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It is pointed out that the usual theories of pressure broadening disagree with direct experimental measure-
ments of the widths of resonance-broadened alkali doublet lines, although the theories are at least quali-
tatively confirmed for the wings of resonance lines and for foreign-gas broadening. There are also two con-
flicting sets of experimental data (both in strong disagreement with theory). Some qualitative arguments
are given for doubting the validity, near the center of a resonance line, of the “two-body’’ approximation
generally used in theoretical treatments, and some formal objections to the usual procedure are also pre-
sented. The basic equation relating the susceptibility to a resolvent operator matrix element is derived from
a more fundamental point of view than usual; the result contains in principle all effects due to translational
motion, to the quantized nature of the radiation field, and to “spatial dispersion.” In the limit of large ab-
sorber mass it is proved rigorously that the two-body approximation can never be valid near the center of a
line, even for very low densities. By using different approximations for the wings and the line center, we ob-
tain satisfactory agreement with experiments in both regions for the alkali doublet lines. We are also able to
decide between the two conflicting experiments, favoring the square-root density dependence of the line-
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width observed by Lauriston and Welsh.

I. INTRODUCTION

HE problem of the pressure broadening of spectral

lines in gases has been studied for a long time and

by a variety of methods,! whose culmination is best

represented by a recent article by Fano.? These theories

concentrate (either implicitly or explicitly) mainly on

broadening due to foreign gases, electrons, and/or ions

with considerable success, although there is no lack of
unsolved problems.

In the case of “self-"or “resonance” broadening, how-
ever, we find the situation less satisfactory. The
clearest illustration of the phenomenon is the broadening
of an absorption line in a monatomic gas by the pressure
of the gas itself; in the case of molecular lines, the situa-
tion is complicated by the rotational-vibrational struc-
ture in the band, and by the presence of permanent
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Press, Inc., Néw York 1961).

2U. Fano, Phys. Rev. 131, 259 (1963).

moments which influence the shape. For these reasons,
with their attendant difficulties, we shall confine our-
selves to the monatomic case, especially the alkali
doublets, for which experimental data are available. For
this case, both the “impact” and “quasistatic’ theories
predict (with the necessary approximations) that the
line should be Lorentzian, with half-width given to
within factors of the order of unity, by

6031/2’\’ fﬂ,ﬂz/h .

Here dwy)s is the half-width in frequency units, 97 is the
number of atoms per cubic centimeter, and y is the
dipole moment matrix element for the transition in-
volved. The experiments! which seemed to confirm these
theoretical treatments (at least qualitatively) did so by
measuring the wings of the line and inferring the
width from the assumption that the lines are in fact
Lorentzian. This procedure was used because the
resultant widths were less than the expected Doppler
widths, and hence could not be determined from a

3 Also called the “collision” and “statistical,” respectively, but
we have adopted the terminology of M. Baranger, Afomic and
Molecular Processes, edited by D. Bates (Academic Press Inc.,
New York, 1962), p. 502.

4S-Y Chen Phys Rev. 58, 884 (1940); K. Wananabe, Phys.
Rev. 59, 151 (1941) C. Gregory, Phys. Rev. 61, 465 (1942).
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direct profile measurement. We may conclude from this
then, only that the usual theory is essentially correct for
the wings of the line. Tt s to the line center that we must
direct our attention.

More recent experimental results involving the center
of the line seem to contradict both the existing theories
and each other. The direct profile measurements of the
- absorption of the alkali metal vapors by Tomiser,? and
Moser and Schultz,® give widths that are larger by a
factor of 10° than the theoretical value, although ap-
pearing to confirm the predicted linear dependence on
the density. Reflection measurements at much higher
pressures by Lauriston and Welsh,” on the other hand,
give widths proportional to the square root of the density,
but with magnitudes such as to contradict the other
results. For example, in the case of the 2Py, line of
sodium, Tomiser® reports a linewidth of 1.075 A at a
density of 7.07X10' atoms/cc while Lauriston and
Welsh? find a width of only 0.553 A at a much higher
density of 2.3)X10'® atoms/cc. Hence, unless the lines
are actually nmarrowed by increasing pressure in the
intermediate region (which seems extremely unlikely),
one set of measurements or the other must be badly
in error, but, in any case, both sets are in strong disa-
greement with the usual theories.

As a result of these experimental discrepancies, we
feel that a re-examination of the usual theories should be
made in order to see how various approximations might
account for them. To this end, we will discuss below
several of the objections and doubts regarding the older
theories that make an alternative formulation seem
desirable despite its complexity. In particular, a pertur-
bation expansion in powers of the density (in the limit
of large absorber mass) is developed which leads us to
conclude that any such expansion will only be good for
the wings of the line, but not the center, where many
body interactions become important. The results of this
examination indicate that the usual theories are quite
doubtful in the case of resonance, and that an alterna-
tive formulation is of value.

The purpose of the present paper is to develop such a
formalism in a way which allows for a clearer under-
standing of the approximations that may be necessary
for greater agreement between theory and experiment,
and also to try to decide between the two conflicting
sets of data. One of us (C.A.M.) has developed pre-
viously a formalism for calculating the complex refrac-
tive index of a monatomic gas in the region of an absorp-
tion. The treatment begins from the quite fundamental
point of view of actually studying the properties of the
stationary states of the quantum-mechanical system
composed of the radiation field and matter, and there-
fore avoids the difficulties of the more usual theories to

§ J. Tomiser, Acta Phys. Austriaca 8, 198 (1953); 8, 276 (1954);
9, 18 (1954); 8, 323 (1954).

6 H. Moser and H. Schultz, Ann. Physik 4, 243 (1959).

7 A. C. Lauriston and H. L. Welsh, Can. J. Phys. 29, 217 (1951).
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be discussed below. The original theory?® considered each
absorber to occupy a fixed position in space, so that
effects due to the motion of the atoms were left out, and
depended quite heavily upon the use of “damping
operators.”® More recently the results have been re-
derived by means of a simpler formalism!® and at the
same time brought into rough agreement with Tomiser’s
work. We now feel that one of the approximations used
in this earlier work [mentioned briefly just before Eq.
(29) of Ref. 10] is inappropriate under experimental
conditions, for reasons to be discussed in the Appendix
to this paper. The basic approach, however, is still valid.

The plan of the article is as follows: In Sec. II, some
remarks are made concerning earlier theories. In par-
ticular, it is indicated that the practice of treating the
line shape as due to independent two-body encounters is
highly doubtful near the center of a resonance line even
at low densities, though it should be valid for foreign gas
broadening and in the wings of the resonance line. Some
formal objections are also listed, which make a different
derivation of the basic equations desirable. Section I1T
introduces the notation and discusses some preliminary
approximations. In Sec. IV, the basic formula relating
the observable frequency-dependent susceptibility to
the resolvent operator is derived in a way which is free
of the formal difficulties discussed in Sec. II. The result
is essentially equivalent to the starting equations of
most earlier work,"? but is more general in that it in-
cludes all effects due to the translational motion of
absorbers, to the quantized nature of the radiation field,
and to ‘“‘spatial dispersion.”* In Sec. V, we specialize
to the limit of large absorber mass, so that kinetic
effects can be neglected and each absorber may be con-
sidered to occupy a fixed position in space. In this limit,
the expansion in powers of the density usually employed
(most explicitly by Fano?) is discussed with the aid of a
simple diagrammatic notation. It is shown that if one
cuts off this expansion after any finite number of terms,
there will always be a region near the center of the line
for which the result is badly wrong, and it is concluded
that one must study the entire series in order to have
any hope of describing the line center. Section VI con-
siders the “two-body” approximation, which should be
valid on the wings of the absorption line. Although all
previous workers have used the two-body treatment, we
believe this is the first time that the spin-orbit inter-
action has been correctly handled. The results are com-
pared with the experiments of Ref. 4 on the wings of
alkali doublet lines and satisfactory agreement is ob-
tained. In Sec. VII, the “extended two-body” approxi-
mation is introduced, which permits a qualitative treat-
ment of the center of the line, and order-of-magnitude
agreement is obtained with the work of Lauriston and
Welsh.” In particular, the dependence of the linewidth

8 C. A. Mead, Phys. Rev. 120, 854, 860 (1960).
9 C. A. Mead, Phys. Rev. 112, 1844 (1958).

10 C, A. Mead, Phys. Rev. 128, 1753 (1962).

11 J. Neufeld, Phys. Rev. 123, 1 (1961).
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on the square root of the density, observed by them is
explained. It is concluded that the experiments of
Lauriston and Welsh are to be preferred over those of
Tomiser.

