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numbers 12 and m2. on the other hand, HM calculate
for l2=0 only. When the target consists of ground-state
H atoms, the difference between the two calculations is
known' ":At high incident proton energies (p))1) only
the l2= 0 term contributes significantly to the sum, and
both calculations give the same result; in the neighbor-
hood of the resonance for forming highly excited IIj.nal
states (p 1) the le=0 term contributes only 28% of
the cross section. When the target atoms have rs~&1,
we expect a similar result to hold: Comparison between
the present results and those of HM for Li bears out
this expectation. At incident proton energies of 25 keV,
the cross section for forming final states with n2= j.0
contains 80% ls ——0 contributions; at 6e keV (in the
neighborhood of the maximum) it contains 35% le=0
terms.

Finally, we emphasize again that the cross section
for forming highly excited states by charge-exchange

reactions of the general type (1) is only one ingredient
in a calculation of the equilibrium fraction of excited
neutrals in the outgoing beam. It is also necessary to
know the cross sections for all processes which disrupt
the ai.oms, and these are not all available. (In partic-
ular, the total cross section for ionization of H atoms by
collision with alkali atoms is necessary: this quantity
does not seem to be known, nor is it easy to calculate. )
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The change 6 (S) in transition frequency of the (F=4, Ms =0) ~ (F=3, Mtp =0) transition of the ground
state of Cs'" as a result of the application of an external electric 6eld 8 has been calculated theoretically.
The effects of differences in the ground-state wave functions due to the hyperfIne interaction have been in-
cluded, as well as differences in energy denominators due to hyperhne structure. The calculation gives
n(s) = —1.9&&10 e(1&0.1)se cps, which is to be compared with the experimental value of —2.29&&10 '
(1+0.03)s' cps, where s is in V/cm.

I. INTRODUCTION

' 'N 1957, Haun and Zacharias' measured the change
~ ~ 6(h) of the transition frequency of the (F=4,
3Ev =0) ~ (F=3, M v ——0) transition in the ground state
of Cs"' in an electric field h. They found 6($)= —2.29
X 10 ' (1&0.03)P cps, where 8 is the electric field in
V/cm. These authors ma, de an order-of-magnitude
calculation of this effect, using perturbation theory and
assuming that only the 6p levels were mixed with the
ground state. As a further approximation, they neg-
lected the hyperfine structure of the 6p levels and found
theoretically 6(h) = —0.82X10 she cps. Schwartz'
attempted a complete calculation of this Stark effect
including the wave function differences between Ii =4
and Ii=3 states, but the attempt was unsuccessful
owing to lack of values for some of the matrix elements.
Recently Anderson' completed a more accurate calcula-

t Supported by National Bureau of Standards, Boulder Labor-
atories, and National Science Foundation.

*Permanent address: Goshen College, Goshen, Indiana.
' R. D. Haun and J. R. Zacharias, Phys. Rev. 107, 107 (1957).' Indicated as a private communication in Ref. 1.
L. W. Anderson, Nuovo Cimento 22, 936 (1961).

tion, omitting the difference in wave functions and
assuming an average value for the energy of the fine
structure terms. Anderson's result, A(8) = —2.67X10 '
&(8' cps, 4 is much closer to the experimental result.

Recently, some theoretical calculations of cesium
wave functions have been published' ' as have revised
experimental values for the polarizability of the cesium
atom. ' ' In the following calculation of the Stark shift,
we use the new wave functions and polarizability values,
and in addition we take into account the mixing of the
ground state Ii =4 and P=3 wave functions with the

4 Here we have substituted the more recent polarizability
data of Ref. 8.' P. M. Stone, Los Alamos Report No. LA-2886, UC-34, Physics
TID-4500 (19th ed.), 1963 (unpublished). Available from Ofhce
of Technical Services, U. S.Department of Commerce, Washington
25, D. C.' P. M. Stone, Phys. Rev. 127, 1131 (1962).

7P. M. Stone, Los Alamos Report No. LA-2625, Physics,
TID-4500 (16th ed.), 1961 (unpublished). Available from Ofhce
of Technical Services, U. S.Department of Commerce, %ashington
25, D. C.

8 G. E. Chamberla, in and J. C. Zorn, Phys. Rev. 129, 677 (1963).
9 A. Salop, E. Pollack, and B. Bederson, Phys. Rev. 124, 1431

(1961).
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hyperhne states of higher levels through the hyperhne and the "double-bar" matrix element
interaction.

