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The maximum deviation of the radial distribution function g(r) from its asymptotic value, g(~) =1, is
used as an expansion parameter in calculating the properties of a degenerate boson system. The uniform
limit, defined by the condition 1—g(0)«1, holds at low densities under appropriate constraints on the
Fourier transforms of the interaction potential and also at high densities for the charged-boson system. In
the uniform limit a procedure based on (1) a Jastrow-type trial function, (2) the Wu-Feenberg functional
for the kinetic energy, (3) the Kirkwood superposition approximation, or the more accurate Abe form for
the three-particle distribution function, yields the Bogoliubov formulas for the ground-state energy and the
excitation energies of a degenerate or nearly degenerate boson system. Results for the ground state of the
high-density charged-boson system include

(KE) 1 (PE)
E 5 E+"'

E 0,8031
r 3/4

Numerical results are also computed at intermediate and moderately low densities (0.01 r, ~100).

1. INTRODUCTION

w E study a system of E bosons confined within a
cubical box of volume Q. The particles interact

in pairs through radial potentials v(r;, ) Age.neral con-
straint on v(r) develops out of the analysis, but for the
moment we require only that v(r) possess a well-defined
Fourier transform. The Yukawa potential Uoe ""/(r/b)
is a possible form which includes the Coulomb inter-
action as a special case (Usb = e', b -+~).

The present study yields a simple derivation in con-
figuration space of Bogoliubov's formulas for the
ground-state energy and the excitation energies of a
degenerate or nearly degenerate boson gas. Some re-
sults going beyond the Bogoliubov approximation are
also given. The essential novel points are:

(i) use of the maximum deviation of the radial dis-
tribution function from its asymptotic value as a
physically meaningful expansion parameter,

(ii) the explicit formulation of the uniform limit
(defined in Sec. 4),

(iii) proof of the relation (KE)= ——',(PE) for the
ground state of the charged-boson system at high
density,

(iv) evaluation of the kinetic, potential, and total
energies of a charged-boson gas at intermediate and low
densities.

One way or another, the treatment is related to earlier
studies by Bijl,' Bogoliubov and Zubarev, ' Abe, '
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tional Science Foundation Grant G-22296.
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Gaskell, Gross, ' I'oldy, ' Girardeau, Lieb and Saka-
kura, and Wu and Feenberg. '

+oP=g exp-,'W(r;t)
—1/2

g exp'1l(r„„)dvis tr . .(.1. )

This function can describe a wide variety of physical
states Ldepending on the choice of correlation function
'll, (r)7 all the way from the short-range order of a
quantum liquid (as in liquid He) to the long-range
order of a well-defined space lattice (as in the electron
system at sufficiently low density). We proceed to the
basic definitions and relations needed to complete the
calculation of the mean kinetic and potential energies.

Radi a/ Distribution Fumctioe

(2)

Three-Particle Di stri buHorI, Function

p(1,2,3)=X(.V—1)(.V—2) %P'dr4s. ..iv. (3)

4 T. Gaskell, Proc. Phys. Soc. (London) 80, 1091 (1962).' E. P. Gross, Ann. Phys. (N. Y.) 20, 44 (1962).
6 L. L. Foldy, Phys. Rev. 124, 649 (1961).' M. Girardeau, Phys. Rev. 127, 1809 (1962).
e E. H. Lieb and A. Y. Sakakura, Phys. Rev. 133, A899 (1964).' F. Y. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961).

2. BASIC RELATIONS

To estimate the expectation value of the Hamiltonian
operator in the ground state we introduce a Bijl-
Dingle-Jastrow (HD J) type correlated trial function
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Equations (A3a) and (A3b) verify the surmise that
the second integral in Eq. (38) is five times as large as
the first one. This surmise is based on Eq. (23) giving
E as a function of a following the replacement of
h(nlspi"g) by 4a(Ze)'(np) '"q '. With (KE) propor-
tional to n'" and (PE) to cr"' the condition for minimum

energy with respect to n has the consequence

I.OC

0.96

0,94

(KE)= —-', (PE) . (41)
0.92

The derivation of Eq. (41) calls for a brief comment.
The function F(q) is treated as given and only rr is
varied. Observe the contrast with Eq. (28) where a
does not appear explicitly and F(r1)= 1—S(k) is varied.
The explicit development of this derivation Land the
proof that it yields a formula for 0. consistent with
Eqs. (37)j appears in Appendix D. Final results for n
and E are

~=0.8456Z»2r, 3~4,

8/1V = —(0.8031Z"'/r, "') .