An Appendix contains a brief discussion of the ‘“strong
linear”” approximation used in Refs. 8-10, generalized to
include effects of translational motion.

II. REMARKS ON PREVIOUS THEORIES

Inasmuch as generalization is possible, previous
workers have taken as their starting point an expression
for the spectral distribution [e.g., Fano’s Eq. (3)] or
alternately its Fourier transform, the autocorrelation
function of the position (or light amplitude). This
expression is for one of the absorbers or emitters which
has been singled out for study, and the effect of all the
others upon it is calculated. Since the excitation in the
resonance case is really a property of the gas as a whole
this procedure could lead to difficulty.

In the “impact’ approximation, the time of a collision
is considered short enough so that the perturbation may
be treated as being due to many independent collisions.
With this approximation, one assumes the interaction
can be represented by that due to a single perturber, and
the result multiplied by the total number of perturbers.
This is equivalent to the assumption of independent
two-body collisions (“two-body approximation’) which
is not obviously correct in the case of resonance. For,
suppose absorber 4 is initially excited, and it then has a
collision with an identical absorber B. At the end of the
collision, it is quite possible for the excitation to be
transferred to B, and for it to be subsequently trans-
ferred to C in a much later collision, etc. In this way, the
excitation may well be carried by a large number of
other absorbers before it returns to A4 (if it ever does),
even though three or more absorbers are never in close
proximity at any one time. In other words, many body
processes may be of great importance even at low
pressures, making an expansion in powers of the density
dubious. For foreign gas broadening (where B is differ-
ent from A) this problem does not arise because the
excitation can only remain on B for a time the order of
(Av)™, where Av is the difference between the frequency
of the line in question and a resonant frequency of B.
Therefore, it can only be transferred to C if C is close by
(a real three-body collision). The wings of the resonance-
broadened line also avoid this problem, since here the
difference between the driving frequency and the
resonant frequency plays the same role as Av. These
considerations, while admittedly rather naive, indicate
that the usual impact theory should be very good in the
wings, but not necessarily so near the line center—a
situation that is apparently verified by experiment.

In the case of the “quasistatic” theories, the time
required to complete a single collision is very long so
that the motion of the perturbers can be disregarded in
the calculation of the Fourier transform of the line
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shape.? The perturbers are assumed to occupy fixed
positions, and then a statistical average over positions is
performed. To complete the calculation requires the
further assumption of the additivity of the perturba-
tions due to different perturbers, an assumption that is
not even qualitatively correct in the case of resonance.
For both foreign gas broadening and the wings of the
resonance case, it is very good, however. It is a peculiar
property of the resonance case with dipole-dipole inter-
actions that these two types of theory give essentially
the same result.

Both these methods treat the perturbation as due to
independent two-body processes. As has been brought
out clearly by Fano,? this corresponds to expanding in
powers of the gas density and keeping only the first
term. We now present a dimensional argument which
indicates that this is not permissible for the case of
resonance in the static limit (large absorber mass). This
will be made more explicit and rigorous in Sec. V.

In this limit, the only parameters characterizing the
system are the density 9T (cm™), the square of the
dipole moment matrix element of the transition in
question, u? (erg cm?), Planck’s constant, % (erg sec),
and w (sec™), the difference between driving frequency
and resonant frequency. The susceptibility may be
written as

x (@)= —4r9’/ Hlo—Aw) ].

If A(w) is constant, the line is Lorentzian with shift and
width determined by the real and imaginary parts,
respectively, of A. For this reason, A is the quantity
which one normally expands. We write

Aw) = a1 (w0) N+ a2 (w) I+ a3(w) 9B+ - - - .

Now A has dimensions sec™, and the only quantity
proportional to 91 with these dimensions is (91u?)/%.
Accordingly, the first term in the series must be a
dimensionless constant &; (independent of the param-
eters) times 9u?/%. The second term must be propor-
tional to 913, and have dimensions sec™, and it can
easily be seen that it must be another dimensionless
constant b, times (9u?/#%)(Mu?/hw). Continuing this
reasoning, we find

A(w)=gih-‘ﬂ{bl+b2<3;iz)+b3(ngf>2+ . } _

) fiww

Near the center of the line (small w), the second term
becomes larger than the first, the third larger than the
second, etc. The conclusion again is that the practice
of keeping only the first term is not valid near the
center of a resonance line, though it is all right in
the wings (large w), and in the treatment of foreign gas
broadening.

In addition, there are some formal objections that one
can make to most treatments of the usual theories
which will have only a minor practical effect since, in all
cases either the effect involved is quite small, or it is
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easily corrected for, or both. Nevertheless, a theory
which automatically includes all these effects would be
more satisfying. These objections are:

(1) In practice it is usually the emission rather than
the absorption which is calculated. Inasmuch as the two
are not rigorously identical, the calculation of the
absorption is to be preferred. In fact, the emission
spectrum is not even a uniquely defined quantity, since
it depends on the conditions of excitation.!?

(2) The properties of the radiation emitted play no
role in the usual theories. Thus all effects due to the
quantized nature of the radiation field (e.g., recoil shift)
are left out. Also omitted are effects due to the finite
velocity of light, such as Doppler broadening.

(3) It is difficult in the usual theories to include
magnetic and retardation effects in the interaction be-
tween different absorbers, except in lowest order in
perturbation theory.

We now proceed to formulate the theory in a way
which is free of these difficulties.

III. NOTATION AND HAMILTONIAN

Our system consists of N identical absorbers, each
with mechanical mass m, distributed in a volume V,
within which the radiation field is required formally to
obey periodic boundary conditions. In the “initial”
state |0), each atom 4 has a momentum #q, assigned
to it, and the number of atoms with momentum in a
given region of wave-number space is described by a
Boltzmann distribution at some temperature 7". For the
sake of definiteness, the ground electronic state of each
atom is considered to be a nondegenerate s state, and
the only excited level (or at least the only one of
interest to us) is assumed to be a triply degenerate
p level. The effect of spin-orbit coupling will be con-
sidered later. The energy difference between the two
levels is #vo. A given state of the system of radiation
field plus matter may differ from the state |0) in one or
more of three ways: (1) There may be a photon present;
this is denoted by a greek letter, e.g., A denotes the
presence of a bare photon of wave number x) and
polarization ex. (2) One or more of the atoms may be
excited; this is indicated by a capital Latin letter
denoting which atom is excited, with a subscript giving
the direction of “polarization” (electric dipole moment
matrix element between excited state and ground state).
Thus, A4; represents the excitation of atom 4, with
dipole moment matrix element in the ¢ direction
(i==%, ¥, 2). (3) One or more of the atoms may have
acquired a momentum different from that assigned to it
in the state |0). x(4) indicates that atom A has an
excess momentum 7%x, so that its total momentum is
#(qa+x). The way in which these symbols are combined
in specifying a state is best explained by means of a few

12W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, New York, 1954), 3rd ed., pp. 196-204.
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examples of states represented in our notation and with
their properties also written out in words:

[7,%(4)): Photon present with wave number x, and
polarization e,; atom A has excess momentum «x; all
other atoms as in state |0).

| Asy%1(4),%2(B)): Atom A4 excited, with “polariza-
tion” in ¢ direction; atom A4 has excess momentum
hr; atom B has excess of %xy; all other atoms as in
state |0); no photons present.

