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numbers /; and m3: on the other hand, HM calculate
for =0 only. When the target consists of ground-state
H atoms, the difference between the two calculations is
known?®?: At high incident proton energies (p>>1) only
the ;=0 term contributes significantly to the sum, and
both calculations give the same result; in the neighbor-
hood of the resonance for forming highly excited final
states (p~1) the l,=0 term contributes only 2879, of
the cross section. When the target atoms have 7,71,
we expect a similar result to hold: Comparison between
the present results and those of HM for Li bears out
this expectation. At incident proton energies of 25 keV,
the cross section for forming final states with #y,=10
contains 809, l,=0 contributions; at 6+ keV (in the
neighborhood of the maximum) it contains 359, /;=0
terms.

Finally, we emphasize again that the cross section
for forming highly excited states by charge-exchange
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reactions of the general type (1) is only one ingredient
in a calculation of the equilibrium fraction of excited
neutrals in the outgoing beam. It is also necessary to
know the cross sections for all processes which disrupt
the atoms, and these are not all available. (In partic-
ular, the total cross section for ionization of H atoms by
collision with alkali atoms is necessary: this quantity
does not seem to be known, nor is it easy to calculate.)
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The change A (&) in transition frequency of the (F=4, M »=0) « (F=3, M r=0) transition of the ground
state of Cs!® as a result of the application of an external electric field § has been calculated theoretically.
The effects of differences in the ground-state wave functions due to the hyperfine interaction have been in-
cluded, as well as differences in energy denominators due to hyperfine structure. The calculation gives
A(8) =—1.9X1078(140.1) &2 cps, which is to be compared with the experimental value of —2.29X 1076

(1+0.03) &2 cps, where &isin V/cm.

I. INTRODUCTION

N 1957, Haun and Zacharias' measured the change
A(8) of the transition frequency of the (F=4,

Mp=0) <> (F=3, M =0) transition in the ground state-

of Cs'®8in an electric field 8. They found A(8)=—2.29
X10-% (14-0.03) & cps, where & is the electric field in
V/cm. These authors made an order-of-magnitude
calculation of this effect, using perturbation theory and
assuming that only the 6p levels were mixed with the
ground state. As a further approximation, they neg-
lected the hyperfine structure of the 6p levels and found
theoretically A(8)~—0.82X1078& cps. Schwartz?
attempted a complete calculation of this Stark effect
including the wave function differences between F=4
and F=3 states, but the attempt was unsuccessful
owing to lack of values for some of the matrix elements.
Recently Anderson? completed a more accurate calcula-

T Supported by National Bureau of Standards, Boulder Labor-
atories, and National Science Foundation.
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1R. D. Haun and J. R. Zacharias, Phys. Rev. 107, 107 (1957).

2 Indicated as a private communication in Ref. 1.
3L. W. Anderson, Nuovo Cimento 22, 936 (1961).

tion, omitting the difference in wave functions and
assuming an average value for the energy of the fine
structure terms. Anderson’s result, A(8)=—2.67X10~¢
X & cps,* is much closer to the experimental result.
Recently, some theoretical calculations of cesium
wave functions have been published7 as have revised
experimental values for the polarizability of the cesium
atom.%? In the following calculation of the Stark shift,
we use the new wave functions and polarizability values,
and in addition we take into account the mixing of the
ground state F=4 and F=3 wave functions with the

4Here we have substituted the more recent polarizability
data of Ref. 8.

& P. M. Stone, Los Alamos Report No. LA-2886, UC-34, Physics
TID-4500 (19th ed.), 1963 (unpublished). Available from Office
(2)2 T]e)chéﬁcal Services, U. S. Department of Commerce, Washington

,D.C.

6 P. M. Stone, Phys. Rev. 127, 1151 (1962).

“P. M. Stone, Los Alamos Report No. LA-2625, Physics,
TID-4500 (16th ed.), 1961 (unpublished). Available from Office
gg Techgical Services, U. S. Department of Commerce, Washington

, D.C.