(42)

(43)

The same value is given by Lieb and Sakakura. '
Girardeau~ gives 0.8037 because of small errors in the
evaluation of the integrals occurring in his calculation.

With Z=1, r, &—,', Bohr units appears to be safely
within the range of useful accuracy of Eqs. (29), (33),
(42), and (43) and the corresponding Bogoliubov and
pair approximations.

With 5(k) known as an explicit function of k, the
inverse Fourier transform of Eq. (24) serves as an
integral representation for the radial distribution func-
tion g(r) Plots of g. (r) against r, computed by numerical
integration, appear in Fig. 1 for r, =0.01, 0.03, and 0.06
Bohr units.

We have not used the notion of single-particle orbital.
However, the occupation number Eo of the ground-
state orbital in the problem of the charged-boson
system is related to the density through Foldy's
equation'

(cV Np) /1V=0.2114Zs "—r s".

Equations (37) and (39) yield immediately the
connection

The exact value of the numerical coefficient in Eq. (43)
1s

(8(12)'"/Sap~')I'(s) =0.8030786 . . .

Q90

0.00
I

0.05
I
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0.20
I

Q,25

FIG. 1. Radial distribution function g(r)

To find a sufhcient condition for associating uniform
behavior with low density let h denote the maximum
value of

~
k(k) ~. Assume also that h(k) vanishes outside

of a spherical region in k space [h(k) =0, k) kr7. Equa-
tion (27) implies

1 ky- 4mph. -»2-
1— 1+

52k2
k'dk (46)n(

2T p

In the low-density limit, Eq. (46) reduces to

mhmk g 1 28$
n& h kg'.

2x' 5'kg'
(47)

Note also that Eq. (48) implies

4x 1 5'kg'—kisk.«-
(2a.)' 3 3 2m

(49)

These relations illustrate how low density and weak.
interaction together produce a special case of the
uniform limit.

6. FIRST-ORDER CORRECTIONS IN
THE UNIFORM LIMIT

In the uniform limit, Abe's form for the three-particle
distribution function LEq. (20)j reduces to

A sufhcient condition for 0(/1 in the low-density limit is

kmkis«27r'(k'k is/2m) .

(1V—1Vp)/1V=n/4, n«1. (45) p~ (1,2,3)

A general translational formula (for arbitrary inter-
action potential) connecting n and 1Vp is not apparent
in the general integral relations defining n and Xp.

Consider now a general potential v(r) with Fourier
transform h(k) subject to the inequality of Eq. (30).
Suppose a parameter Ze can be chosen so that k(k) is
dominated by 4a. (Ze)'k '. Equation (37) then applies
with the inequality holding more or less strongly. In
this case, uniform limiting behavior occurs a,t suKciently
high density.

=p'(1 —nG (sip) )(1—nG (sss) )(1—nG (ssi) )

X 1—n' G(si4)G (ss4) G (ss4) ds4+ . (50)

The sequential rela, tion

1—nG(sip) = p(1,2,3)ds,
( 'V 2)nps. — (51)

may be used to test the accuracy of Eq. (50) with the
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TABLE I. Numerical values of P (p).

p 1 2

P (p) 0.909 1.241 1.406 1.471 1.500

range of BDJ-type trial functions. With inclusion of the
remainder O(r,@') Eq. (59) is an exact expectation
value leaving only the limitations of the BDJ trial
function to introduce error into the computed energy.
A better trial function may reduce the coefFicient of
the constant term and/or possibly generate a term
C lnr, in the energy (with C)0 so that C lnr, (0 for
r, &1).