We are interested in constructing the ‘“dressed”
photon state |\), which is an eigenstate of the complete
Hamiltonian with energy #v\(va=cx)), and which in
some sense approaches the bare photon state [A) in the
limit of zero interaction. In most of what follows, we
shall assume that |A) can be built up entirely out of two
kinds of states: (1) States with one photon present, and
no electronic excitation. (2) States with one and only
one atom excited, and no photons present. States
coming under categories (1) and (2) may still, of course,
include any combination of excess translational mo-
menta for the various atoms. Other states, such as two-
photon states and states with several atoms excited,
may be included later by means of perturbation theory,
if desired. The approximation of limiting ourselves to
the states of types (1) and (2) should hold in the fre-
quency region »=fvo, which is the region we are
interested in here. It could be made more formally
precise by means of the Arnous-Bleuler transforma-
tion,% 1314 but this would make some of the subsequent
manipulations more complicated so it was decided not
to use it in this article. The general result of Sec. IV is
totally independent of this assumption.

The refractive index can be thought of as describing
the propagation of the electric field matrix element

(O] Eo(R) |X)=2 (0| Eo(R) [n)(n|X).

This immediately leads to a difficulty: It would appear
that because of momentum conservation (3|A\)=0
unless x,=1wx,. This would mean that

(O] Eo(R) |A)=Eqo exp(ixa-R),

corresponding to a refractive index of unity. This
problem does not arise in the situation treated in Refs.
7 and 9, since there the momentum conservation is
spoiled by holding the atoms fixed. This apparently
hopeless difficulty really is the result of a rather trivial
effect. Momentum is indeed conserved when an electro-
magnetic wave propagates through a medium with
altered wave number, but the excess momentum is
taken up either by the medium as a whole or by the
walls containing the medium. Since explicit inclusion of
the effects of the walls in a calculation is not feasible, we
will treat the excess momentum as belonging to the
medium as a whole. From this point of view, the

1B E, Arnous and K. Bleuler, Helv. Phys. Acta 25, 581 (1952).
4W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, New York, 1954), 3rd ed., pp. 348-353.
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propagation of the field should be considered relative to
the center of mass of the medium. Therefore, instead of

Ec(R)=2, e.{s, exp(ix, R)+s, exp(—ix,-R)}

(where s, and s,! are, respectively, destruction and
creation operators, apart from constants), we use

E(r)= Eo<% 24 rA—i-r)

K
=>,¢, {s,, exp (ix,-1)[ 14 exp(iT”-rA)
A

K
+s,texp(—in, )14 exp(——i—\;-u)} .
!/

When E(R) is applied to a state, it not only creates
(destroys) a photon, but also alters the momenta of all
the atoms by a small and equal amount in such a way
that total momentum is conserved. From now on,
therefore, when we write down a state it is to be under-
stood that, in addition to the photons, excitations, etc.,
specifically noted, the state also includes an additional
superimposed momentum of the entire medium (equally
divided between the N atoms) such that the total
momentum of the state is zero. With this understanding
all the states we are talking about have the same mo-
mentum, and we can study the propagation of

OIE® [N)=240[E® [n)u]}).

There will be no need to mention this explicitly again.
Indeed, most of the subsequent manipulations could
be gone through formally without performing this trick
at all, the only trouble being that they would be
meaningless because of both sides of the various equa-
tions being zero. The energy associated with this super-
imposed motion is, of course, negligible in the limit
N —o,

We now give some typical Hamiltonian matrix ele-
ments. All the ones we will need will differ from these
at most by the presence of an excess momentum on an
atom appearing on both sides of the matrix element and
having no effect except to shift the energy in the case of
a diagonal matrix element. The energy of the state |0) is
taken as zero. We obtain the following matrix elements
for the total Hamiltonian operator 3Ciw¢ (includes the
dipole-dipole interaction between atoms):

(A sk (4)]3C0s] A 5x(4))=H[vo+K (qa,%)], (1)

where

/2
K(q)K) = —2';';[211' K+K2] ) (2)

(N 3Ceot | 1) = Fvrdry, 3)

22 fi\12
ey (A) | o | n)= — i —
(i) )= —— u<2) @
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4 4 . KiKj ~
(s )1 BB (i) ()= ). 9

In Eqs. (4) and (5), u is the absolute value of the dipole
moment matrix element for the transition. We omit
interactions between atoms in the ground state, i.e., we
consider the gas in the absence of electronic excitation
to be ideal.

For clarity, we consider the Hamiltonian to be
representable as

FCoot= E'}"GC )

where E is a diagonal matrix corresponding to the un-
perturbed energy and 3C has no diagonal elements. With
this, Eqs. (4) and (5) can be written in terms of the
3¢ only.

It will be convenient at this point to dispose of one
more preliminary matter. Later on we will have
occasion to evaluate the quantity

4 ,(x—xy) (4))]?
w:limz,,|<A x(4)]5e|n, (x—x4) (1)) ©
£>0+ Alva—vo— K (qa, x—%q)F+3&]

In situations of interest to us here,
[ 12— 0| Kro.

Thus, we can estimate W by replacing » by vo. With
this replacement, however, ReW is just the second-order
transverse self-energy of the state | 4;,x(4)), and may
therefore he absorbed into vy by renormalization. If we
also assume

K(QA, K— “11)<<V0 )
then we get (replacing the sum over n by integration)
W= —iho=—%i(vi®/)u’, (M

where ¢ is the natural linewidth. In what follows, we
will always use (7). The approximations involved are:
(1) Neglect of recoil corrections to the natural linewidth,
which are small and can be corrected for if desired;
(2) Neglect of the dependence of Im ¥ on », which is
also very small in the frequency region of interest:
(3) Neglect of the cutoff-dependent ReW when »#=vq.
The formal justification of this requires the Arnous-
Bleuler transformation.”-!1 12 If the reader will accept
this one result, he will be spared the complications that
this transformation would introduce in the subsequent
manipulations.

We now present the basic assumptions that are
inherent in our view of the problem. Classically, one
may expand the electric field E and polarization P in
Fourier series as follows:

E(r,t)=/ v Y« Eo(v)e, expi[xa-t—vl];

P(r,t)=/w dv Y Po(v)ea expil ko T—vt].



A 688

Here the notation « represents a wave number x, and
a polarization unit vector e,; for each wave number
there are three polarizations, two transverse and one
longitudinal. The allowed wave numbers are those
compatible with the periodic boundary conditions.

The requirements that the medium be isotropic and
describable by a refractive index (but with the possibil-
ity of “spatial dispersion”) may be expressed by

4P () =F (v kay¥a- 2a) Eo(v) ®)

where F is a function depending only on the frequency
v, the absolute value « of the wave number, and whether
the mode « is longitudinal or transverse. We will also
use the notations F;(v,k), Fi(v,x) to indicate the trans-
verse and longitudinal susceptibilities, respectively.

The observable refractive index p, a function of » only,
is determined by the transverse susceptibility and by
the requirement that k= p»/¢. Thus we find

pP(V)—1=FLr,p(v)v/c]. (8a)

In general, the solution of (8a) may require analytic
extension to complex values of , corresponding to
absorption.

Quantum mechanically, E and P become operators,
but otherwise the situation is unchanged. In the
Schrédinger picture, the frequencies are to be replaced
by energy differences divided by %, and we have differ-
ent equations for the various matrix elements of the
operators. A quantum analog of Eq. (8) is

(0]47Po|N)=F (v)kay¥a® £a){0| Ea|N). 9)

It will be convenient to rearrange (9) slightly before
using it. We note that

E=Ecu—c1(9/d0)A,

where Ecou is the electrostatic longitudinal Coulomb
field, and A is the transverse vector potential (we use
Coulomb gauge throughout). We also have

190 _ in -
(0] == —A[A)=—0]A[}). (10)
¢ at c
Hence, if we define
8=Ecou1+ (iV)\/C)A, (11)
then we can combine (9), (10), and (11) to obtain
(0]47P | A)=F (n1kar¥a* £){0] Ea|N). (12)

Equation (12) is the expression we will use for the
requirement that the medium be describable by a
refractive index.