&IIIIII» =&[I(I+1)(»+ 1)j'".
11. EQUATIOKS

The magnetic dipole hyperhne interaction Hamil-
tonian is, in mks units,

For the hrst-order perturbations due to the hyperhne
interaction, we shall need only the matrix elements
diagonal in J; the 6-J symbol in Eq. (4) then is

where
Sei,i,———(/sp/4tr) (e'gr/2mM)P I, F I J —( 1)X+I+J+1

P=—[(8tr/3)s8(r)+ (((1—s)/r')+ (3(s r)r/rs))7 (2)

and p, o is the magnetic permeability of the vacuum,

g» the nuclear g factor, I the nuclear spin operator,
and m, 3I the rest masses of the electron and proton
respectively. "

In computing matrix elements of the operator P, we
use the following prescription. " ln the expression P,
for values of the radius r less than e, replace 1/r' by
zero, evaluate all integrals, then take the limit of e

tending to zero. As indicated in Ref. 11 this prescription
results in the fact that for expectation values of P for
S states, the contribution from the term in large paren-
theses in Eq. (2) vanishes identically, and the only
contribution is from the well-known Fermi-Segre term
(8tr/3) 5 (r)s.

Ke assume that the atomic states may be character-
ized by state vectors

I
ttLSJIFM/&. To find out which

states are connected by the hyperhne interaction and
also to determine the zero-field hyperhne splitting, we
calculate

&t/LS JIFMF
I
Khr,

I

n'L'S'J'I'F'Mt '&

—poe'gI
&aJIFM

I
P I—

I

a'I'IF'M '), (3)
4+2m3I

where a designates the set of quantum numbers ( Ltt, S),
a,nd I is the same for all states. Recognizing P I as a
scalar product of tensor operators of order 1, we use
the powerful methods of Racah" to reduce the matrix
elements of P I

2[I(I+1)+J(J+ 1)—F(F+1)j
X . (5)

[2I(2I+1)(2I+2)2J(2J+1)(2J+2)3'/s

For the S states, i.e., a= ( ttO, S) and a'= (tt', O,S),
our "prescription" for the matrix elements of P results in

&~JIIPII~'J&=(~JII(8~/3)~(r)sll~'J& (6)

Again using the methods of Racah, we find for (6)

eOSJ —8(r)s n'os')
3

8m. S J
=—(—1)s+s+'(2J+1)

3 J S 1

X/t[S(S+1) (2S+1))'/'&ttllB(r) Ile'&. (7)

Combining Eqs. (4), (5), and (7) we obtain the matrix
elements of 3'.hi, between S states of cesium (St/s, '

L, =O, J=S=s; I=s) with different ts

W(F) =/soP/ g i [66/4 —F(F+1))&Nil~(r) litt'&, (8)

where P is the Bohr magneton and. p,„ the nuclear
magneton. The matrix element (ttll8(r)litt'& is just the
product of the values of the S-state functions

I
st& and

l~') at r=o

& lib( )II '&=y. ,=,*(OV„. ,(0)—=P„,*(oy„.,(0).
&~JIFM

I
P.I

I
~'I'IF'M, '&

n; L=o n'L=ot

P I J—( ])J'+r+E' &~JIIPII~'J'&&Ill&III&I
X4p 4rzsr~, (4)

where the factor in curly brackets is the 6-j symbol" "
' This calculation is done without relativistic corrections.

For cesium (Z =55), relativistic corrections to the matrix elements
calculated here are estimated to be of the order of 10%.

"H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One
and Two Electron Atoms (Academic Press Inc. , New York, 1957),
Sec. 22."See, for example, A. R. Edmonds, Angular Momentum
in Quantum Mechanics (Princeton University Press, Princeton,
New Jersey, 1960},2nd ed.

'3 See, for example, B. R. Judd, Operator Techniques in Atomic
Spectroscopy (McGraw-Hill Book Compp, ny, Inc. , New York,
1963).' M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten,
Jr., The 3jattd 6' jSymbols (MIT Pr-ess, Cambridge, Mas-
sachusetts, 1959).

For future reference, we calculate here, from (8) with
e'= e=6, the zero-held hyperhne splitting for the Cs'"
ground state"

AW=—W(tt=6, F=4) W(tt=6, F=—3)
= —uoP/ -g.(16/3) I As(0) I' (9)

For non-S states, Eq. (6) becomes

l—s 3(s r)r)
i~JII tll ~'&') =(«sj +

I

"'~'s'~)
rs r'

the evaluation of which is quite complicated for the
general case. One can show, however, that the matrix
elements of (10) diagonal except in ts, in the one electron

"E. Fermi, Z. Physik 60, 320 (1930).
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case are""

eL-,'J e'L-' J

exact wave functions which we require are the ground
state and P-state wave functions as they are perturbed
by the effect of their hyperfine interaction with other
states of the same F, 3IIr Lsee Eq. (4)].