At this point an informative comparison can be
made with results obtained by Girardeau' and by Lieb
and Sakakura in the high-density limit. The former,
using a pairing-type trial function, finds

(E/N)g= —(0.8031/r, @ )Z'~' ——lnr, +O(r ) (60)

the minimum value of (H) with respect to a occurs at
rr=1. It is clear that the best value of p is then a
monotonic increasing function of r, so that p= ~ (a
rectangular distribution) is associated with r„=~.
Equation (64) and Table I give the proof. The limiting
value of P, P(to) = 1.5, falls short by 20% of the correct
value 1.792 derived from Wigner's static body-centered
crystal model. "This discrepancy points to the need for
an oscillatory behavior of g(s) —1 for large r, at low
densities. Preliminary studies have shown that great
care is needed in choosing oscillatory forms of g(s) to
avoid conflict with necessary conditions implied by the
definition LEq. (2)) relating g(s) to a many-particle
state function. We believe that reasonable approxima-
tions to the monatonic functions g(s) defined by Eq.
(62) can be generated by many-particle trial functions
of the Jastrow type.

To compute the kinetic energy we employ the Wu-
Feenberg functional'

Notice that the logarithmic term raises the energy (since
r,«1). Girard eau's calculation is completed by a
demonstration that the leading nonpair corrections are
of higher order than the logarithmic. This appears to
establish the logarithmic term as the correct second
term in an exact formula for E/X. For suKciently
small r, our formula gives a lower energy than
Girardeau's. Since our result is obtained by the ac-
curate evaluation of an expectation value it should lie
above the correct energy. There is a contradiction here
between two apparently rigorous procedures.

I.ieb and Sakakura' obtain

(E//&) J.s= —(0.8031/r, "')Z'~'+0.0597Z'. (61)

J=2Ji—J2,—J2g )

"dg d'JJ
J~——4x — s'ds,

p ds ds

J,.=4'
co (drJ\ 2

g( s'ds,
ds

1
J2g=-

CE

Xcos(12,13)dssds„

d'JJ (s ) d'JJ (s )
Lg( )—1]g( )g(

dsg2 dsy3

(66)

Again our energy is lower (a smaller constant term)
showing that the procedure used in Ref. 8 to evaluate
the energy is accurate only for the leading term in the
energy formula.

V. VARIATIONAL FORMULATION OF THE
CHARGED-BOSON PROBLEM

in which s= (harp)'~sr. One verifies easily that the re-
quirement that J be stationary with respect to varia-
tions in 'JJ(s) yields Eq. (6) Lwith 'JJ(s) =n(r) j as the
appropriate Euler-Lagrange equation. Also, if JJ satis-
fies Eq. (6), J reduces to Ji. In atomic units )as in

Eq. (38)$ the expectation value of the kinetic energy
per particle is

A family of radial distribution functions

gB(s) =1 ne &'ie&"— (62)

(KE) 1 jr6i'i' 1
Jextremum

164.I r 2n"2..

(67)

are used to compute the expectation values of the
kinetic and potential energy operators. The normaliza-
tion condition of Eq. (10) requires

Any trial function 'JJ (s) in J may be replaced by 'Jl (s)
and y determined to give J an extreme value:

~= L3/4~(3/p) '3'". (63) V=A/A& A=Au+As& &=A'/A. (68)

In atomic units the mean potential energy per particle is

(PE)/Ar = D3(P)/r, )n'—12

P(p) = 0(2/p) l/L(3/p)! 7"
(64)

(65)

Numerical values of P(p) appear in Table I.
For given p and suKciently low density (r,)&1) the

kinetic energy becomes negligible (even with rr = 1) and

The BHGKY relation was first applied to a pure
state by Ryuzo Abe' in a study of the ground state of
liquid He'. Wu and I'eenberg' introduced the functional
J and found by numerical trials that the extreme value
is a maximum in physical problems. The proof that
J,„t„„ is a maximum is trivial in the special case

&4 E. p. JVjgner& Trans. Faraday Soc. 84, 678 (IN8).
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g(s)~1. We find

(d(g 2

g'(s)~ (69)

lead to

R(q) = e'&'W(s)ds

the Fourier transforms of g
—1 and W: 5(q) and

(72)

00

q'R'(q) /tS(q) 1jd—q.
Consequently J2 is positive and the extreme value in
Eq. (67) is a maximum. Spurious solutions may occur
using the homogeneous form of Eq. (68). These have
J~=0 and need not concern us.