It is also useful to notice that the electrostatic
dipole-dipole interaction, whose matrix element is given
by (5) may be written as '

Hap=— uv4a- Ecoul(B>A) P) (13)

where u4 is the electric dipole moment operator of
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atom 4 and Eeou1(B,4) is the electrostatic field produced
by atom B at the position of 4. We can therefore write

(A i:K(A) lC‘CIBJ';Ka(B),<K“ Ka) (A»

= 0] 8| Bya(B)).  (14)

Ke

We also note that Eq. (4) can be rearranged as follows:

<Aj,x,,<A>|scxn>=—i§ue.,j<omﬂ|n>

Vo
="‘.Uv€w_<0l 8,,[17>

128
= —peg (0] 84l n), (15)
since we are interested only in the situation where
| ra—vo| <Ko (16)

IV. CALCULATION OF THE REFRACTIVE INDEX

In order to find expressions for the various matrix
elements appearing in Eq. (12), we must know some-
thing about the dressed photon state |\). As the reader
will remember, |A) was defined by

SCmt| X)"—_ hV)\ l 5\)
with the expansion in terms of the zero-order states
IN)=N)+20|0)0[N).

Denoting a general zero-order state by a, b, etc., we
have by taking the inner product

h(n—ra)(a|N)=Lmeara|3|B)0[N),  (17)

where %, is the energy of the zero-order state |a). The
appropriate “retarded” solution of (17) is

(alRy=1 (m—vatit)™ Tieala|3C]B)(B|N),

in which the limit £ — 0+ is always understood.

Now let us examine some field and polarization
matrix elements. If 9 is a transverse mode, so that there
are photons of type », we have

(0] &;1X)=1(0] &, n)n|N).
For the polarization we have

P)=24 w4ad(r—14),

(18)

(19)

1
P,,=;—/s,,-P(r) exp(—1ix,-1r)d%,

=7 24 &y ya exp(—ixg 1a),
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so that
(0147 Py|X)=3_4(0] 47 Py| A4 (A4) ){A5,%,(A) [X)

4oy, -
=7 24 €qi{djya(4) I A). (20)

Here and henceforth a summation over repeated coordi-
nate indices j, &, etc., is understood. We will now apply
(17) to |a)=|A4;%,(4)), and also use (15). The result is

Alo— K (q4,%5) (4 j%,(4)|N)
= —pegi(0] 8| m)n|X)
+ZS’#1I<AJ':“0(A) IﬁCIg‘, (“ﬂ_ 139 (A»
X(E, (k=) (4)[A)

S (Aprn(A)]5] Buy (ty— 10a) (A), 0 (B))
B#A,a

X (B, (k3= xa) (4),%a(B)|X).  (20a)
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Here the last summation goes over all longitudinal
modes @, and we have defined

W=VYA—Vo.

We now apply (18) to the state |a)=|{, (xy—xs)(4)),
and also use Egs. (6), (7), and (19). The result is

Mlw— K (q4,%,) 1{4;,%4(4) ix> )
= _#ew'<0| gﬂl N)—ioh(d xq(4) | A)
+ZB#A,0<AJ'7K11(A) | :K:IBk; (%5—%a) (A)yka(B»
X (B, (ky—xa) (4),xa(B)[N).  (21)
The last summation now goes over all modes, transverse

and longitudinal. In arriving at (21), we have assumed
that the omission of the one photon mode % from the

summation in (6) does not affect the result. The matrix

elements of & are defined by

(A5%(4)| 3| Bryxa(B), (k—xa) (4))=(4,x(4) | 5| Bi,xa(B),(x—%a) (4))

(i (4)[3] 0, (k=) (4) o, (k— 1) (4) |3¢| B, %a(B), (k—xa) (4))

(22)

The first term on the right-hand side of (22) is nonzero
only for longitudinal modes, the second only for trans-
verse modes.

We now make the following definition:

—'iha<Ai7Kﬂ(A) | 5\)
+ZB¢A.¢X<AJ')‘K1I(A) l :K:lB/cl(Kﬂ_ ‘K,,) (A):KH(B)>
X<Bky (K"I~Kl¥) (A))Ka(B) [ )‘>

= hAJk (w)Kqu) (Ak)Kﬂ(A) l X) . (23)

Now Eq. (23) can be inserted into (21) and the result
solved for {4;,x,(4)|\). The result is

(Asa(4) R
- J—;<0| 8y M K (@ayen) — Al ers.  (24)

The matrix U= (w—K—A)~1is, of course, the inverse
of the matrix whose elements are (w—K)d;z— Ax. It is
now a simple matter to substitute (24) into (20}, sum
over 4 using the Boltzmann distribution, and solve
Eq. (12) for F; with the aid of the result. This gives the
solution

dap? /BN Y2
Fiwky)=— ; ;(;) /CXP(—ﬁqz)fni

X[w—K(q,Kﬂ)—'A(“’)Kmq)]ﬂﬂ_leﬂkdsq ’ (25)

where 8= #%/2mkT, and k is Boltzmann’s constant. We
could have replaced the matrix product under the

#{m—va— K[ qa,(x—x,) |+i&}

integral sign by

1
e,,jUjke,k=—%[Ukk-——;lch,-kxk] o
K
It is a straightforward matter to derive an expression
analogous to (25) for F;. The result is

Fz(w,«)=—3’r; ﬁ(f)w [ exp(—B¢)

y(§
Kj Kk
X—[w—K (g,%)— A(w,%,q) s "'—d%. (26)
K K

The two susceptibility functions F are determined by
Egs. (25) and (26), if Aj; can itself be determined; and
o(v)) is then fixed by Eq. (8a). In the remainder of this
section we find a formal series expansion for A and show
its connection with the resolvent operator.

We can find a formal expansion in the following way :
by comparing Egs. (20a), (21), and (23), it is easy to
see that

hAJ"C ("":Kqu)<A k;“ﬂ(A) | 5‘) _
=2 o{djxa(4)|3|a)alN),

where the summation goes over all states except
|@)= 7). Since there is no singular contribution of |7),
it may be considered to go over all states.

The next step is to substitute (18) into the right hand
side of (27). Then use (18) again to replace all the terms
(6|X) on the right-hand side of the result, except for

(27)
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|8)=A44,%(4)), and repeat this indefinitely. This gives
1A (0,%,q) (Ar,k(4) [X)
(4;,x(4)|3c]a)(alse|b)(b|N)
h(vn—vati8)

=Za, Zb

Aj,K(A Xia 3C Ak,KA _ Aj,‘KA 3C b)b 5\
_y M@l R A ) A0l
h(va—vat+1i£) h(m—vatif)

, {Asx(A)| 50| a)(a]3e| Are(A) Xdrx(4)[N)

h(V)\'— Va+iE)

a

(A;,x(4)|3¢] a)(a]3e|b)(b]3C] Akw(A) ) Ar,k(4)|N) 1
72 (= va+i£) (m—vpt+if)

where a prime on a summation means that the three states | A,x(4)) are to be omitted (¢=x, y, z). By inspection
of this series, we see that Aj, can be expressed formally as

+Za,b/

B o) =5 (AiyK(A)|GC|0>(0|531[Ak,K(A)) L (Amc(A)|3C[d><a[j7€|b)(blﬁ‘clz“ikm(fl»
R(vn—vatif) _ B2 (r—vat+18) (—vot+if)

+oe (29)

Those familiar with the earlier work®10 will recognize the connection between Aj; and the “damping operator.”
We now wish to demonstrate its connection with the more familiar resolvent operator, defined by R(z) = (—3Cs0t) 7,

where z is a complex number with the dimensions of energy. To this end, consider the following series expansion for
a resolvent operator matrix element:

(4jx(4)|5e]a)al3| Ar,x(4))

(4;,%(4) | R(hw)| Ar,x(A))= (hv—E4) %8s+ (hv—E4d ™1 20

fiv—E,
b + , (30)
(Av— E,) (hv— Ey)
where
E = hvo+K(qa,x)]. (31)

The terms in the series in curly brackets may be classified according to the number of intermediate states they
contain of the form |A4:x(4)). The total contribution of terms with no such states is easily seen to be
just hA,k(w,x,q 4), since singling out these terms is equivalent to putting a prime on all the summations, giving the
same series as (29). Similarly, each term with one such intermediate state can be written as the product of two

primed sums times the energy denominator for the intermediate state, so that the contribution of all these terms is
seen to be

(BA;;) (hAz)  (BA)Yk
hV——EAK ﬁV"EAK‘

Applying similar reasoning to the terms with two, three, etc., of these intermediate states, one easily finds

A RO Apeym e P2 OOTE L B hArad T (2
o e B (r—End? | G—Ead® o ©rfa) i

Comparing (32) with (25), we see that the susceptibility can be expressed as

N 3/2
Ft(w;Kn)=—47rﬂ2_I;<_> / exp(—Bga)eni(djwy(4) | R(1v) | Aryxq(4))emd®qa (33)
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(note that w=w—w,). It is understood that » should
always be given a small positive imaginary part.

