—gn,

tZ

[T Tasmeat [
0 (A4-)r2 2/0 (148

0 E—l/2 (1 E)—-ll4
[Tl S
0 2 0

dE=
1+
Note that suitable changes of variable and/or integra-
tions by parts reduce these integrals to those already
evaluated by Foldy [Egs. (A2) and (A3a)], Lieb and
Sakakura [Eq. (A3a)], and Girardeau [Eqs. (A3a)
and (A3b)].

t2

]

APPENDIX B
Evaluation of Jo, Using Egs. (72) and (74)

2
2(34-1)8

1 1
J o= rzza[— + +
2 z(z+1)?

3
1| @
z(z4+1)* z(z+1)8
p=2
Taop=— 61232 [ 5 (s-+2) 2. (B2)
p>2

The substitution

d Zl/p s
_— —z(s/a)P,__) ____6(21/1;___ 1)
ds a a

(B3)

is a good approximation for large values of p. This
yields

a \% !
To— ——81r2<—> / A1 2y )y
e/ )4
(B4)
O
— ——a.
4

p=4
The Fourier form [Eq. (73)] is convenient in this
case, but must be implemented by evaluation of the

TaBLE BI. Numerical values of 74(g).

q Egs. (BS), (B6) Eq. (B8)
2 0.1826 0.1861
3 0.8699X 10! 0.8634X 107!
4 0.2053X 10! 0.2017X 1071
5 —0.7118%X 1072 —0.7198 X102
6 —0.9023 X102 —0.9019X102
7 —0.3140X 1072 —0.3130X 102
8 0.5628 X103 0.5655X 103
9 0.9547X1073 0.9545X 1073
10 0.2536X 103 0.2532X 1072
11 —0.1141X1073 —0.1141 X103
12 —0.8904 10 —0.8901 10
13 —0.2158 X105 —0.2157X108
14 0.1704X10™* 0.1697X 10~

AT741

di=(1/2°")B(3,1)=T*(3)/5v/7=0.1694426- - - , (A3a)

(1/252) B (%,3)=T2(3)/+/r=0.8472130- - (A3b)

Fourier transforms of e==*. Let

1
n4(q)=— / el xg='dx
4

1 0
= / 'z sin(gx)dx
qJ o

£ ol 1 )"

=33 () — (%) (),

137

13
(@) =14—~ +———— 84
n16(q) 5'494 9'449

1 15 159

M@ =g~ =g
T T

8

1
4
(BS)

(B6)

The useful range of the power series expansion is
limited by the accuracy with which the factorial co-
efficients (3)! and (2)! are known. With the factorials
given to nine significant figures!® the power series is
useful up to ¢g=13. (See Table BI.) The error begins to
be considerable at ¢g=14. A useful asymptotic formula
can be derived by writing

1 00
qna (q) = 2—/ e"“‘“’"‘xdx . (B7)

12

The path of integration can be displaced parallel to the
real axis until points of maximum amplitude and of
stationary phase coincide. A Gaussian-type approxima-
tion to the behavior of the integrand in the neighborhood
of the points of maximum amplitude then yields ap-
proximate evaluation of the integral good for suffi-
ciently large values of ¢ (¢>2). The derivation of the
asymptotic formula is somewhat lengthy and here we
give only the result:

(m/6)2
q

5 1/2
2304(q/32)4’3:|

71(g)=2 5—24(q/32)4/3[1+

In Table BI numerical results for 74(g) computed using
Egs. (B5) and (B6) are compared with the asymptotic
values [Eq. (B8)].
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TaBLE BIL 7(z).»

z 0.5 0.6 0.7 0.8 0.9 1.0
I(z) 0.09269 0.1098 0.1263 0.1419 0.1569 0.1715

a The second form of the integral defining I (2) suggests the approximate
relation I (2)=<26/61 (1) for |z—1|<<1. In fact, the relation is still moderately
good at z=0.5.

Equations (63), (73), and (74) combine to yield

24a
= 1 (2)

I

I(s)= / (/) (@) (BY)
0

0

=g56 | x4l (x/712)n4(3"5%)dx.

0

Numerical results for I(z) are listed in Table BII.

APPENDIX C

Relation between 39 ® and 8S(k) in the
Uniform Limit

The freedom in S () needed to derive Eq. (28) follows
from the direct connection between S(%) and the many-
particle trial function V. We are not postulating an
arbitrary liquid-structure function, but one subject to
all the constraints implicit in the connection with the
Jastrow-type trial function from which the analysis
starts. Thus, with a1, Egs. (14) and (15) yield

aF(q)
L\? refveF (q) (0
wo=o=o(; ) [T o
The variation 8S (k) [or 8F (¢)] implies
1\3 1 e'vs5F(q)
5‘“(”)=5‘y(5)~a(;> /m‘iq,
(C2)

WbF () =[1—F(g) T f e —

D. K. LEE AND E.
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and
OV B=3W,B > 6U(rs).

i<j

(C3)

We may start with given U(r) (assumed to possess
a Fourier transform) and limit §U(r) to functions
possessing a Fourier transform. Equation (C2) deter-
mines an allowed class of variations 65 (k). This class is
obviously sufficiently wide to permit the statement of
Eq. (29) as a consequence of Eq. (28).

APPENDIX D

Evaluation of E, (KE)/(PE), and « for the
High-Density Charged-Boson System

Equation (23) reduces to
E_ oM P
7 /

N 16mw®mJo 1—F (q)

— (ap)'P®

Ze)?

f F(g)dg. (D1)
0

™

Minimum £ with respect to « is found at

16w (Ze)*m ¢*F*(q)
i [rou ) [ =La). oo
S K% o 1—F(q)
The resulting formula for £ is
E 4 16w (Ze)*my1/4
—— | = |
N 5 Sh?
0 5/4 0 q4F2(q) 1/4
X [rou] /][ Fta] @9
0 o 1=F(q)

and Eq. (41) follows immediately.

The optimum choice of F(q) as defined by Eqs. (24)
and (29) now reduces Eq. (D3) to Eq. (38). Under the
same condition the formula for @ [Eq. (D2)] reduces
to an identity leaving Eq. (37) to determine a. This
verification demonstrates the consistency of the two
procedures for proving Eq. (41). Notice however that
the second procedure [varying « for given and fixed
F(q)] is more general.