A. Perturbed Ground-State Wave Functions(2J+1)-"'
L(L+1)ii NL —I'L');

J(J+1) r'

- &6S„,FIX„,lnS„,F)
&6Svs'F

I =&6SvsF I
—Z &nstisF I

(W.B,(,—Wps, (,)pp )I(I+1)—J(J+1) F(F+1—)]
W= P~ —gr

2s- 2J(J+1) 1 it „s(0)L16.5—F(F+1)]
=-&6SvsF I+2-

"=' g As(0) (W-sr(. —Ws»(*)1
XL(L+1)(wL —e'I). (11)

r3 XDW(nSy(sF
I

For the first-order perturbed ground-state wave
functions, the perturbation theory and Eqs. (8) and

thus for the matrix elements of 3C&(, between these (9) yield,
states we have

For hydrogenic wave functions, which we assume apply
here, —=&6si/sF I +P 8„;p&nS, /, F I

.
n=7'

(15)

2g —3g 3/2@I 3/21
eL —e'L (12) The prime in &6Siis'Fl indicates the perturbed wave

r' L(L+1)(2L+1) n('s' n('s function.

where ao is the Bohr radius. ' In terms of the value of
the hydrogenic wave function at r =0, which for 5
states is""

B. Perturbed P-State Wave Functions

For the perturbed 6p wave functions we find

(») &6P,'F
I

P- (0)=(1/ '")(~/ )"'

Eq. (11) becomes, for the states with L&0,

0-s(0)lf "8(o)
&nL-,'JIF

I
SC„,

I
n'L-, JIF)=

LAs(0)]'

LF(F+1)—I(I+1)—I(J+1)]
yaw

J(J+1)(2I.+1)
(14)

where i) W is given by Eq. (9), and the wave functions
))t „s(0) at the origin are all assumed to be real.

1

- &6P,Flee„.l
P,F)=&6P~F I

—P (nP~F
I
. (16)

(W„i s —Wpi s)

With Eq. (14), this becomes

1 4.8(0)
(6P.'F I

=&6P.FI-K-
"=7 32 it'ps(0)

LF(F+1)—J(J+1)—63/4]
X J(J+1)

a8'
III. PERTURBED WAVE FUNCTIONS

Assuming that the external electric field 8 is applied
along the s axis, we have for the external perturbation,
which we will later consider as a perturbation on the
hyperfine states,

Se,„,=esS;

s is the direction of the quantization axis. The operator
s has nonzero matrix elements between the ground
(6Si~s) state and any P state; thus it is important to
know the exact wave functions for the ground state and
higher I' states in the absence of the electric field. These

' M. Mizushima, lecture notes, University of Colorado, 1962
(unpublished).

'~ E. U. Condon and Cx. H. Shortley, Theory of Atomic Spectre
(Cambridge University Press, New York, 1959l."¹F. Ramsey, Xncleur 3fomelts (John Wiley & Sons, Inc. ,
New York, 1953).

19 L. I. Schi8, Qtsaritlm 3Achansss (McGraw-Hill Book Comp-
any, inc. , New York, 1955).

X (PFI
-(W-~s —Ws~s)-

—=&6P F I++(~i.„&nP,FI.
n=V

Similarly, we find for the 7p wave functions

1 As(0)~t -s(0)
&7P,'FI = &7P,F I

I:~tss(0)]'

LF(F+1)—J(J+1)—63/4]
X J(J+1)

X (nPgFI
(W„s,—W7i, )

=&7PgFI+Q e„gr(nPgFI.
n=6
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TABLE I. CoeKcients C„zz for hfs-perturbed cesium 6S wave
functions.

gas(0) L16,5—F(F+1)3 nW
4 ps (0) 8 ~ (W~s& ~p

—Wps& ~p)

(Multiply entries by 10 '.)

—3.37
—1.63
—1.04

+4.33
+2.08
+1.34

TABLE II. Coe%cients S„zz for hfs-perturbed cesium 6P wave
functions.