It might be objected that the series expansions and
the rearrangements of them used in deriving (33) are
not valid for all values of ». However, it is sufficient if
they are valid for some range of » values. For then, Eq.
(33) holds for a finite range of », and hence by analytic
extension for all values, since both the susceptibility and
the resolvent are analytic functions of » in the upper
half-plane, and the process of analytic extension is
unique.

Expressions similar to (33) have, of course, been used
by other authors. For example, if one carries out the
indicated Fourier transform in Fano’s? Eq. (3), one
finds the following rather minor differences: (1) There
are differences in multiplicative constants; (2) Fano’s
trace over the density matrix is replaced by our inte-
gration over ¢; (3) Our expression includes spatial
dispersion and must be combined with (8a) in order to
get the observable refractive index.

It is clear, then, that (33) is closely related to the
results of other authors, but its derivation is not subject
to the formal objections listed in Sec. II. It should be

noted also that the resolvent is to be taken with respect

to the fofal Hamiltonian, including that of the quantized
radiation field. The practice of using only the Hamil-
tonian for the gas itself should be clearly recognized as
an approximation, though it is no doubt a good ap-
proximation and will be used by us in the following
sections.

V. STATIC LIMIT: DENSITY EXPANSION

Equation (33), or alternatively (25), in principle
determines the susceptibility, but evaluating the neces-
sary resolvent matrix elements is of course an impossibly
difficult task. The problem can be more easily studied if
we make the ‘‘static’” approximation of allowing m to
become infinite; this permits us to assign to each
absorber a fixed position in space instead of an initial
momentum. It will be recalled that the simple impact
theory (which retains only the linear term in the
density) gives a result independent of # for our problem,
so it appears that the use of the static limit is par-
ticularly appropriate for this case.

In this limit, it is easy to see that A becomes a scalar,
and that F, is independent of the wave number. Equa-
tions (8a), (33), and (25) may therefore be replaced by

2

Folw)=p(w)—1=— h"sn(w—A)—l

=—4mp®9(A:|R(hv)| 45)  (34)

(no sum over 1), where 1=N/V.

We will also make the approximation of replacing 3¢

(which includes the transverse field Hamiltonian) with
the simple dipole-dipole Hamiltonian in taking the
resolvent. This means that we are omitting magnetic
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and retardation effects. The only matrix elements of
JC now are

(4:]5¢] Bj)=

u?
- (ai,-—3

rABirABj]
7AB

=v@, ()

7°4B TAB

where ¥ (Q) is a function of angles only.
The perturbation series expansion for the resolvent
can be expressed as

<‘{1I‘R(‘“/)|At) (ﬁw) !
Ai 3C B,‘ B]' 3¢ Ai

+ (fw)~?
B 22
A; B;)B; Cu){Ck i
Ly GlBERlCCIRA)
B,C (ﬁo))2

In (36), there is no sum over %, but we do sum over all
other repeated indices. Note that in the approximation
we are considering all energy denominators are simply
fuw.

It will be convenient to represent the terms in curly
brackets in (36) by means of a simple diagrammatic
notation. We use labeled circles to represent different
absorbers and directed lines to represent Hamiltonian
matrix elements connecting two absorbers. The con-
tinuity and direction of the lines gives the order of
factors for each term. This is best made clear by giving
some examples of diagrams together with the terms
which they represent. This is done in Fig. 1.

Now consider the expansion of the resolvent in
powers of the density:

(4:|R(hv)| Ai)=R(w)= (o) '+ ¥ Ru(w)*. (37)
n=l1
The corresponding expansion for A is:

BA@) =3 Gn(w)IT.

n=1

(38)

Comparison of (36) and (37) shows that ®,(w)3" is
simply (%w)~? times the sum of all diagrams involving #
atoms other than atom A. Alternatively, instead of sum-
ming all the diagrams one may sum those for a particular
set of # absorbers, getting a function of the positions of
the » absorbers, multiply this by 91” and integrate
over the positions of the absorbers. (Some of these
integrals may diverge, but the sum of all of them is
well behaved, as will be verified explicitly for z=1 in
the next section.) In order for (34), (37), and (38) to be
consistent, it is clear that @,(w)9” must be just the
sum of all diagrams involving # absorbers other than A,
except those which are simply products of two or more
diagrams of lower ». Since A is closely related to the
width and shift of the line, it is the quantity usually
expanded. We now prove that if the expansion (38) is
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F1c. 1. Examples of diagrams: (a) Lowest order two-body dia-
gram; (4:|3C|B;){B;|3¢|4:)(#iw)™1; (b) Second-order two-body
diagrams, (4;]5¢| B, )(B ,IaciAk><Ak‘sc‘Bz><lesc|A ) ()
Three-body diagrams, (4;|3¢|B 3C| Cr)(Cr|3C| 4:) (Fir)~2; (d)
andi(e) Branched two-body diagrams, (4; IS(Z] B ,]JCle)(DkI
XSCIB;)(B;‘SC'C,,)?C,.'&C'BTU (B"vIZCIA ('h"’)—ﬁ and (4; l

X (B;|5¢|Cr){Cr|5€| D1)(D1] 3| Ca){Cn | 5C| Bar (Bw|3Cl11i)(ﬁw)"5
Sum over repeated indices except 3.

cut off after any finite number of terms, the result will
always be meaningless sufficiently close to the center of
the line.

If we consider a typical diagram with 7 atoms besides
atom A, it is seen that its contribution to #A is given by :

9 (w?)? (o) 7+ / / (R®)?Y 45 Ve - -dR*. (39)

Here p is the number of lines (or matrix elements)
occurring in the diagram, (R®)? is actually the product
R453Rpc?- - -, and the required integration over the
atoms has been performed. From this form of the inter-
action, each matrix element is seen to contribute a
factor (u2/rcp®)Yep(Q). With the simple change of
coordinates,

g=[h|o|/w]Pr, d¥r= @/ h(w)"dE,
(39) becomes

X (Y 4¥5Be -

ding,  (40)
where the integrated part is independent of the system
parameters and depends only upon 7. As an immediate
consequence of this, we can write

)= 3 (m“ 2>"ﬁwA,,, (41)

n=1
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where A, is an infinite sum of dimensionless integrals
such as the one appearing in (40). It should be empha-
sized that it depends only on # (and on the sign of w).
Now it is easy to see that for any #, if

9“(#2 An+1
w<l— ’

B An

then the #-1 term of the series (41) is larger than the
nth. Thus, if one cuts off the series after any finite
number of terms, there will always be a finite region
about the center of the line for which the result is not
even approximately valid (barring the extremely un-
likely possibility that all but a finite number of the A,
are exactly zero). It is true that this region becomes
narrow as 9 becomes small, but so does the region of
absorption. The conclusion is, then, that a finite number
of terms of (41) will give a result which is quite accurate
in the wings of the line, but totally meaningless in the
region of appreciable absorption. Note that this result
could not have been proved for broadening by foreign
gases, since in that case w would be replaced by
w+ (vo—v,), where », is a resonance frequency of the
broadening gas, and this quantity remains large when
o becomes small.

It appears, then, that one must study the entire
series (41) in order to have any hope of describing the
absorption near the center. If we introduce the dimen-
sionless variable y= (w/9u?), we see that A is equal to
w times a function of y. Combining this with (34), it is
clear that the susceptibility is a function only of y:

Fi(w)=F.(y).

