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is the mass of the Li ions surrounding the center.
We then assume here that the half-widths of the m=1
trapped excitons in the rare-gas solids are determined

by the product of a "local mode" factor proportional
to the rms displacement of the impurity, and by a
"neighbor" factor which is determined essentially by
the neighbors of the impurity according to the following
relation:

W;s ~ 3IIa 'tt(neighbors) X3Is 't M 't'(local) . (8)

This is just like Eq. (2), the empirical relation for the
m=1 doublets. A dependence of the linewidth upon
the mass of the impurity has been observed also in
solid Ar containing hydrogen and deuterium impurities"
and in the U band of alkali halides containing H
or D—ions."The st =2 states obey Eq. (3) rather than
(2); we do not know whether or not the mass of the

u G. Baldini, Phys. Rev. 136, A248 (1964).
"G.Baldini (to be published).

impurity enters Eq. (3) because these lines have been
observed only in the Xe-doped rare-gas solids. (The
Kr-doped samples show only the v=1 doublet which
lies close to the absorption edges of the neon and argon
hosts. ) Because of the difference between Eq. (2) and

(3) it appears that the interaction of the lattice vibra-
tions with the m=1 and m=2 excitons is di6erent. This
assumption is supported also by the fact that the wave
functions of the m=1 states are confined to within the
unit cell contrary to the e= 2 states which extend over a
larger volume of the crystal. ' '

Experiments on photoconductivity and luminescence,
now in progress, are expected to yield more detailed in-

formation on the electronic and vibrational states of the
rare-gas solids.
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This paper reports a theoretical study of the resistivity of solid and liquid sod.ium. It utilizes inelastic
neutron scattering data to obtain the required information about the dynamics of the ions. The electron-
phonon interaction is characterized by phase-shifts q&, two of which are used as adjustable parameters.
Although the calculation is believed to incorporate accurately many-body effects, umklapp processes, time-
dependent effects, etc. agreement with experiment is disappointing. The calculated resistivity exceeds the
experimentally measured values by a factor of the order of 2 at low temperatures, and above the melting
point there are again discrepancies of this order. No convincing explanation of these disagreements has been
found.