The prime on the sum in (18) indicates ps' 7. In the
6nal calculation of the Stark shift we shall see that the
terms involving the 0',„gp make the largest contribution,
the „Jp and t „J-p involving essentially higher order
corrections. The values of O',„J~, S„Jp, and C„gp are
given in Tables I, II, and III. The ratios of wave

IV. MATRIX ELEMENTS OF z

As indicated in Sec. III, we need the matrix elements
of the operator s, (nLSJIFMs! s!e'L'S'I'I'F'Ms'&,
with S=S'=-,', I=I'=-,', and Mp ——0. Calculations
similar to those of Sec. II yielcP'

(NI SI,'FO-!.!
~'L's'I'-;F'u, '&

F 1 F' J F
( 1)z+r+s'+z'+'Qls!

(0 0 0 I F' I' 1

&& L(2F+1)(2F'+1)]' '(NISI!!r!!~'L'SI')

=QJsQ, J's'Q(«SJ II~II~'L'SI'&,

where the factor in large parenthesis is the 3-j symbol. "
The "double-bar" matrix element of r in Eq. (19) is

related to the total intensity S(A,A')= S(«—J,N'L'J')
of the line summed over the magnetic quantum numbers
and polarizations, by" '

fns(0) (F(F+1) J(J+1)—63/—4j DW

As(&) 32J(J+1) 8'~p J —W'6p~
S(A,A') =!(«SJ!e!r!!I'L' SJ' )!', (20)

(Multiply entries by 10 '.) which is related to the radial integrals of Stone by the
equation' '

pp j+P
7 2

8
9
7 2

8
9 2

—1.223
—0.560
—0.351

—1.966
—0.904
—0.567
—0.0583
—0.026
—0.017

+2.529
+1.16
+0.729

+0,874
+0.400
+0.250

+1.573
+0.721
+0.452

S(A,A') =e'o'(A, A') E(A,A'), (21)

where E(A,A') is the summation and integration over
the spin and angular parts. The absolute value of the
matrix element in Eq. (19) is thus

l(«SIllrll~'L'SI')
I
=o(A A')&"'(A A') (22)

TABLE III. Coefficients C„gy for hfs-perturbed cesium 7P wave
functions.

As (0)f„s(0) PF (F+1)—J(J+1)—63/4g nW
Des(0) g' 32J(J+1) . 8'~pl —5'7'

(Multiply entries by 10 '.)

e j+F

As we shall see in the next section, our calculation
requires only the products of matrix elements having
the same QJpp, j: p Q and E"(A,A'); thus we need only
calculate Q' Jpp, j $' QE(A,A') for the transitions in-
volved. These values are given in Table IV.

QP Jy'p g s pK(LJ,L'J') for transitions involved in
cesium stark effect.

6
8
9 3

+1 223
—0.957
—0.455

functions used were':

+1.966
—1.539
—0.741

+0.0583
—0.0455
—0.0217

—2.529
+1.980
+0.953
—0,874
+0.684
+0.325

—1.573
+1.230
+0.585

0~24
0 —,

' 4

0-', 3
0 1 3
Og3

123

123
1 -', 4
142
124

I.JF~ I'J'F' QPgsp z y' pK (LJ L J )

1/9
5/2 "/

1/27

1/9
1/7
5/63

mrs (0)//ps (0)=0.466,

ass(0)//ps(0) = 0.294,

/ps(0)/ass(0) =0 209.

The required energy denominators were obtained from
the well-known tables of Moore."

"C.E. Moore, Natl. Bur. Std. Circ. No. 467 (1949).

The values of the radial integrals o (A,A') of Eq. (22)
we calculate from the oscillator strengths of Stone,
which agree well with one set of experimental values for
the Principal Series but are some 20% higher than
another. 'The values of 0 are given in Table V. The sign
of each o-(A,A') was determined by visual inspection of
the plots of the wave functions of Stone. '
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TABLE V. Radial integrals a (.4,A') as used in this calculation
(in units of 10 ' m).

Levels
A A'

65'/2 6PI/2
6SI/2 6P3/2
65'/2 7PI/2
651/2 7P3/2
6PI/2 751/2

751/2 7PI/2
75'/2 7P3/2
6P./2 8SI/2
6P3/2 8SI/2
651/2 8P1/2
65'/2 8P3/2
751/2 8PI/2

4 (A,A')

—3.12—3.10
+0.190
+0.331
+2.54
+2.91—6.90—6.72—0.651—0.669—0.0584—0.137
+0.448

Levels
A A'

751/2 8P3/2
7P1/2 8SI/2
7P3/2 8$;/2
6Pz/2 9S /2

6P3/2 951/2
7PIy/2 95'/2
7P3/2 95I/2
85'/2 9Pg/2

9P3/2
9PI/2

6SI/2

/r (A,A')

+0.698
+5.67
+6.23
+0.351
+0.353—1,28—1.19
+1.24—0.137—0.275—0.0269—0.0790

(W„P„,—Wss„,) (W-P2/2 —W6S / )—
(23)

A similar expression is obtained for his&E(h) P 8,MP=O.