There are now two possibilities:

(42)

(1) Fi(y) is well behaved everywhere. This would
mean either that the series (41) converges for all y or
that it converges for sufficiently large y and that its
analytic continuation is well behaved for all y. In this
case, it is clear that the half-width would be simply
proportional to 9, even for very high densities:

w1j2= (/W) yy2, (43)

with a similar relation for the shift, if any. However, one
would have to sum the series (41) in order to evaluate
the coefficient yy/5. Since we don’t know how to do this,
we have no way at present of estimating the value of
the coefficient, or the shape of the line. In particular, it
is conceivable that summing (41) might lead to a value
of y12 in agreement with Tomiser’s results.

(2) Fi(y) has one or more singularities, most likely
at y=0. We feel that this is the more likely possibility.
In this case, the singularity would have to be smoothed
out by taking into account one or more of the effects
neglected in this section, such as the translational
kinetic energy (noninfinite mass) or the finite atomic
radius. The height of the maximum, and hence the half-
width, would then depend on the parameters used in the
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smoothing-out process (mass, temperature, atomic
radius), as well as on the density.

In Sec. VII, we sum a restricted class of diagrams and
arrive at a result in accordance with the second of the
above possibilities. When the resulting singular suscepti-
bility is averaged over the Doppler line shape, results are
obtained which are in qualitative agreement with the
experiments of Lauriston and Welsh.

VI. TWO-BODY APPROXIMATION

The “two-body’’ approximation, to be considered in
this section, consists in taking just the first term in the
series (41). According to the result of the last section,
this is not an appropriate approximation for the center
of the line, but should be very good in the far wings, for
which experimental data do exist.* As we shall see in the
next section, moreover, it can serve as a starting point
for a qualitative theory of the line center.

While all previous workers on this problem have used
the two-body approximation in one guise or another,
none to our knowledge has systematically and correctly
taken the spin-orbit interaction into account. Since the
experimental data apply to the alkali doublets, it is
necessary to do this before comparing the results with
experiment.

The transition under consideration, then, is from
a 2Sy2 ground state to two different excited levels, 2Py,
and %Py,. We will treat these lines as completely
resolved ; that is, we ignore the effect of each one on the
other just as we ignored the effect of excited states.other
than the one under consideration in the previous
sections.

In the case of the § component, Eq. (34) is to be
replaced by
o)1= — o )
w)—1=——9N(w—
4 v 3% 3/2,

8mwu?

= p IUAn|R(hv)| An); (44)
while for the 3 component we have
Arp?
PHw)—1=— - N (w—Ay2)
4aru?
=— (45)

p IUYAn|R(hv)| An).

In Egs. (44) and (45), u is still the dipole moment
matrix element with spin neglected, w is calculated
relative to the doublet component line under considera-
tion in each equation, and # denotes quantum numbers
required to specify a state, given that atom A is excited
(e.g., magnetic quantum number of the excited atom
and all unexcited ones, relative to some axis). It is clear
that we can still use the diagram notation without con-
fusion for this situation.
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To find A in this approximation, we must sum all the
diagrams containing only one atom B besides A, mul-
tiply the result by 91, and integrate over the position of
atom B.

Consider first the atoms A, B, with only the § excita-
tion permitted. A state of the system may be specified
as follows: state which atom is excited (A or B); give
the magnetic quantum number #; of the excited atom
(%3, £3%); and give the spin quantum number of the
unexcited atom (==3). Thus, there are sixteen states in
all. If the zero of energy is taken as #v,, the Hamiltonian
breaks up into 8X8 submatrices as follows:

uir0 U
)
A\ 0

where U is a matrix referring only to s and s (which
we collectively call #). We can write a series form for
Age starting with the obvious analog of (36) as follows
(it should be remembered that all diagrams involving
only these two atoms are to be included, since none can
be written as products of diagrams involving fewer than
two atoms):

(45a)

© J02p
Bise= [ (An] Y —

p=1 (fiy) 271

]A%>d37'3 y

= i (n!i( - <u) p|n>d3rg,

p=1\73}w

BT /‘ { [ (u?/r3hw)L]?
= Tr
8 1—[ (u/73hiw)uU]?

} d’rp, (46)

where the last expression comes from summing the
series and noting that because of symmetry all the
diagonal elements will become equal after integration
over the angles. It is understood that the series is
summed for those values of w for which it converges and
the resulting function analytically continued to other
values. In terms of the eigenvalues #; of U, Eq. (46)
takes the form

whedl 8 = [(u?/r’he)uridr
hA3/2= /
2 =tJy 1—[(u2/r¥tw)u,]?
T S . @
=— wi. (4
12 =1 ! 47)

The integral is evaluated most easily by introducing
the variable

y=ulw| /r*h

and remembering that w is understood to have a small
positive imaginary part.

The eigenvalues #; are found most easily in a repre-
sentation in which M7, the total angular momentum
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TaBLE I. Comparison of theory with experiments on wings of alkali metal doublet lines.

Quantity: hAze/ Nl Ay 2/ TMu? Agja/Avje Author
Theory: 6.73 4.48 1.59 Present work
3.87 3.87 1.00 Houston (Ref. 16)
Exptl: Na 6.840.9 6.2+0.8 1.163-0.09 Watanabe (Ref. 4)
Rb 7.3+2.0 4.541.5 1.664-0.14 Chen (Ref. 4)
Cs 79+1.0 4.440.7 1.7940.33 Gregory (Ref. 4)

along the line of centers, and Jz, the total angular
momentum quantum number are diagonal. Mrp is
obviously conserved because of symmetry, so we only
have matrix elements of U connecting states with the
same M7, though perhaps different J7. Since the only
values of Jr are 2 and 1, U breaks up into parts no
larger than 2X2. The needed matrix elements can
easily be worked out by the usual angular momentum
theory'® and give the following results:

Mp=2o0r —2; Jr=2; u=1.
Mr=1lor —1; Jp=2,1:
2 1
-1 _1
w=2( 5 TP) wmi-2mvn
I\-&3 -3
Mp=0; Jr=2,1
2 1

_2f=1 01,
‘u—l(o 5/3) u=—1,5/3.

The eight eigenvalues # are therefore 1 (twice),
1(—27F+/7) (twice each), 5/3, and —1. Substituting
these into (47) we find

— 2

u B
ﬁA3/2=T{3+%\/7+5/3} =—0.73:9u’. (48)

The procedure for the 4 case is entirely similar. This
time U is a 4X4 matrix with eigenvalues —% (twice),
£ and zero. This leads to the result:

hA]/z = 1:7T2fﬂ,,u2 (4/9) = 4:4813(4],2 . (49)

In this approximation, therefore, both A’s are purely
imaginary, and are to be identified with the half-width
at half-height (in angular frequency units) of Lorentzian
lines. If finite atomic radius is included, it leads to a
cutoff of the absorption far out in the wings. As the
work of the last section showed, this should be applied
to the actual line only in the wings, but that is precisely
the region in which the data of Ref. 4 was taken. A
comparison is therefore permissible, and is given in
Table I. In compiling Table I, the total oscillator
strength of each doublet was taken as unity. The errors
given are mean absolute deviations calculated by us

15 J. L. Powell and B. Crasemann, Quantum Mechanics (Addison-
Wesley Publishing Company, Inc.,, Reading, Massachusetts,
1961), pp. 364-374.

from the data. For comparison the earlier theoretical
results of Houston'® are also listed. The agreement seems
reasonably satisfactory (and definitely better than those
of Houston) though more accurate measurements might
be desirable.

Besides kinetic effects, we have also neglected inter-
action of the two doublet components with one another
in the above, and this is not obviously negligible under
all the experimental conditions. It is possible to general-
ize formally the above treatment to this case (still taking
advantage of the conservation of M r), and to show that
the interaction introduces asymmetry and shifts in the
lines. The details of this are rather formidable, and will
not be presented here.

In the next section we use the results of this one as a
starting point for a simple qualitative treatment of the
line center.