8 G. E. Chamberlain and J. C. Zorn, Phys. Rev. 129, 677 (1963).
(19 A.) Salop, E. Pollack, and B. Bederson, Phys. Rev. 124, 1431

961).
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hyperfine states of higher levels through the hyperfine
interaction.

II. EQUATIONS

The magnetic dipole hyperfine interaction Hamil-
tonian is, in mks units,

Fnss= — (uo/4w) (e*gr/2mM)P-1, 1)
where

P=[(87/3)s5(r)+(((1=s)/r*)+(@3(s-1)x/r"))] (2)

and uo is the magnetic permeability of the vacuum,
gr the nuclear g factor, / the nuclear spin operator,
and m, M the rest masses of the electron and proton
respectively.!

In computing matrix elements of the operator P, we
use the following prescription.”! In the expression P,
for values of the radius 7 less than e, replace 1/7% by
zero, evaluate all integrals, then take the limit of
tending to zero. As indicated in Ref. 11 this prescription
results in the fact that for expectation values of P for
S states, the contribution from the term in large paren-
theses in Eq. (2) vanishes identically, and the only
contribution is from the well-known Fermi-Segre term
(87/3)5(r)s.

We assume that the atomic states may be character-
ized by state vectors |#LSJIFMr). To find out which
states are connected by the hyperfine interaction and
also to determine the zero-field hyperfine splitting, we
calculate

(WLSTIFM p|3Cuss| 0/ L'S' T I'F' M ¥')
— koe’gr
= —(aJIFM ¢|P-1|a’T'TF' M"Yy, (3)
4w2mM
where a designates the set of quantum numbers (»,L,S),
and I is the same for all states. Recognizing P-1 as a
scalar product of tensor operators of order 1, we use

the powerful methods of Racah'? to reduce the matrix
elements of P-1

(aJIFMp|P-1|a/J'IF" M)

= 1"'+I+F'F d J||P||a’ T WI||| T
==y KRl

XOrpdpparpr, (4)
where the factor in curly brackets is the 6-5 symbol*—14

10 This calculation is done without relativistic corrections.
For cesium (Z=2353), relativistic corrections to the matrix elements
calculated here are estimated to be of the order of 109,

11 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One
and 12"500 Electron Atoms (Academic Press Inc., New York, 1957),
Sec. 22.

12 See, for example, A. R. Edmonds, Angular Momentum
in Quantum Mechanics (Princeton University Press, Princeton,
New Jersey, 1960), 2nd ed.

18 See, for example, B. R. Judd, Operator Techniques in Atomic
fgggﬁrowoﬁy (McGraw-Hill Book Company, Inc., New York,

14 M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten,
Jr., The 3-j and 6-j Symbols (MIT Press, Cambridge, Mas-
sachusetts, 1959).
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and the “double-bar’” matrix element
N[ D=rI(I+1)(2I+1) T,

For the first-order perturbations due to the hyperfine
interaction, we shall need only the matrix elements
diagonal in J; the 6-j symbol in Eq. (4) then is
F I J
{ } = (—1)F+I+I+1
1 J I

ATT+D)+IT(T+1)—F(F+1)]
[27(2I+1)(2I42)27 (2T +1) (2T +2) ]2

For the S states, ie., a=(%,0,5) and o’'= (#/,0,S),
our “prescription” for the matrix elements of P results in

(aJ||Plla"T)y=(a] || (8r/3)5(r)s||a’]). (6)
Again using the methods of Racah, we find for (6)

<nOSJ 7' 0ST >

81r( D) {S J L}
3 J S 1

8w
—8(r)s
3

X#[S(S+1) 2S+1) T nulls(r)[[n).  (7)

Combining Egs. (4), (5), and (7) we obtain the matrix
elements of JCug, between S states of cesium (Sys;
L=0, J=S=%; I=1) with different »

W (F)=poBunmgr3[66/4—F (F+1) Knlls (7)), (8)

where 8 is the Bohr magneton and p.» the nuclear
magneton. The matrix element (z||3(r)||»’) is just the
product of the values of the S-state functions |#) and
|%) at =0