It turns out that with the above uncorrected wave

V. PQLARIZABILITY OP CESIUM;
ENERGY PERTURBATION

Figure 1 illustrates the hyperfine structure of the
ground and 6rst excited levels of the cesium atom.
States connected by the external perturbation K, ,
=esB, as determined by selection rules

I
i.e., the 3-j

and 6-j symbols in Eq. (19)], are joined by arrows.
Similar transitions can take place between the ground-
state and 7I' levels, etc.

A. Polarizability of the I" =4,
MJ ——0 Substate of Cs"'

We 6rst neglect the hyperfine perturbation of the
wave functions, i.e. , use the uncorrected (48I'qF

I

functions, and calculate the energy perturbations on
the 6S~/2, Ii =4, iVp ——0 ground state due to the applied
electric field. This allows us to evaluate the importance
of each term in the calculation, and also to calculate the
atomic polarizability. The 6rst-order perturbation
energy vanishes; the second-order term is

(@)P=4, M'P-0

1(6~»241 8
I ~&»2» I

'

42r60 n 6 — (WnP1/2 W6S1/2)

1«~»84181~&»2» I

'

With the values of Q'E and o given in Tables IV and
V, we find for o, ,

48= L64 "@+0.301+0.041]X 10 "cm'= 65.07 A', (26)

where the three terms in the above are the contributions
of the m=6, 7, and 8 terms, respectively. Stone and
R'eitz" find a =66.5 A', which agrees with the independ-
ent theoretical calculation of Sternheimer" of m=67. 7
A', but disagrees with that obtained by Dalgarno and
Kingston" (n= 53.8 A8). The reason for the discrepancy
will be discussed in more detail in Sec. VI.

B. Perturbation on hfs States
Due to Electric Field

To And the Stark effect of the ground-state hyperfine
splitting, we now calculate the difference of two terms
similar to Eq. (23), one with 8=4, the other with F=3,
but using the perturbed wave functions and exact
energy denominators

A(h) =—6&2/EP 4(B')—A~'&EP 8(8') . (27)

The prime on 8 in (27) indicates the use of the hyper-
fine-perturbed wave functions of Eqs. (15) through
(18), and exact energy denominators;

(/8S,EI ~ (mS,V'I,

(2a,E I (~P,'E I,
(Wnpg W6S1/2) ~ (Wnpg, p' W6S1/2, p)

Thus we have theoretically for h(h), with M& ——0,

(28)

functions, these two energy changes are the same, so
that there is no Stark effect of the hyperhne structure
in the approximation in which Q,„Jp—8 Jp —6 Jp 0
in Eqs. (15) through (18).

The polarizability o, of the ground state is defined by

AE= —-'(xh'

where DE is the energy change in the ground state due
to an applied electric field 8; thus we can equate (23)
and (24):

2e'

4~60 =6- (W.p, /,
—Wss, /, )

1(6~»2418128&»25)
I

' 1(6~»2418128&8/23)
I

'
+ . (25)

(If nP2/2 W6Sl/2) (WnP2/2 W6$1/2)

Pl /24 W6S1/28)

» P. M. Stone and J. R. Reitz, Phys. Rev. 131, 2101 (1963)."R. M. Sternheimer, Phys. Rev. 127, 1220 (1962).
"A. Daigarno and A. E. Kingston, Proc. Phys. Soc. (London) 73, 455 (1959).