VII. EXTENDED TWO-BODY APPROXIMATION

The work of the previous section allows one to
describe the behavior in the wings of the line; in order
to study the center, however, one must include dia-
grams involving arbitrarily large numbers of absorbers.
The task of summing @/l diagrams is a formidable one
indeed, and we are very far from knowing how to do it.
In this section, we develop a very simple method, start-
ing with the two-body result, for summing a restricted
class of diagrams. Included in this class are diagrams
with any number of absorbers. Many diagrams are
omitted, however, and the reason for their omission is
not that we can show their contribution to be negligible,
but simply that we do not know how to evaluate it.
Similarly, some diagrams are included which should not
be, since they can be expressed as products of lower 7
diagrams. Despite these difficulties, we still hope that
the results of this treatment are at least qualitatively
correct; and the comparison with experiment will
reinforce this hope.

Consider a typical two-body (AB) diagram involving
atoms A and B, such as that of Fig. 2(a). If we mo-
mentarily consider the positions of A and B to be fixed,
the diagram may be represented by a product L;L,L;3- - -
of contributions from the different lines. We can turn
this into a three-body (ABC) diagram by inserting a
BC or AC diagram between any two adjacent lines of
the original diagram, or after the last one. Examples
are shown in Fig. 2 (b,c,d).

16 W. V. Houston, Phys. Rev. 54, 884 (1938).
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Let us now fix our attention on a particular point of
insertion, say after the first line. If we sum over all the
BC diagrams that can be inserted, and integrate over
the position of C, the result is obviously a factor of
(A¢/w), where Aqis now the two-body value of A. Hence,
the sum of all diagrams consisting of the original AB
diagram with a BC diagram inserted after the first line
is just the original diagram with L, replaced by
L1(Ao¢/w). One can include more diagrams by allowing
the inserted BC diagram to be followed immediately by
BD diagram, as in Fig. 3. Diagrams of this type clearly
give a factor (Ao/w)? Similarly, we may insert any
number of successive diagrams BD, BF, etc. (all differ-
ent atoms, of course), getting successively higher
powers of (A¢/w). Hence, the original diagram plus all
such insertions after the first line can be gotten by
replacing L; by

Li{1+4Ao/w+ (Ao/w)*++ -+ } = Ly[w/ (w— Ao) ].

As before, the series is summed in the region where it
converges and the result analytically continued to other

£\
—

(b)

Fic. 2. (a) A typical two-body diagram; (b,c,d) Various ways of
inserting a diagram involving a third body into (a).

values of w. Since insertions can take place after any line
in the diagram (having several different lines all
followed by insertions is permissible, of course), all
insertions of this type may be included by multiplying
the contribution of each line by the factor [w/ (w— Ao)].
Since each line contributes a factor u? (among other
things) we conclude that the effect of all insertions of
this type will be included if we simply replace u? in the
two-body calculation of A by

wlw/ (0—Ag)].

Since Ao depends linearly on w2, this leads to the follow-
ing new value of A ’

Al = Ao[w/ (w - Ao):] . (50)

It should be emphasized that the only diagrams in-
cluded here are those that consist of a number of
independent insertions of two-body diagrams into the
original two-body diagram. In other words, all the
inserted absorbers must be different, since otherwise the
effect on different lines would not be independent.
Figure 4 shows some diagrams which are omitted in

Fic. 3. A BC followed by a BD
diagram inserted into Fig. 1(a).

the derivation of (50), and in the extensions to follow,
but which should be included in an exact treatment. In
addition, some of the diagrams included are simply
products of lower # diagrams, and therefore should be
omitted. Part of the contribution of Fig. 2(d) is of this
type.

We can include a wider class of diagrams by allowing
a wider class of insertions. For example, we could insert
any of the diagrams of the type included in Ay, leading,
for example, to inclusion of diagrams such as that of
Fig. 5. This leads to a further approximation for A.

A2=Ao|:w/(w—A1):|. (51)

Continuing this process of extension indefinitely, we
finally obtain

A= A[w/(w—A)]. (52)

We will use (52) in what follows without claiming to
have fully justified it. We indicate the negative imagi-
nary character of Ag by writing A¢= —45 and solve (52)
for A:

A=Lwa1 (0 dinw) P~ — (igw)!?, (53)

with the root chosen to give A a negative imaginary
part. The last approximate equality gives the leading
term for small w. The pertinent diagonal matrix element
of the resolvent R(%») is then given from Eq. (44):

R= (4| R 4An)=[A(0—8) 7= (inw) ™2, (54)

with the approximate equality again applying at low
frequency. Were the line in fact Lorentzian, as assumed
by Laurston and Welsh, the corresponding resolvent

‘a_\-'—
(@) 1B T s

F1c. 4. Some diagrams
omitted 1in the extended
two-body treatment.
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TaBLE II. Comparison of results of Lauriston and Welsh (Ref. 7) with theoretical results.

AN
(atoms/cc) T v1, 107 sec™? vz, 107 sec™? v2/71
Element X10718 (°K) obs calc obs calc obs calc
Na 0.34 891 2.3 1.24 3.0 1.53 1.30 1.26
0.57 929 3.0 1.62 3.8 2.00 1.27 1.26
0.93 968 3.8 2.09 4.9 2.57 1.29 1.26
1.25 992 4.5 244 5.7 3.02 1.27 1.26
24 1072 6.0 345 7.9 4.26 1.32 1.26
3.1 1076 6.8 3.93 . 4.83 e 1.26
K 0.86 835 4.9 1.71 6.8 2.10 1.39 1.26
1.31 867 6.0 2.12 8.3 2.61 1.38 1.26
2.1 906 7.6 2.72 10.2 3.35 1.34 1.26
3.5 955 9.8 3.55 13.5 4.37 1.38 1.26
4.2 973 10.9 3.92 . 4.82 cee 1.26
Rb 0.55 734 3.8 1.08 4.5 1.34 1.18 1.26
0.84 763 4.9 1.35 5.7 1.67 1.16 1.26
1.34 797 6.4 1.73 6.8 2.12 1.06 1.26
1.8 811 6.8 2.01 9.4 2.48 1.38 1.26
element would be given by used the recent work of Hicks!” on the vapor pressure
. . of Na and K to find the temperature from the given
R=1/(wt+iv/2), RO)=—2%/ty, (55 > R

where v is their width at half the maximum intensity.
Lauriston and Welsh’s procedure was to adjust v so as
to give the best fit to their reflection data, which could
not be fit perfectly by any Lorentzian line shape. Hence,
it would be difficult to calculate a value for v from (53)
which could be compared directly with theirs. Moreover,
since Eq. (52) is at most qualitatively correct anyway,
such a calculation would not be worth the trouble.
For purposes of qualitative comparison, however, we
can simply define an “effective’” v by means of (55).

Yoit=—2/% ImR(0). (56)

We still have the problem that R(0) is not defined
according to (54) because of the singularity. Clearly,
this must be smoothed out because of some effect
omitted in the derivation of (52). The procedure we use
is simply to smooth out our expression for Im(R) for
small w by integrating over all frequencies weighted by
the Doppler distribution. That is, we write

Im[R(0)]=—#"1(2n)"V2(oar¥/2)1
X/ exp(——wZ/o-d?)(lwl)—l/zdw,

a®=2v0%kT/mc?.

Integrating by means of the change of variables
y=(w/0a)?, we get
Im{R(0)} = — 77"y *(2moa) T (3). (37)

Tt is now a simple matter to combine (56), (57), (48),
and (49) to get a theoretical effective v for each compo-
nent of the doublet. These results can be compared with
the v’s measured by Lauriston and Welsh. In order to
find the proper temperature for their density, we have

density. In the case of Rb, we used the ideal gas law
and crude vapor pressure data.!® The comparison is
presented in Table IL. y; and v, refer to the 1 and 2
components respectively. In view of the approximations
employed, this agreement is quite satisfactory. More
than order-of-magnitude agreement could not be ex-
pected. The most noteworthy feature, however, is the
dependence of the width on the square root of the
density (except for the small variation in the tempera-
ture) in complete accord with their observations.