<M'”5 () ”nl> =Y 10" (Yn 1=0(0)=¢ns™ O s (0) .

n; L=0 n’y L=0 nS n'S

For future reference, we calculate here, from (8) with
n'=n=06, the zero-field hyperfine splitting for the Cs!*
ground state!®
AW=W (n=06, F=4)—W (n=6, F=3)

= — uoBuangr(16/3)|¥es(0)[2.  (9)

For non-S states, Eq. (6) becomes

3(s-r)r)

75

(a][[PHa’J’):<nLSJ“(l—;—S—{— n’L’S’J>, (10)

the evaluation of which is quite complicated for the
general case. One can show, however, that the matrix
elements of (10) diagonal except in #, in the one electron

15 E. Fermi, Z. Physik 60, 320 (1930).
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case are!2:18

I—-s 3(s:p)r
<nL%J (———+ ) n’L%J>
7,3 7’5

3 I: (27+1)
Ly

thus for the matrix elements of 3Cu; between these
states we have

Ho [I(I+1)—J(J+1)—F(F+1)]
I/V:_"ﬁﬂnmgl
2r 27 (J+1)

1
— nIL/> ’
¥3

T/ZL(L+ 1)h<nL

n’L>. (11)

1
”

XL(L+1)<nL

For hydrogenic wave functions, which we assume apply

here,
1 I TV ALRYALL
<nL n’L> = 12)

s CL(LA1) (2L Dnsisi
where a0 is the Bohr radius.!” In terms of the value of
the hydrogenic wave function at =0, which for S
states is!®19

Yas(0)= (1/7'2)(Z/nao)*?, (13)
Eq. (11) becomes, for the states with L0,
3 Yus(0)ns(0)
(nLEJIF|3Cuss| 0 IATIF)y=— ————
32 [Wes(0)
[F(F+1)—I(I+1)—J(J+1)]
XAW , (14)

J(T+1)(2L+1)

where AW is given by Eq. (9), and the wave functions
¥as(0) at the origin are all assumed to be real.

III. PERTURBED WAVE FUNCTIONS

Assuming that the external electric field & is applied
along the z axis, we have for the external perturbation,
which we will later consider as a perturbation on the
hyperfine states,

5Cext= €z g:

z is the direction of the quantization axis. The operator
z has nonzero matrix elements between the ground
(6S1/2) state and any P state; thus it is important to
know the exact wave functions for the ground state and
higher P states in the absence of the electric field. These

16 M. Mizushima, lecture notes, University of Colorado, 1962
(unpublished).

17 E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, New York, 1959).

18 N. F. Ramsey, Nuclear Moments (John Wiley & Sons, Inc.,
New York, 1953).

B L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Comp-
any, Inc., New York, 1955).
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exact wave functions which we require are the ground
state and P-state wave functions as they are perturbed
by the effect of their hyperfine interaction with other
states of the same F, Mp [see Eq. (4)].

A. Perturbed Ground-State Wave Functions

For the first-order perturbed ground-state wave
functions, the perturbation theory and Egs. (8) and
(9) yield,

@ (6S1/2F | 3nts| 0S1/287)
(68512’ F| =(6S12F | =2 (nS12F |
(Wnsllz_ WGSllz)

n=T

o (1¢ns(0)[16.5—F (F+1)
=(6S81F | +3 1~ <(OL ( ]

n=7 (8§ \bﬁs(O) (Wn51/2— W631/2)

XAW(%S]/zFl

=(6S12F |+ Quyr(nSyol’| .

n=7

(15)

The prime in (6Sy7’F| indicates the perturbed wave
function.