(WnP2/22 W6S1/28)

~(h) —"- l(6~»8'41sl»»2'»I' I«~»2'4lsl~&8/8'5)l' I«~»2'4lzl~~s/8'3)I'
+ +

h 42r60 n=s — (WnP1/28 W6S1/24) (WnP2/25 W6S1/24) (WnP2/28 W6Sl/24)

I(65'»2'31z
I
~f'»8'4)

I

' 1«~»2'31.1~~»2'»
I

' 1«~»2'318
I
~&8/2'4)

I

'

(W„P„,4—W6S„,8)
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are to order d, B',

)] ( 6P1/2 6S1/2 ~

'i1—176W/24(W „, W68„,

8 2 (W6P3/2 W681/2
—6

L 1+76W/20 (W6P2/2 W681/2

2 (W6P2/2 W6S1/29~W/20(W6P „W8„,, /,
—W681/2)

' 1—[,— =(W6P„,—W68„,'L 1jhW/2 (W6P„2—W

)]=(W, „,—W„„,'L1 —176W/30(W6P„2 —W68„, = —W,s„,
(30)

2
—W 6) '—= (W6P2/2 —~'681/2) ' 1—(W6P2/24 6S1/26 — 6 2/2

tions hold for the energy denom-
t th t th th

al
fo h h

hyper ne spfi splittings of the upper eve s

0 ' and the corrections areare corre-to [1)"„8(0)]'/L&68(0)]' an
spon

'
dingly smaller. ince the I=

a0n1

= s in
s than 0.2 an(29) contribute less
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to the Stark shift A(h), we neglect completely the n = 9
and higher terms in the sum, and approximate the e= 8
energy denominators by neglecting the hyperfine
structure of the 8p levels Lnote that igsq(0)'/Pss(0)'
=0.09j.

The experimental values for the hyperfine splittings of
some of the excited states are known, '4 and they turn
out to be roughly one-third of the theoretical values
used here. This calculation could thus be improved
slightly by using those observed values.

We summarize, in Table VI, the calculated Stark

TABLE Vl. Contributions to Stark shift of Cs"', in units
of 10 ' s' cps, sin V/cm.

Nonzero
coefficients in hfs
perturbed wave

functions

~7JE

87JE) $7JE

~7JE) 7JE, 6JE

~7JE) ~8JE) 7 JE)
~6JE

~7JE) ~8JE) +9JE)
7JE) 6JE

Source+
of gm

contributiong 6

Wave function —0.750
hfs shifts —1.493

Total A(S) =
Wave function —0.754
hfs shifts —1.493

Total a(e}=
Wave function —0.754
hfs shifts —1.493

Total A(S) =
Wave function —0.667
hfs shifts —1.493

Total a(s) =
Wave function —0.696
hfs shifts —1.493

Total n(s) =

—0.088—0.0035
—2.337

—0.088—0.0035
—2.341

—0.088—0.0035
—2.338

—0.0478—0.0035
—2.214

—0.0521—0.0035
—2,248

—0.003—0.000

—0.003—0.000

—0,003—0,000

—0.003—0.000

—0.003—0,000

shift for Cs'" in various approximations, giving the
contributions from %=6, 7, and 8 terms, and analyzing

'4H. Kopfermann, Xldear iVoraen)s (Academic Press Inc. ,
New York, 1958}.

these further into contributions from the perturbed
wave functions and from the hyperfine splittings of the
levels.

VI. COMMENTS AND CONCLUSIONS

Although the direct use of the wave functions of Ref. 5
yieMs a theoretical Stark effect very close to the
experimental value, it should be noted that the polariz-
ability calculated from these wave functions is consider-
ably higher than presently accepted experimental
values. '' These wave functions also correspond to
experimental oscillator strength values for cesium"
which, though measured by the hook method to a high
degree of accuracy (&1%%uo), are 20% higher than earlier
measurements done by the magnetic rotation method,
and which also seem to be inconsistent with the results
for alkali atoms in general. We believe that the values
for the polarizability of cesium most appropriate for
this calculation are the empirical value 53.8(1&0.1)
/10 "cm' derived by Dalgarno and Kingston" from
the oscillator strength data of Minkowski and Muhlen-
bruch, " the atomic-beam experimental value of
(52.5+6.5) X 10 '4 cm' obtained by Salop et al. ,

s

and the atomic-beam experimental value (48&6)X 10 '4

cm' of Ref. 8.
Since the Stark effect is proportional to the polariz-

ability, the use of no. =53.8(1+0.1)X10 "cm' reduces
our calculated Stark effect by the factor 53.8/65. 07,
and we find

~(@)= (53.8/65. 07)(—2.25X10 ' P cps)

&(&)= —1.9X10 s(1+0.1)8' cps,
(31)

where the error is taken to be due entirely to the
uncertainty in e~,.

~5 G. Kvater and T. Meister, Leningrad Universitet Vestnik
No. 9, 137 (1952}.' R. Minkowski and W. MQhlenbruch, Z. Physik 63, 198
(1930).