A slight modi6cation in notation proves helpful in
evaluating. J2p. Let

(73)J2g=
2xo. o

8. APPROXIMATE EVALUATION OF
THE KINETIC ENERGY

dW(s)/ds = g (s)Ld'll (s)/ds),
(74)W (s) = —ye

—'/'/~&"

With g(s) given by Eq. (62) a suitable trial function

(70)
for W (s) is

and fix W(s) by requiring W(~) =0. This defines a
function which can be characterized in a qualitative
manner on the strength of Eq. (6) as generally resem-
bling g(s) —1.The integrals making up J now become

The amplitude parameter y disappears from the homo-
geneous form of J LEq. (68)) leaving the scale factor s
as the only free parameter.

The function

"1dgd8'
s'ds,

g 8$ ds

"1(dW)2
i

s'ds,
g& ds)

(71)

00 A

&n(n S)=E
„~ (25+ 1+s)2+i/ x

occurs in both J~ and J2,. We 6nd

J,=4~sac(p+1) (1/P)!E,(,s),
J2.=4«'~(p+ 1) (1/p)!LnE'n(n, 2S)+ (2S) ' '"3

(75)

(76)

J25 — QiW(si2) ' QIW(sis)Lg(s23) —17dssds3.

The last integral can be expressed simply in terms of

The function J~~ is evaluated in Appendix B. Explicit
forms are given for the special cases p=1 and 2 and
p))2. Explicit formulas for J at p=1, 2, and p))2
follow:

J=322rs/sn2(E'i(n, s)) 2 8nE', (n,2s) y
s(s+1) s(s+1)' s(s+1) s(s+1)'

(77)

p))Z

J'= 62rn2(E 2(n, s) )2
1 ps/2 ( 1 ps/2-

!«2(n 2S)+ —
I (78)

n2(E„(n,s) }2J'= (p+1)42r(3/42r)'/3J', J'=
nE„(n,2s)+1/(2s)'

(79)

These functions vanish at 2 =0 and 2:= ~ and attain
a single maximum at some intermediate value s (n).
The same behavior is expected at p=4. Numerical

P Q n

1 Z223

J/n'/3

2 Z23s

J/nl/3

4 zm
~/~»3

Z223

J//~l/3

0.65
1.432»3
0.60
5.895o.'/'

0.77
12.58~5»

0.2

0.65
0.1024
0.60
0.4163
0.77
0.8958

0.4

0.66
0.3423
0.60
1.379
0.77
3,001

0.6

0.67
0.7168
0.60
2.874
0.77
6.350

0.8

0.68
1.256
0.60
5.055
0.77

11.44

1,0

0.70
2.065
0.60
8.644
0.77

20.90
1.02
0.6450

TABLE II. Values of 2 and associated numerical values of J/n'/'.

x!=L(1—x)2rx/(1+x) sin2rxf'"e & &

A(x) = cix—csx'+. . . (80)

'~ Jahnke-Emde-Losch, Tables of Higher Functions (Mcoraw-
Hill Book Company, Inc. , New York, 1960), 6th ed. , p. 5, p. 298."N. Nielsen, IImdbuch der Theoric der Gammafunktion
(Teubner, I.eipsig, 1906), p. 38.

calculations verify this expectation. Plots of J/a"'
against s (for p=2) are exhibited in Fig. 2. Values of
s„(n) and associated numerical results appear in
Table lI.

In the extreme case p))2, the parameter P can be
determined as a function of z„,(a), n, and r, First of.
all an explicit formula for P(p) as a function of p can
be derived from"'
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valid for x(&'1. We find 0 I I I I ~ t ~ I

3( s.
~(p) =-I 1— +"

[
p»2

6ps ) '

Ep 3pJ 3 s )n i

1—
/tr 4r s 2 6p') r,

(82)

Minimum energy with respect to p and n is found at
n= 1 with

Fn. 2. Plots of

The total energy is now an explicit function of p: in
atomic units value of J is attained

at @=0.60 for each
. value of e.