B. Perturbed P-State Wave Functions
For the perturbed 6p wave functions we find

(6P,'F| :
e <6PJF[5CM5 I 1’LPJF>
={6P;F|—% (nP,F|.
w1 (Waps—Wep,)
With Eq. (14), this becomes
© (1 ‘an(O)
(6P ;'F|=(6P;F| —Z{

n=7

(16)

32 Y4s5(0)
X[P‘(F+1)—J(J+1)~63/4]

J(J+1)

X[<Wniv Wep,)]}<”P’F,

=(6PsF|+% Brrr(nPsF| .

n=7

17

Similarly, we find for the 7p wave functions

o 1 Prs(0)¢as(0)
TP/F|={IP;F|—-> ———-——
< J ] < J I n§632 DPGS(O):P

XEF(F+1)—J(J+I)—63/4]

J(J+1)

X [m] (nP;F|

E<7P1Fl ‘f— ZI enJF<nPJF' N (18)
n==6
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The prime on the sum in (18) indicates #><7. In the
final calculation of the Stark shift we shall see that the
terms involving the @,sr make the largest contribution,
the ®,sr and C,;r involving essentially higher order
corrections. The values of @nsr, ®nsr, and C,sr are
given in Tables I, II, and III. The ratios of wave

TasLE I. Coefficients Gnsr for hfs-perturbed cesium 6S wave
functions.

ey

(Multiply entries by 1078.)

" ANF 4 3

7 3 —3.37 +4.33
8 1 —1.63 +2.08
9 1 —1.04 +1.34

TasLE II. Coefficients B,,r for hfs-perturbed cesium 6P wave

functions.
® FE(%S(O))[F(F—{—I)—J(]+1)—63/4]( AW )
"\ Yes (0) 327 (T+1) Wop,—Wer,
(Multiply entries by 1078.)
n N\F 5 4 3 2
7 3 —1.966 +2.529
8 1 —0.904 +1.16
9 3 —0.567 +0.729
7 3 —1.223 —0.0583  +0.874 +1.573
8 2 —0.560 —0.026 +0.400 +0.721
9 3 —0.351 —0.017 +0.250 +0.452

TasLe II1. Coefficients @,,r for hfs-perturbed cesium 7P wave
functions.

_¥1s(0)¢as(0) [F(F+1)—J(f+1)—63/4]( AW )
Wap;—Wipy

Cpr=
T s O)F 3270+
(Multiply entries by 1076.)

n N\F 5 4 3 2

6 % +1.966 —2.529

s 1 —1.539 +1.980

9 3 —0.741 +0.953

6 3 41223 400583  —0874 —1.573
8§ 3 —0957  —00455 40684  +1.230
9 3 —0455  —0.0217 40325  +0.585

functions used were®:

¥15(0)/¥65(0)=0.466,
¥3s(0)/¢6s(0)=0.294,
Yos(0)/¢65(0)=0.209.

The required energy denominators were obtained from

the well-known tables of Moore.20

2 C. E. Moore, Natl. Bur. Std. Circ. No. 467 (1949).
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IV. MATRIX ELEMENTS OF z

As indicated in Sec. ITI, we need the matrix elements
of the operator z, (WLSJIFMp|z|w'L'S' T I'F'"M¢'),
with S=S"=%, I=I'=%, and Mr=0. Calculations
similar to those of Sec. II yield®?

(nLSTEFO|z|w/L'S' T'3F My’

F 1 PN(J F
= (_.1)J+I+F+F’+9/2( ){ }
00 o/l s 1

X[ (2F41) QF'+1)1YXnLST ||r||w' L'ST")

W~

EQJFO,J/Fro<’ﬂLSJ”7’I!ﬂ’LIS]’), (19)
where the factor in large parenthesis is the 3-j symbol.12

The “double-bar” matrix element of 7 in Eq. (19) is
related to the total intensity S(4,4")=SnLJn'L'J’)
of the line summed over the magnetic quantum numbers
and polarizations, by

S(4,4")=|(nLSJ|ex||w’L'ST")|?, (20)
which is related to the radial integrals of Stone by the
equation®?

