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Acoustic Imyedance of Liquid He't
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We present a derivation of the acoustic impedance of liquid He3 at very low temperatures, where the be-
havior of the liquid is of the collisionless type. Assuming the collective mode is dominant, we show that the
energy transfer at the boundary can be calculated directly by equating the work done by the vibrating wall
against the pressure of the liquid to the energy fiowing from the wall in the collective mode. The comparison
of our result with the exact result obtained by Bekarevich and Khalatnikov demonstrates the accuracy of
our method. The application to experiment is discussed.

1. ANALYSIS OF BOUNDARY CONDITIONS

ECENTLY, Bekarevich and Khalatnikov' have
studied in great detail the process of transfer of

energy into liquid He' by a vibrating plane surface
bounding it. We give here a simplified derivation which
brings out some physical features of their results. They
have solved the kinetic equation for the distribution of
quasiparticles for both specular and diffuse reflection
of the quasiparticles on the wall. Their results which
provide the starting point of this paper are the following.
They find from their calculation that the result depends
only weakly on the character of the reflection, and, in
the case of specular reflection, that the essential con-
tribution arises from the coupling to the zero-sound
collective mode.

Let us see how this can be directly interpreted. The
distribution of the quasiparticles satisfies the equation

Bs Bs Be Bs Be
= I(e),

B$ Br Bp Bp Br

valid for s&0, a=0 being the instantaneous position of
the wall. e and e= ep+be are, respectively, the distribu-
tion function and the energy of the quasIparticles and
I(e) is the collision integral. As usual, we linearize this
equation by setting e=ep+be and take a periodic
behavior of the form exp) —t'&ot) where to is the vibration
frequency of the wall. Let 0 be the polar angle of the
momentum vector p. Defining v by be= v(Bep/Be), and
keeping the first two terms of the expansion in Legendre
polynomials of the Landau correction be to the energy
of a quasiparticle (for further details, see Refs. 1 and 2),
we can rewrite the kinetic equation:

$tov+ op cosH(—B/Bs)Lv+Fpvp+3Fivr co)s=HI( ),v(2)
where vp ——(Bop/Bp) „,is the velocity at the Fermi surface
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and where we have used the notation

dQ
pi = v cos8—.

47t.

We are interested here in the limit ~r&&1 where 7 ' is
the collision frequency of the excitations in the liquid.
The collision integral I(v) can then be neglected.

The boundary condition in the case of specular reflec-
tion reads as follows (see Ref. 1):

+(t )+porn. t =+(—t )—ppl.t, (3)

where p, = coso, I, is the maximum velocity of the wall,

and

O(tt) =v(s=0,tt)+Fpvp(s=0)+3Frvi(s=0)tt. (4)

We shall now proceed to show that condition (3) can
be satisfied to good accuracy by a plane wave flowing
from the interface into the liquid. The corresponding
zero sound distribution is obtained from Eq. (2) by
neglecting the collision term and assuming for s a plane-
wave dependence expt'i(ks —tot) j. v then satisfies

(cosH sp) v+ cosH (Fpvp+3Fivi cosH) =0
& (5)

where sp=co/ksp is the zero sound velocity expressed in
terms of np. Inserting Eq. (5) in Eq. (4), we find that

e(t )—e(—
t ) =2L(spFpvp+3sp'Ftv, )/(sp' —t ')jt (6)

We immediately see that condition (3) can be satisfied

by the zero-sound distribution inasmuch as the term p,
'

in the denominator can be neglected, that is, if so'» i.
This is generally very well verified as so' raises from
sp'= 11 at low pressure to sp' ——140 at high pressure (see
Table I), and thus zero sound appears to be the domi-

nant mode involved in the transfer of energy from the
vibrating wall.

TABLE I. Parameters of liquid He' at very low temperature.

P(atm) p/po' tn+/m vo (te/s) c1(m/s) & F1 Po $$ So co('Is/s)

0.12 1 2.89 57.3 184 1.89 9.7 3.21 3.33 191
28 1.4 5.55 33.4 394 4.55 74 11.80 11.82 396
po ~0.0816 g/cml

a R. H. Sherman and F. J. Edeskuty, Ann. Phys. (N. Y.) 9, 522 (1960).
b A. C. Anderson, W. Reese, and J. C. Wheatley, Phys. Rev. 130, 495

(1963).'%'. R. Abel, A. C. Anderson, and J.C. Vfheatley, Phys. Rev. Letters I,
299 (1961).
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It is easy to see that the zero-sound distribution can
fulfill the boundary condition for diffuse reflection but
under the somewhat more stringent condition that
so)) j.. This is still quite reasonable, and we shall now
proceed a step further and take it as granted that,
whatever the character of the reQection may be, the
vibrating wall couples only to the collective mode.