I. INTRODUCTION

~~~NE of the basic tasks of solid-state theory has been
to account for the electrical resistivity of simple

monovalent metals. The qualitative features of the
resistivity of the solid phase, both at very low and at
higher temperatures were first theoretically accounted
for by Bloch. ' The next most important landmark was a
calculation by Bardeen' who, starting from first
principles, was able to give a good quantitative descrip-
tion of the resistivity of sodium and other monovalent
solid metals in the high-temperature region. Since then
many other calculations on solid metals have been
carried out, notably the work of Ziman' and Bailyn. 4

* Supported in part by the U. S. Ofhce of Naval Research.' F. Bloch, Z. Physik. 52, 555 (1928).' J. Bardeen, Phys. Rev. 52, 688 (1937).
3 J. Ziman, Proc. Roy. Soc. (London) A226, 436 (1954).' M. Bailyn, Phys. Rev. 120, 381 (1960).

A qualitative theory for liquid metals has also been
developed by Ziman. '

The present work was motivated by the realization
that for both solid and liquid sodium experimental data
and theoretical methods were available which should
enable one to eliminate, within a few percent, all the
uncertainties which were known to have been present in
past calculations. These included uncertainties about:

(1) The dynamics of the ions.

(2) The ion-electron interaction, including many-
body eGects.

(3) The validity of the Boltzmann equation.

(4) The handling of umklapp processes.
For these reasons, good agreement over a wide tempera-
ture range was expected.

e J. Ziman, Phil. Mag. 6, 1013 (1961).
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In fact, however, this quantitative confrontation of
theory with experiment revealed major discrepancies.

(1) At low temperatures the calculated resistivity is
substantially too high, about a factor of 2 at 40'K, and
a factor of 2.7 at 4.2'K. ' '

(2) In passing through the melting point (T
=371'K) the experimental resistivity increases by a
factor of 1.5 while the theory gives a factor of about 2.5.

(3) Between T= T and T=598'K, the experimental
resistivity increases a little more than linearly with the
temperature, by a factor 1.9, while the theory gives a
factor 1.3.

We have at present no explanation for these dis-
crepancies, which we consider to be highly disturbing.

Our calculational procedure is briefly the following.
We describe the effect of the ions on the conduction
electrons by a sum of scattered waves, each centered
about the position of an ion. Since it turns out that
under all circumstances considered the total scattered
amplitude is very small, multiple scattering need not be
considered and the standard Boltzmann theory is
adequate. The scattering amplitude can be described
by a set of phase shifts obeying the Friedel sum rule, a
point of view which takes all many-body e8ects into

account, and it is shown that only two phase shifts
are free parameters. It was hoped (in vain) that the
entire resistance versus temperature curve could be
fitted in terms of these parameters.

The necessary information about the dynamics of the
ions is completely contained in the space- and time-
dependent pair correlation function, whose Fourier
transform S(k,~) can be directly measured by inelastic
neutron scattering. In fact, for the solid phase, we
calculated S(k,a&) from the observed phonon dispersion
curves, while for the liquid phase we used directly the
results of neutron di8raction experiments.

Effects of recoil, Umklapp processes, etc. , are com-
pletely included in the general formulation which we
used. We have also allowed for more complex electron
distribution functions than the usual one ( k E), but
they do not significantly alter the results.

II. GENERAL FORMULATION

In the weal» scattering approximation the scattering
cross section can be factored into a part depending on
the positions and motions of the ions and a part depend-
ing on the scattering amplitude from a single ion. ' A
variational calculation of the resistivity then gives (see
Appendix)

(1/327r'l't'kT) (d'S„/v~) (d'S~/vs ){P~—P~.}'If(q) I

' d~S(q ts)to/(1 e~")—

(2 1)

where P =h/kT.
The two surface integrals are taken over the Fermi

surface. k and k' are the wave vectors of the initial and
final electron states, q=k' —k, and f(q) is the appro-
priate scattering amplitude associated with each ion.
gs is the trial function for the perturbed electron dis-

tribution, assumed to have the correct cubic symmetry.
v& is the velocity of the electron in state k. S(k,&s) is the
dynamical structure factor introduced by Van Hove, "
who showed how to obtain it from neutron diffraction
experiments, and is the Fourier transform of the time-
dependent pair correlation function

S(q, to) = (1/2irN') die i~'(p e fs &'t &e~s ~~'&'&')r

( )r represents a thermal average at temperature T,
r;(&) is the position of an ion a,t time t and X is the
number of ions.

' Since sodium undergoes a martensitic transition from a, bcc to
a mixture of bcc and hcp phases at about 37'K (see Ref. 7), the
significance of data below this temperature is somewhat in doubt,

i C. S. Bariett, J. Inst Metals 84, 43. (1955).

The simplest trial function obeying the symmetry
requirements is

for an electric 6eld in the s direction. Inserting this into
(2.1) we find

p= d'elf(q) I'&(q), (2 2)
16e2$p4p J;2 q(21