S(4,4")=¢%?(4,4")K(4,4"), (21)
where K(4,4") is the summation and integration over
the spin and angular parts. The absolute value of the
matrix element in Eq. (19) is thus

[{nLST||x||#w'L'ST")| =0 (A4,4")KV2(4,4"). (22)

As we shall see in the next section, our calculation
requires only the products of matrix elements having
the same Qro, 7770 and KY2(4,4"); thus we need only
calculate Q%po,s'r 0K (4,4") for the transitions in-
volved. These values are given in Table IV.

TABLE IV. Rjro,sroK(LJ,L'J') for transitions involved in
cesium stark effect.

LJF & L'J'F’ Q*yro, yrrroK (LI, L'J")
0%4 113 1/9
014 1325 5/27
014 133 1/27
0413 144 1/9
03%3 132 1/7
013 124 5/63

The values of the radial integrals ¢(4,4") of Eq. (22)
we calculate from the oscillator strengths of Stone,
which agree well with one set of experimental values for
the Principal Series but are some 209, higher than
another.® The values of ¢ are given in Table V. The sign
of each ¢(4,4") was determined by visual inspection of
the plots of the wave functions of Stone.®
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TaBLE V. Radial integrals ¢(4,4’) as used in this calculation
(in units of 1071° m).

Levels Levels

4 4 o (4,47 4 4 o (4,47
6S1y2 6Py —3.12 7S12 8Py +0.698
6512 6Pz —3.10 7Py2 8512 +5.67
6Sy2 7Py +0.190 TP32 8Si2 +6.23
6S12 7Py +0.331 6Py2 95y +0.351
6Py2 TSz +2.54 6P32 9512 +0.353
6P32 7Sy +2.91 7Pys 9Sy2 —1.28
7512 7P;/z —6.90 7P32 9512 -—1.19
751/2 7P3/2 —672 851/2 9P3/2 +124
6P:2 85y —0.651 7S1y2 9Py —0.137
6P32 8Sy/2 —0.669 7S12 9Py —0.275
6Sy2 8Py —0.0584 6512 9Py —0.0269
651/2 8P3/2 —-0137 651/2 9P3/2 —00790
7S1y2 8Py +0.448

V. POLARIZABILITY OF CESIUM;
ENERGY PERTURBATION

Figure 1 illustrates the hyperfine structure of the
ground and first excited levels of the cesium atom.
States connected by the external perturbation 3JC..
=ez8, as determined by selection rules [i.e., the 3-5
and 6-7 symbols in Eq. (19)7], are joined by arrows.
Similar transitions can take place between the ground-
state and 7P levels, etc.

A. Polarizability of the F =4,
My =0 Substate of Cs'¥

We first neglect the hyperfine perturbation of the
wave functions, i.e., use the uncorrected (nP;F|
functions, and calculate the energy perturbations on
the 65y, F=4, M =0 ground state due to the applied
electric field. This allows us to evaluate the importance
of each term in the calculation, and also to calculate the
atomic polarizability. The first-order perturbation
energy vanishes; the second-order term is

APE  (8)r=t,sp0
—6252 0 [}(651/24|2I1’LP1/23>|2

drey n=6 (WnPIIZ_WGSUZ)
¢|(6S1,24|z]nP3,25){2i |<651/24|Z|”P3/23>|2:|
T .
(I/VnPs - WGS1 /2) (WnPa 2 WGSl /2)

(23)

A similar expression is obtained for A® E(8) p_3,a1 p—o.
It turns out that with the above uncorrected wave
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functions, these two energy changes are the same, so
that there is no Stark effect of the hyperfine structure
in the approximation in which @usr= ®nsr=Crsr=0
in Egs. (15) through (18).

The polarizability « of the ground state is defined by

AE=—}a&, (24)

where AL is the energy change in the ground state due
to an applied electric field &; thus we can equate (23)
and (24):

2¢ [l<651/24|Z]”P1/23>| 2
(W aprn—Wesin)
} (6124 |5[nPy5) > l<651/24|zl”P3/23>12]. (25)
(I/VnPslz_ W6S1/2) (Wﬂps/2_ WGSII2)

With the values of QK and o given in Tables IV and
V, we find for «,

a=[64.73+0.3014-0.041]X 10-2¢ cm?=65.07 A3, (26)

4areg n—56

where the three terms in the above are the contributions
of the =6, 7, and 8 terms, respectively. Stone and
Reitz? find a=66.5 A% which agrees with the independ-
ent theoretical calculation of Sternheimer? of a=67.7
A3, but disagrees with that obtained by Dalgarno and
Kingston? (a=>53.8 A3). The reason for the discrepancy
will be discussed in more detail in Sec. VI.