0 I

0.0 0.2 ' 0,4 0.6

«x I.O

o(*0.8

a'-0.6

cr 0.4

o( 0.2
s I

0.8 I,O

p = (2s'r, /3 J')"'= 2.169r,'"
and has the value

(83)
The approximate procedure based on Eqs. (62) and

(74) can be tested in the high-density region where the
energy is known accurately. In this region

J.„i—n'L(p) (88)

3 1.574
84 and hence minimum energy as a function of n occurs a,t

n = (rr/6)'i'L16P (P)r,/5L (P)gsi4 (89)

Equations (81)—(83) are valid provided that Eq. (83)
determines p in agreement with the initial premise
p))2. This requires r,&)1 (in Bohr units).

The exact energy formula at low densities, incorpor-
ating the potential energy of the body-centered electron
lattice and the associated zero-point vibrational en-
ergy6 t14 js

p 3/2
(85)

Our formula t Eq. (84)) exhibits a certain family re-
semblance to Eq. (85); however, the differences are
important (20%%uq deficiency in the potential energy and
r '" instead of r 'i' in the vibrational energy) and
indicate the difhculty in generating a quantitative
description of the low-density system starting from the
BDJ trial function.

with the value

(E/1V); = —2 (p)/r, "4

~(p) = l( /6)"'p6I (p)/5L(p) j'"t (p).
(90)

Numerical results appear in Table III. For p= 2, A (p)
exceeds the correct value 0.8031. This is possible be-
cause the approximate evaluation of J, ~ underestimates
the mean kinetic energy. The actual closeness to the
correct value oRers support for the view that the
approximate procedure is at least moderately accurate
in the intermediate and near low-density range. Nu-
merical results over the range 0.01&r,&100 for p=1,
2, 4 and p))2 are plotted in Fig. 3.

The use of a specific trial function W(s) in evaluating
J,„~ is an unnecessary approximation. We obtain a

-06-

20rr'" (-')!n'

L
4 (

s ) }ji/3

(E4(n, s) )'
X (86)

nit 4(n, 2s)+ (1/2s)" —(32/5v2s's'")1(s)

with I(s) defined and tabulated in Appendix B.

08

- I.O-
LLJ

Ct

Vl

-I,4—

p-I

p "2

p=4.

9. EVALUATION OF THE ENERGY AT INTER-
MEDIATE AND LOW DENSITIES

-I.6-
—"—.- p)&2

—-—Ea.(es)

O.OI 0.05 Ql 03
I I

IO 30 IOO

Equations (64) and (67) give the total energy per
particle

~(p) "'
(87)

I"n. 3. Ground-state energies computed by the approximate
method. Values of r,+'E/N and r,I"./X are shown over the ranges
0.01~r,~1 and 1~r.~100, respectively. The exact low-density
formula LEq. (85)g is also plotted.
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-0,6-
TAsLE V. n and E/—E for intermediate density by the

variation-iteration procedure (Z= 1).

-0.8-

-l.o—
z'
LIJ

& -IZ
L

—l.4—

- l.6—

————GIRARDEAU

pz P

——----- p=4

—-—EQ.(85)

0.01
0.03
0.10
0.30
1.0
3.0

10.0
30.0

1'00.0

0.016
0.036
0.089
0.20
0.46
0.83
1.00
1.00
1.00

P=2
E/E—

25.0
11.0
4.44
1.94
0.776
0.327
0.115
0.0404
0.0123

p=4
—E/E

0.052 4.17
0.12 1.83
0,29 0.738
0.58 0.319
0.93 0.120
1.00 0.0445
1.00 0.0138

Girardeau
E/N—

24.6
10.5
4.05
1.65
0.582
0.211
0.0666

I I I

O.OI Oa3 . ai Oa
I I

IO 30 Ioo

FIG. 4. Ground-state energies computed by the variation-
iteration procedure. Values of r,'/4E/E and r,E/X are shown over
the ranges 0.01&r,&1 and 1~r,~100, respectively. The exact
low-density formula LEq. (85)] is also plotted as well as
Girardeau's results.