The fact that our simple theory gives qualitative
agreement with the experiments of Lauriston and
Welsh reinforces the hope that the theory is qualita-
tively correct. It also tends to support Lauriston and
Welsh’s experimental results over those of Tomiser® and
Moser and Schultz.® We have not been able to discover
any approximate theory which agrees well with these
latter results. Hence, at present, we must cast our vote
in favor of Lauriston and Welsh. However, it would be
desirable to have more experimental work done since
the question is far from closed.!?

F1c. 5. A diagram in-
cluded in A; but not
in A;.

7W. T. Hicks, J. Chem. Phys. 38, 1873 (1963).

18 Bureau of Mines, Bulletin 601, 1962 (unpublished).

1 More recent work on related systems has been brought to
our attention; T. M. Bieniewski, 4fomic Collision Processes, edited
by M. R. C. McDowell (North-Holland Publishing Company,
Amsterdam, 1964), p. 1055.
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APPENDIX: STRONG LINEAR APPROXIMATION

The approximation to be considered here is a generali-
zation of that used in earlier work by one of us.3-1° We
now feel that it is inappropriate under the conditions of
the available experiments, but it may be useful under
other circumstances. It starts with an assumption
which is a generalization of (12):

() [47P O | R)= P — K (a4,0) a2
®D[&I%), (D

where P is the polarization of the medium due to all
atoms except atom A. To understand the meaning of
(A1), suppose that the initial state of atom A is not
known with certainty, so that the “initial” state of the
medium is not simply |0), but

|07)=0)+u|x(4)).

Now the matrix element (0’| 8,|\) will have a term of
frequency
12 N K(qA)K)

equal to #*(x(4)| &4|N), and a similar situation will
hold for P, Equation (A1) expresses the assumption
that the polarization of the rest of the medium is still
related to the field (which now includes contributions
from the virtual excitations of atom A) by the same
susceptibility function. Equation (A1) does represent
an approximation beyond (12). Classically, we can
always limit our considerations to a linear susceptibility
simply by making our fields arbitrarily small; but in
quantum mechanics we cannot make the matrix ele-
ments appearing in (12) become small. Their values are
fixed by the solution of the eigenvalue problem. Never-
theless, we can define a function F by means of (12), and
this will lead to no contradictions as long as we restrict
ourselves to those matrix elements in (12). Moreover,
this is the obvious quantum-mechanical analog to the
classical procedure of allowing the fields to approach
zero; the one-photon state is as close to zero as we can
get and still have any field at all. Strict linearity would
be expressed by requiring that equations such as (12)
hold for all matrix elements of the operators involved,
and in particular for those of (A1). Hence, (Al) is a
stronger linearity assumption than (12) and is desig-
nated the “strong linear” approximation. In order for
(A1) to be quantitatively correct, it is necessary that the
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medium respond linearly to the field of A right up to
the atomic radius [cf. also the remark just before Eq.
(29) of Ref. 10]. Since this is obviously not the case, we
do not now feel that the approximation is a good one.
In terms of diagrams, it is clear that the diagrams
omitted in this approximation are those that contain u4
in higher than the lowest order, i.e., those that have A
excited in one or more intermediate states. Hence, it
might be expected to work at very high densities, where
there are large numbers of atoms besides A within a
short distance to carry the excitation in intermediate
states. Alternatively, since the results will presently be
seen to depend on the atomic radius o, it might be useful
to use this approximation as a semiempirical model, with
ro an adjustable parameter representing the radius at
which the medium ceases to respond linearly.

In order to avoid divergence later, we introduce a
cutoff factor G(x) into Eqs. (4) and (5); multiply (4)
by G'2(k,) and (5) by G (k). Our state |0) has each atom
in a definite momentum state, and does not include any
interactions in which two atoms can exchange momen-
tum with both remaining in the ground state (direct
interactions between atoms in the ground electronic
state are neglected). If these were included, their main
effect would be to introduce a correlation in the positions
of the atoms such that the distance between the centers
of mass of two atoms can never be less than an atomic
diameter. We take this into account by altering the
interaction so that, while atoms are formally permitted
to approach each other arbitrarily closely, they are not
permitted to exchange electronic excitation except at
distances greater than the atomic diameter 7,. In this
way, the transfer of excitation should proceed just as if
there were no pairs of atoms closer than 7,. In momen-
tum space, the momentum transfer accompanying the
exchange of excitation should not be greater than the
order of magnitude of 7(1/7,), and this is embodied in
the factor G(x) which is a function that is nearly unity
when k<&1/ro and becomes very small or zero when
3>1/r0. It is a property of the strong linear approxima-
tion that the cutoff, not needed in the rest of the paper,
is required here to avoid divergence.

Returning now to Eq. (29), we first consider the
contribution of the longitudinal Coulomb part of « to
Aji. Denoting this by a superscript /, and using Egs. (5),
(22), and (23), we can express this term as

A (0%,94) (A (A) M= 54 o{d 5, %(4) | 3| Bryxa (B), (k= xa) (4) ) Bryka(B), (k— %) (4)[X)

where

4 Kaj
=—V—n2 2o Glka)—Ta!®, (A2)

Ka

URICAN S ’fa—k<Bk,1<a(B),(K— xa) (4)[X),

Ke
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and the sum over «, of course, includes only longitudinal modes. Using (5), (13), and (A2), we can now obtain
((e—%a) (A) | BalN)={(x—xa) (4) | 8a| Ar,x(A) XAz, (4) [X)
+ZB¢A<(“—' Ka) (A) [ ga I Bk;“a (B):(K_ fo) (A)ka,KN(B): (K_ Ka) (A) IX>

It is also evident that

_ Awu
{((x—1x4)(4) |47 P, l)\>=_—1}._1“al(A) .

4 Kak _ 4r
=—I/—;,LG(KQ)_<A ke (4)| )\)—T/—,uG(KQ)I'J(A) . (A3)
Ko

(A4)

It is now a simple matter to insert (A3) and (A4) into (A1) and solve for I',}4)

I =—

G (ka) Fil 0— K (04, ®—%a), o] (kat/xa) (A 1,%(A) [X)

(AS)

14+G k) FiLw— K (qa, ¥—%4), K ]

The next step is to substitute (A5) into (A2), replace the sum over a by integration, and extract the value of A;;.

The result is

pr G )Ffw

hAGH (@) =——

— K (q, x—«), " J(/x /6"*)d%’

(A6)

2m?

14+-G()Fio—K(q, x—¥'), ]

There is one more contribution to Ajx, namely that due to the transverse part of . By an entirely similar calculation

it turns out to be:

’2

voiu? ; k'K
Bt (o, 3,0) = —— / [5:' - ]Gﬂ(:c')F Lo—K(q, x—«), ¢ J&%'{+vo?G (K" )ex'F [w— K (¢, x— '), k']
K

82

X[m—c' —K(q, x—«')+iE ]+ [m— e’ — K (q, x—«')Fi£]2)1.

The matrix elements of A are now given by
A_,'k=—’l:0jk+Ajkl+ jkt. (AS)
One can also make the static approximation here,
leading to the results of Refs. 8 and 10, to which the
reader is referred for details. It is further possible to
systematically bring in the kinetic effects by expanding
in powers of (1/m). We have done this and found that
the first nonvanishing correction has negligible effect
under the conditions of Tomiser’s experiments on

sodium.?
The predicted width is of the order of

(/1) (/r)2, (A9)

while the effective width out on the wings is just the

(A7)

natural linewidth. This last fact means that the strong
linear approximation has far too little of the total
intensity in the wings, since we know that the two-body
approximation should work well there. On theoretical
grounds, therefore, we must conclude that the actual
line should be considerably narrower than (A9).

The square root density dependence predicted by
(A9) is in agreement with Lauriston and Welsh, but
the coefficient is much too large unless 7, is treated as
an adjustable parameter. If 7o is taken as the atomic
radius, the resulting very large widths are of the same
order of magnitude as those reported by Tomiser over
the density range in which he worked; but he observed
a linear density dependence, not the square-root
dependence of (A9).