B. Perturbation on hfs States
Due to Electric Field

To find the Stark effect of the ground-state hyperfine
splitting, we now calculate the difference of two terms
similar to Eq. (23), one with F=4, the other with F=3,
but using the perturbed wave functions and exact
energy denominators

A(E)=APEp_4(8)—ADEp_3(&). 27)

The prime on & in (27) indicates the use of the hyper-
fine-perturbed wave functions of Egs. (15) through
(18), and exact energy denominators;

(nSsF| — (nS,/F|,

(nP;F| — (nP;/F|,
(Woaps—Wesys) — Wap s, pr—Wesys.r) -
Thus we have theoretically for A(8), with Mr=0,

(28)

A(é’)_

&2 471'60 (Wan 1287 W6S1/24)

n==6

—ezl ® [|<651/2'4|2|”P 1/2'3>12J [(6S1/2"4| 2| nP32'5) |2 g [(6S15"4| 2| nPsys'3) |2
(WnP3I25— WﬁSl/24)

(WnP3123_ WGS:/24)

[(6S1/2'3|3|nPys'4)|*  [(6S12"3|2|nPss'2)|2  [(6S12'3] 2| nP 3/2'4>12}
— :I . (29)

(WnPl /247 W6S1 /23)

21 P, M. Stone and J. R. Reitz, Phys. Rev. 131, 2101 (1963).
22 R. M. Sternheimer, Phys. Rev. 127, 1220 (1962).

(W npsn2—Wesya8) (W apsma— Wesins)

2 A. Dalgarno and A. E. Kingston, Proc. Phys. Soc. (London) 73, 455 (1959).
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F 6P,
2
5 A +&5 aw
s ks i oW
6Py /2
M “200%
2 _ 27 AW
24
6P1/2 F
_Z(aw)
+ us( 3) 4
6Py,
9 (aw
—16< 3) 3
Fic. 1. Hyperfine structure of
ground and first excited levels of
Cs (dotted lines denote the center
of gravity of a level). Note: Energies
and splittings not drawn to scale.
F
65, /2 .
4 +15 AW
| o -
AW =9192/6 3! Ms/sec 72
3 —-2_ AW

By inspection of the energy-level diagram (Fig. 1), we find that the energy denominators for the #=6 term in
Eq. (29) are, to order AW,
(W6P1/23_— I/V‘isuz‘l)—lg (WGPUZ_ W631/2)~1[1+5AW/8 (WGPm_ WGSI/Z)] = (WGPx/z" WGSl/z)_“l (1+ 17.14X 10“6) )
(W6P1/z4— I/VGSU23)_lg (W6P1 2 WGSUz)ﬂ[l - 17AW/24 (WGPUZ" WﬁSl/z)] = (I’VﬁPuz"" WﬁS:/z)hl (1 —19.43X 10_6) )
(W6P3/25'" I/Vﬁ»ﬁ’uﬂ)“]E (WGP:;/Z_ WGSI/Z)*I[l_*_ 7AW/20 (WGPa/z_ WGSx/z):] = (WﬁPa/z"— I/Vfisuz)~1 (1_]'9- 149X 10_‘6) ’
(W epsjp2—Wes108) =2 (Wepss— Wesy ) L1 —9AW /20(W spy5— Wesy o) 1= (Wepys— Wesy o) 2(1—11.76 X 10-¢) ,
(I/VGP3/23_ I/V‘iS1/24)_lg (WGP:;/Z— WﬁSl/z)ﬂ[l—i‘AW/z(WﬁPm— WGSuz)] = (WGPs/z_ I/Vﬁsl/z)_l(1+ 13.07X 10_6) ’
(Wepgia—Wes103) "2 (Wepyo— Wesy ) \L1—17TAW /30 (Weps.— Wesye) 1= (Weps,s— Wesy o) (1—14.81X1075)
(30)
Similar approximations hold for the energy denom- to [¥.s(0)?/[¥ss(0)]* and the corrections are corre-