TAnLz III. Numerical values of l.(p), n/r, '/', and A (p).

p
L (p)
o/r 3/4

A (p)

1
1.432
1.231
0.7790

2
5.895
0.5380
0.8072

12.58
0.3347
0.7811

linear combination of all available successive approxi-
mations is determined by making the associated J as
large as possible. Numerical results appear in Tables IV
and V. Figure 4 exhibits the results of these computa-
tions. Points computed by Girardeau are also shown as
well as the exact low-density behavior LEq. (85)j.

TABLE IV. u/r, '~~ and r,'/ E/N for r,&&1 b—y
the variation-iteration procedure.

Exact

correct numerical evaluation of J, /(p, u) by a variation-
iteration procedure applied to Eq. (6). The iteration
process begins with the starting approximation 'tl(s)
=lng(s) a,nd continues until two successive values of
J,„/ differ by less than 0.2%. At each stage a best

and expectation values with respect to the pair-type
trial function of Girardeau. At high densities the quotes
on "expectation values" should be omitted Las is clear
from the discussion following Eq. (59)$. We hesitate
to draw a strong conclusion from the apparent su-
periority of our method because the use of pic(1,2,3) in
evaluating J, ~ means that our computed energies are
not true expectation values (except at high densities).
Nevertheless the behavior at very high and very low
densities is consistent with the statement that the use
of p/r(1, 2,3) in evaluating J,„, in conjunction with a
family of monatonic trial function for g(r) does not
falsify the interpretation of our computed energy as an
upper limit on the true eigenvalue (over the entire
density range).
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APPENDIX A: EVALUATION OF INTEGRALS
OCCURING IN SEC. 5

The integrals in Eqs. (37)—(38) are readily evaluated
with the aid of an identity in the theory of beta
functions'~:

n/r '/4

—r.»4 E//V
0.5036Z+'
0.7897z»2

0.2878Z»2

0.7427Z'/'
0.8456Z'/'

0.8031Z'»
(A1)

With the change of variable
Our energies fall below those computed by Girardeau.

~
—ts/ (1+t4) 1/2

The comparison is between "expectation values" ob-
tained from nearly optimum BDJ-type trial functions the integrals in Eqs. (37)—(38) reduce to

$2

(1+t4)l/2

r Pl/2(1 g)
—3/4

Pdt= dt = (1—/2'/')8 (-' -') = I'(-')/12+m= 0.6180248
2 s (1+ )'" (A2)

'7 W. Magnus and F. Oberhettinger, Forr//Iulas and Theorems for Jtf/Iathematical Physics (Chelsea Publishing Company, Net York,
1949), p. 4.
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= (1/2'/')8 (-' -') =I"(-o)/5+or =0 1694426, (A31— (1+/4)'/oPdt=- d = 1 2'
o — (I+t')'" 2 o

t2

1—
(1+P) 1/2

d = (1/2"')8 (-' —') = I'(-')/Qs-= 0 8472130
(1+~)'/'

(A3b)

Note that suitable changes of variabriable and, or integra-
hese inte rais to those alreadytions by parts reduce these in g d

evaluated by Foldy [Eqs. ( )s. A2) and (A3a, se an
Sakakura [Eq. (A3a)], and Girardeau Eqs. a
and (A3b)].

APPENDIX B

Evaluation of J2~ Us&ng Egs. ,. ('72) and (74)

1 1 2

Fourier transforms of e *'. Let

g4(q) =—e'4'*e- dx
4x

00

e *'x sin(qx)dx
g 0

1 (—1)" 2/4 —1~

)I
q'"

4 =o (2/4+1)! 4

o(=4) n4. (q) '(—')-V-«(q) (BS)

s(s+1)4 s(s+1)'

J oo =- —6so/'s'a[s (s+2)]—'".