II. DERIVATION OF THE ACOUSTIC IMPEDANCE

We shall thus ignore the detailed mechanism of
energy transfer at the boundary and simply ensure the
conservation of the Qow of energy into the liquid. On
the one hand, one knows the amount of energy Rowing
into the liquid per unit time, derived from the work
done by the wall against the pressure of the liquid. On
the other hand, there is, in the liquid, a definite Row of
free energy associated with the quasiparticle distribu-
tion corresponding to the collective mode. Equating
these two expressions provides us with a scale factor for
the distribution function.

As we have seen in the preceding section, the accuracy
of this treatment, when applied to zero sound, depends
on the actual value of so. In the hydrodynamic regime
it is, of course, exact, and as an illustration we shall

apply this method simultaneously to first sound and
zero sound.

In the hydrodynamic regime co7«1, the collision term
is chosen of the form

I (v) = —(v —vo —3v1 cos8)/~ (7)

in order to satisfy the basic conservation laws in
collisions between quasiparticles. The first sound
distribution function is then obtained from Kq. (2)
assuming a plane-wave behavior:

(cos8 $)p+cos8(Fppp+3F1p1 cos8)
= (1/o) (vp+3v1 COS8), (8)

where

The first term is an abbreviated way of writing

up+» (u)

(pp' —~)dI =-
2fv

dQ
v2

4'

P= Pp+3P1 cos8.

The free energy can then be written

hF = (3'/2m*so')L(1+Fo) vo'+3(1+F1)P1of (10)

Equating the two expressions for the Row of energy
leads to the equation

—3ss1P1N = (38/2m sp )$1'Uo

XP(1+Fo)p '+3(1+F1)P1'J (11)

The two moments vo and v~ are related through the law

of conservation of mass which can be written for both
distributions (5) and (8):

and the second term has the value

(3e/2m*~o') (Fovo'+3F 1P1P) .

In the application of our results to the problem of the
thermal boundary resistance (Sec. III), we shall use the
value obtained by Khalatnikov' for the motion of the
boundary. To be consistent with his quantization of
elastic waves, we take the energy transferred into the
hquid per unit. time as given by II,,u, (where m, is the
maximum velocity of the wall), and the flow of energy
carried by the sound wave as cbF, where c=svo. Equat-
ing these two expressions provides the required scale
factor.

The formal expressions for the free energy will be
di6erent for the two cases considered here. In. the case
of first sound, for which one takes the limit 0-~0,
$ —+ ~, o$ ~ —1, the distribution can be replaced by
its first two moments:

ZOOT —1 1+$o.
and 0-= jgkvo,- s~ ——

kvo o-

spo= (1+F1)p1 (12)

Using Kq. (12) and the value of the velocity of sound

The density of momentum Qux II;I, is defined by the
equation

s1p=-,'(1+Fo)(1+F1), (13)

BIT;g
p;Pld7+ =0.

Bt Bxy

II;I, is directly obtained using the linearized expression
of the kinetic equation and taking into account the
conservation of momentum in collisions between quasi-
particles. We shall be interested in the component of
the pressure directed along Os. It is easy to show that
for both distributions (5) and (8) it can be cast into the
simple form

II„=—3nsv~,

where n is the number of particles per unit volume. The
free energy associated with the quasiparticle distribu-
tion is de6ned by

8F=Z ( ." .)8 (p)+!Z f—(p,p')8 (p)8 (p')

—pciN~ ~e 2 (15)

In the case of zero sound, the calculation is a little
more tedious. The 6rst term contributing to the free

energy involves

dQ (Fovp) + (3F1vl) +6FpvpF1vlso
v2

4n- S 2

—2 (Fpvp'+ 6F1P1P) .

8 I. M. Khalatnikov, Zb. Eksperim. i Teor. Fix. 22, 687 (1952).

we immediately obtain the following value for the Row

of energy:
e= II„N,= ns ppu, /(1+F1) .