inators for higher n values, except that there, the spondingly smaller. Since the z=8 and =9 terms in
hyperfine splittings of the upper levels are proportional  (29) contribute less than 0.2 and 0.019, respectively
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to the Stark shift A(8), we neglect completely the =9
and higher terms in the sum, and approximate the #=38
energy denominators by neglecting the hyperfine
structure of the 8p levels [note that yss(0)2/¢es(0)2
220.097].

The experimental values for the hyperfine splittings of
some of the excited states are known,* and they turn
out to be roughly one-third of the theoretical values
used here. This calculation could thus be improved
slightly by using those observed values.

We summarize, in Table VI, the calculated Stark

TasLE VI. Contributions to Stark shift of Cs™¥, in units
of 1078 & cps, &in V/cm.

Nonzero
coefficients in hfs ~ Source\
perturbed wave of n
functions contribution 6 7 8
Qrr Wave function —0.750 —0.088 —0.003
hfs shifts —1.493 —0.0035 —0.000
Total A(g)=—2.337
Qrr, Rrsr Wave function —0.754 —0.088 —0.003
hfs shifts —1.493 —0.0035 —0.000
Total A(8)=—2.341
Qisr, B7sF, Cosr Wave function —0.754 —0.088 —0.003
hfs shifts —1.493 —0.0035 —0.000
Total A(8)=—2.338
Qryr, Qssr, Br7r, Wave function —0.667 —0.0478 —0.003
Cosr hfs shifts —1.493 —0.0035 —0.000
Total A(8)=—2.214
Q1r, Qssr, Qosr, Wave function —0.696 —0.0521 —0.003
®RzsF, CosF hfs shifts —1.493 —0.0035 —0.000

Total A(8)=—2.248

shift for Cs!® in various approximations, giving the
contributions from N=6, 7, and 8 terms, and analyzing

#* H. Kopfermann, Nuclear Moments (Academic Press Inc.,
New York, 1958).
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these further into contributions from the perturbed
wave functions and from the hyperfine splittings of the
levels.

VI. COMMENTS AND CONCLUSIONS

Although the direct use of the wave functions of Ref. 5
yields a theoretical Stark effect very close to the
experimental value, it should be noted that the polariz-
ability calculated from these wave functions is consider-
ably higher than presently accepted experimental
values.®% These wave functions also correspond to
experimental oscillator strength values for cesium?s
which, though measured by the hook method to a high
degree of accuracy (4=19%), are 209, higher than earlier
measurements done by the magnetic rotation method,
and which also seem to be inconsistent with the results
for alkali atoms in general. We believe that the values
for the polarizability of cesium most appropriate for
this calculation are the empirical value 53.8(120.1)
X107 cm?® derived by Dalgarno and Kingston? from
the oscillator strength data of Minkowski and Miihlen-
bruch,”® the atomic-beam experimental value of
(52.54£6.5)X10~* cm® obtained by Salop et al.?
and the atomic-beam experimental value (484-6)X 10~
cm?® of Ref. 8.

Since the Stark effect is proportional to the polariz-
ability, the use of acs=53.8(12£0.1) X 10724 cm® reduces
our calculated Stark effect by the factor 53.8/65.07,
and we find

A(8)=(53.8/65.07)(—2.25X10~¢ & cps)

31
A(8)=—1.9%X10"8(120.1) & cps, (31)

where the error is taken to be due entirely to the
uncertainty in agcs.

% G. Kvater and T. Meister, Leningrad Universitet Vestnik
No. 9, 137 (1952).
( %6 R. Minkowski and W. Miihlenbruch, Z. Physik 63, 198
1930).