where we have written

&(q) =
kT

d(uS (q, (v)
1—e

—I'"
(2.3)

Formula (2.2) has also been obtained by Baym. " We
present a derivation of (2.1) and (2.2) in the Appendix.

Calculation of the resistivity thus involves two inde-

pendent tasks. We must find an expression for f(q) in

the weak-scattering (linear) approximation, and we

J. S. Langer, Phys. Rev. 120, 714 (1960).
J. S. Langer and V. Ambegaokar, Phys. Rev. 121, 1090 (1961).

"L.Van Hove, Phys. Rev. 95, 249 (1954)."G. Baym, Phys. Rev. 136, A1691 (1964).
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L~(~ ~.n)+&(~+~-)—jS(q,(u) = 8 rp —pp„

&(q) = ((. q)'
. (3.6)

)—I)(l— p(—& -))MNAT r (exp(P(os„—

We define also

g q)). = (dQ, /4~)S(q),

(3.5)

of the polarization2 3 are the components owhere p=1, 2, 3 are e
unit vector g. Then



A 516 M. P. GREENE AND W. KOHN

1.2—

1.0—

0.8—

0.4—

0.2—

I'n. 2. Structure
factor for liquid so-
diutn, (g(q)), versus
q. Note 598/373 =1.6
while p(598)/p(373)
= 1.9.

0
0

I I I I

0.2 0.4 0.8 1.00,6

2KF

(b) Liquid Phase

Above the melting point we can set in good
approximation

P~/(~ —e '")=1 (3 7)

and, by Eq. (2.3), read (S(q)), directly from the
energy-integrated neutron-diGraction data. "The va1id-

ity of approximation (3.7) will be verified in Sec. VII,
where the corrections are shown to be less than 2%%u~.

In the long-wavelength limit, (S(q)), is determined

by average thermodynamic properties"

(S(0)), =tsP,kT,

where ts=XjO and P, is the isothermal compressibility.
The published data" is expressed with forward scatter-
ing amplitude set equal to zero; hence we must add in
the proper contribution from (3.8). This correction
raises the resistivity by only a few percent. " (S(q)),
for liquid sodium is pictured in Fig. 2.

an average over all directions for fixed ~q~. (S). is
plotted against q in Fig. 1.

In (3.5) and (3.6) only contributions of second order
in the ionic displacements have been included. Higher
order corrections, including the Debye-%aller factor

'"= 1—((q' Il)') + ' ' '

and other multiphonon terms, have been neglected. The
correction due to the Debye-Wailer factor is about 16%
at the melting point; the other terms are of the same
order of magnitude and the opposite sign.

the product
~ f(q) ~sS(q,oi), and express the scattering

amplitude from one center, f(q), in a form linear in the
phase shifts. W'e shall refer to this as the weak scattering
approximation to distinguish it from the usual form of
the Born approximation. We deal directly with scattered
waves originating from the positions of the ions, which
add coherently to give a total scattered wave small
compared with the incident wave. %'ith this picture
we can refer to the work of Kohn and Luttinger" who
have shown that the usual Boltzmann transport equa-
tion holds whenever the scattering can be described in
this approximation.

We shall now show that the total cross section is in
fact small. Let us assume the existence of a transport
equation relating mean free path to scattering cross
section and compare the free path derived from con-
ductivity data with the lattice spacing, about 4.25 A for
sodium. Values of the mean free path at various tem-
peratures are presented in Table I. Over the entire
temperature range studied, the mean free path is many
times the lattice spacing.

Let us now study the scattering amplitude f(q)
associated with a single ion. We start with a system of
g electrons and a neutralizing charge background con-
tained in a large box of volume Q. The charge densities
of electrons and background are equal in absolute mag-
nitude and are the same as in sodium.

We modify this system in two steps to obtain a
representation of actual metallic sodium. First we
insert the sodium ions at the appropriate positions—
near the lattice sites for the solid or in a somewhat dis-
ordered array for the liquid —and. around each ion we
remove a Wigner-Seitz sphere of the uniform back-
ground. At the same time we allow the electrons to come
to equilibrium with this new configuration. Let us
denote the scattering amplitude from one of these
localized disturbances by f&'& (e). We may estimate it by
representing the ions by the Prokofjew potential, "
subtracting the potential of a uniform sphere of positive
charge and calculating exactly (not in Born approxima-
tion) the scattering phase shifts. We find, neglecting
multiples of 2~ due to bound states which do not affect
the scattering,

g
&') =004 q

&') =0.021, q &'&=0.0087, g o&=0.00027.

Clearly an expression for the scattering amplitude linear

IV. SCATTERING AMPLITUDE

The basic assumption underlying this calculation is
that the scattering from the sum of all the centers is
weak. Then we may neglect multiple scattering, use
Van Hove's formalism to separate the cross section into

"N. Gingrich and L. Heaton, J. Chem. Phys. 34, 873 (1961).
'4 A. Guinier and G. Founet, Small Angle Scattteing of X-Rays

(John Wiley R Sons, Inc. , New York, 1955).
"The fact that this term has a linear dependence on T cannot

be used to infer a linear dependence for the resistivity.

TABLE I. Comparison of mean free path with lattice constant
for liquid and solid sodium.

T ('K)
l (A')
l/a

40
8000
1900

200
530
125

328
275

65

373
150
35

598
78
18

"W. Kohn and I. M. Luttinger, Phys. Rev. 108, 590 (1957).