(B1)

(B2)

13 137
4.(q) =1+—-q'+ ——-q'+

5.4' 9.44'

15 1 59

3! 7!4 11!44
4o(q) =—q'+ —-q'+ —-q"+

(B6)

The substitution

s'/~ s——e """—+ 5 s'/&—1
ds 8 C

eKcients ~ . an " the power series is

be considerable at q= 14. use u
can be derived by writing

(B3)

is a good approximation for large vvalues of . . This
yields

4 1

—8m' e
—' '~'&'—&'&""pdp,J2b ~—

s'/&J
1

qg4(q) =— e-"+'o*xdx.
2z .QQ

(B7)
(B4)

Eq. (B8)Eqs. (SS), (S6)

0.1826
0.8699X10 '
0.2053X10 '

—0.7118X 10~
—0.9023X10~
—0.3140X10~

0.5628X io '
0.9547X10 '
0.2536X10 '

—0.1141X10 '
—0.8904X 10~
—0 2158X10 '

0 1704X10~

0.1861
0.8634X10 '
O.2O17X 1O-1

—0.7198X10 '
—0.9019X10~
—0.3130X10~

0.5655X10 '
0.9545X10 3

0.2532X io 3

—0.1141X10 3

—0.8901X10~
—0.2157Xio ~

0.1697X10~

2
3
4
5
6
7
8
9

10
11
12
13
14

—1/2
m; 6,'" 5

&/ ) 1+
2304(,/32) ~

g

(B8)Xsin 24V3 (q/32)4/'
4608 q

In Table BI numerical results for g4 q computed using
Eqs. (BS) and (B6) are compared with the asymptotic
values [Eq. (B8)].

9m

The ath of integration can be displa paced arallel to the
~ ——g

f maximum amplitude and ofreal axis until points o maxim
d . A Gaussian-type approxima-stationary phase coinci e.

r oodthe behavior of the integrand in the neigh or oo
l'tud' th'n "ldh poi of

'
p icase, but mus e i p

roximate eva uation o
&2 . The derivation o eciently large values of q q)TmLz BI.Numerical values of g4qq& ~

f
'

mewhat lengthy and here weasymptotic formu a is som
give only the result:
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TAaLz BII.I(s)."

0,8 0.90.6 0.7s 0.5

1(~) 0 09269 0.1098 0.1263

1.0

0.1715

d at s —0.$.

o ieldq
'

3 73), an d (74) combine to yieEquations (6 ), (

1(s)
(3) )s4/s

x' '(x/s)/4)4/4(x)dxI(s)= )/4 x (139)

=s'/' x4q42(x/s)/"))//4(si/'x)dx.
0

II.listed in Table BI .u
'

ults for I(s) are is eNumerical resu s

APPENDIX C

ween 5%'P and SS(k) in theRelation bet

imateests the approximg () ggond form of the '
1 n es s

l tio= »6E(t) fo )
—Srelation E (s)~z»6

goo

and
seP=-,'eP P b~(r;;).

s&j
(C3)

APPENDIX D

E KE (PE), and n for the
dBoo S tH' h-Density Charge-Hig-

Equation (23) reduces to

g2 2/3 ca
q4Fs(q)

/V 164r'4)4 0 1 F(q—
F(q) dq. (D1)—(n/)'"

Minimum
'

res ect to e is found atMinimum E with respec

'
h iven %. r assumed to possessg'We ma

a Fourier transform. 'qu e' g
an allowed class o v

Eq. (29) as a consequence o q.

" q'F'(q)

0 1—F(q)

2 QO

264) (Ze)'4)4- '"E 4
/'/4(Ze)— —

5xnF (q)
Z(q) =

—1/4" q'F'(q)

0 1—F(q)/'
3 e44 EF (q)()—= 'y()=

(
—

)
0

d E . (41) follows immediately.

a,nd (29) now reduces Eq.

37) todt i . Thi
thstratesverification demons

ever t a
the second proce ure

eneral.F(q)) is more genera .

,k, Lor 1)F(q)g impliesThe variation 65

1 ' e'&'bF(q
d41 )4+(r)—=4g/s)= (

—
) 4

n = — ( )]' e '&'f')'y(s)ds, —nSF(q)=t1 —F q e
'

Th ree o
'

e e
'

. (28) followsThe ree o
'

eded to derive Eq. o
Sjk) 4 h — =

(
rect connection etween

ren
- tructure function

with the
ra qm-

Thus with n(C, qs.starts. u,