Recalling the relations pp= m*vp and m~/m= 1+F» one

can cast Kq. (14) into the usual form
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Equating the two expressions for the energy Qow leads
to

'Emu, z II. Thermal boundary resistance between
Cu and liquid He' below 0.1'K.

—3sspvqQ, = (LFp(1+Fr)/sp7+3F»p)s
spvpvy

2m*v p2 sp' —1.

ET3
(10 ' cgs units)

Exp.' The or.

Fp(1+Fi)'
+»i(1+Fr), (16)

so

8=0.12 atm
/=28 atm

2
1.25

11
3.8

where we have made use of Eq. (12).It is worth noticing
that the coefficient in braces is directly proportional to
the residue at the pole obtained by Bekarevich and
Khalatnikov' in the case of the specular reflection t the
first term of their Eq. (3.15)7. It is easy to show that
the two results are identical, which demonstrates the
accuracy of our present derivation,

Expression (16) can be considerably simplified by
making use of the equation determining sp'.

sp sp+1 3& i
II'(sp) =—ln —1= Fp+ sp'

2 Sp —1 1+F,

which is obtained from Eq. (5) using Eq. (12). Upon
eliminating Fp from Eq. (16) by using Eq. (17) and
expanding W(sp) in powers of sp ', one finally obtains'

Q= crpc spies,
where

12 1+F'i
u= 1— — +0(1/sp') .

7)&25 sp4

At low pressure, the correction to e= 1 is 2X10 ', at
high pressure 3)&10 ', and is therefore negligible. We
thus see that the acoustic impedance of He' in the
collisionless regime is Z= pep.

The most immediate application of this result is, of
course, to the experiment performed by Keen,
Matthews, and Wilks. ' There is a slight discrepancy
between their direct determination of Z/p 200rrs/s
and the value of cp computed from Fp and Fy pp= 191
m/s, which we believe comes from the lack of accuracy
in the determination of Ii p and F».

Pote added i' Proof. Dr. G. A. Brooker suggests that
the calculated value of Cp should be corrected by taking
account of the coefticient Fs, here neglected (Abstra. ct
C.N. 10 of the IXth International Conference on Low
Temperature Physics, Columbus 1.964, and private
communication. )

III. APPLICATION TO THE DETERMINATION OF
THE THERMAL BOUNDARY RESISTANCE

We now turn to the application of the preceding
results to the determination of the thermal boundary
resistance between liquid He' and a solid body.
Khalatnikov' has developed a theory for this effect,

4 The zero sound contribution a' to the coefBcient a of
Hekarevich and Khalatnikov in their specular reaction calcula-
tion is related to 0, by the following equation: a'=s~/3(f+E&).

'B. E. Keen, P. W. Matthews, and J. Wilks, Phys. Letters 5,
5 (1963).

a See Ref. 6.

taking into account the emission aod absorption of
thermal phonons at the boundary. His result expresses
the thermal boundary resistance E in terms of the
acoustic impedance Z:

p, 15 (2z.kc,)P 1
E.=—

Z 16'' k(kT)s F

where F is a function of the elastic constants of the
solid and p, and c, are, respectively, the density and
the velocity of the transverse vibrations of the solid.
This formula, as it is written, can be applied to the
whole scale of temperature.

Using our previous results, we thus see that the
thermal boundary resistance should decrease slightly as
one goes from the hydrodynamic to the collisionless
behavior of He'. This result is in contradiction with
that of Bekarevich and Khalatnikov, ' but the dis-
crepancy appears to be mainly a question of a factor 2.
They use the definition Q= Iiz„u, w-hich, we think, is
not consistent with Khalatnikov's deinitions. '

We shall only consider the collisionless region below
0.1'K, where a T ' behavior of the thermal boundary
resistance has been observed. ' Using the latest available
data listed on Table I, we compute the thermal bound-
ary resistance from K.halatnikov's expression. As in
Ref. 6, we choose F=1.6. For the solid, we use the
Debye temperature of Cu, O&=340 K. The results
thus obtained age listed on Table II together with the
experimental values from Ref. 6. The agreement is still
rather poor, but one has the feeling that it could be
improved by taking into account the interaction of the
conduction electrons with the vibrating boundary. ~'
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