"Quoted in E. P. Wigner and F. Seitz, Phys. Rev. 45, 807

{1933).
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in the phase shifts is adequate to describe the scattering
from each site.

Next, we must put back the charged spheres and re-
move the uniform background. Since in all situations
considered there is substantial short-range order, these
actions cancel to a large extent. We denote the remain-
ing charge density by ps(r). As pictured in Fig. 3, ps
consists of partly positive, partly negative "slivers" of
charge. The volume of these slivers is small and they
will, of course, be screened by the conduction electrons;
hence they wilj produce a small total scattering ampli-
tude Fs(8).

We now wish to show that Fs(0) can be expressed as
a sum of scattering amplitudes each associated with one
of the ions and each expressed in a form linear in the
phase shifts. We write the external perturbing potential
of the "slivers" mentioned above as

FxG. 3. Charge distribution
~2(r)

rise to a scattering amplitude of the form

(2I+1)
f(e)=Z ~ I' (t),

k

where the g~ will have values similar to those obtained
by adding our numerical estimates for p&('& and p&&').

H'=ALP Vws(r —R,)—Voj, (4.1) V. EVALUATION OF THE RESISTIVITY

where Vws(r —R;) is the electrostatic potential due to a
Wigner-Seitz sphere of positive charge, Vo is the electro-
static potential of the entire uniform positive charge
background, and 'A is a parameter whose actual
value is unity. Because the two terms in par-
entheses largely cancel one another, the perturba-
tion is in fact very small and hence the scattering
amplitude Fs(8) may be calculated to first order in X.

From this it follows that we shall obtain the correct
answer by calculating the scattering amplitude due to
each of the terms in Eq. (4.1) to first order in X and
adding. This is so even though the scattering phase
shifts due to an individual term Vws(r) are by no means
very small. When calculated in Born approximation,
including screening, they are approximately

go('&=0.6, g (')=0.2, q ('~=0.05,
ga('~ =0.015 and q4( ) =0.002.

Nevertheless the above arguments show that, somewhat
paradoxically, we must use the Born expression

(2l+1)
f&»(e) =P g, &'u', (cos|&)

k

for the scattering amplitude from a Wigner-Seitz
sphere. "

We should still add the scattering amplitude from
the uniform background, but since this is entirely in the
forward direction it does not contribute to the resistivity
and can be dropped.

From these considerations and the numerical esti-
mates of scattering amplitudes we conclude that the
resistance may be calculated as though each center gives

's The exact expression for f(8) in terms of phase shifts
fq& ~ (1/2f)(e"&&—1)g would give diiferent (and hence wrong)
results, if contributions from di6'erent centers are linearly super-
posed and cross terms are neglected.

We shall represent the full scattering amplitude f(q)
by a set of phase shifts p&. Examination of the estimates
for f&'& and f&'& indicates that we may approximate f(q)
with the first four phase shifts.

From Kq. (2.2) we have

~'Wl f(q)l'3(q), (5.1)

where
2xkv p

f(q) = — Z (2f+1)xi~i(q)
kp'

(5 2)

By varying p3 in our calculations we ascertained that
it has small inhuence on the resistivity; for convenience
we set it equal to its calculated value 0.015.

The Friedel sum rule" is an exact relation among the
phase shifts for scattering from a screened potential. It
requires

so that
If(&) I'=2 fi(q)nm& fi (q)

"J.Friedel, Advan. Phys. 3 (1954).

where Z is the charge introduced into the electron gas
by the localized potential and bound states are neg-
ected Thus Z .is zero for f&'& and one 2or f&'&, and so for f
we take Z to be one. The qg are then not all independent;
in particular if we fix q3 and ignore the higher g~, then
we can use go and g~ as free parameters to determine the
scattering amplitude and fix g2 by the sum rule. Of
course, qo and g~ must be somewhat restrained so that
q2 is not unreasonably large.

Let us write (5.2) in the form

f(q) =Z fi(q)ni
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$2= 0

(5.3)

Inserting in (5.1) we may write for the resistance

shown in Fig. 5 as a function of q along with q'f', which
is the total weighting factor for (S(q)), in the integrand
of Eq. (2.2). In Fig. 6 we show the results using f~ and

fu as well as exPerimental values. "s' "
Concentrating on f~ we see the change in resistance

on melting is overestimated by almost a factor of 2;
thereafter the calculated resistance of the liquid in-
creases only slightly with temperature while the ob-
served resistance increases faster than linearly. The
high temperature solid is described to within 10%
except close to the melting point. There vacancy forma-
tion and anharmonic effects occur which are not in-
cluded in the model. "At low temperatures, the calcu-
lated value at 40'K is too large by nearly a factor 2, and
at 4.2'K by a factor of 2.7."

with

pu = d'qVfi(a)fi (tl)&(tl) (5 4)
16e'kg'v p'

With our two free parameters, (5.3) represents a conic
section in qp, gy space. We 6nd it to be an ellipse.

In the solid phase above 200'K, the experimental
resistivity is nearly proportional to T, and examination
of (2.3), (3.5), and (5.4) shows that p~p also varies

linearly with T. Values of p0 and p& which fit the ob-
served resistivity lie on one single ellipse for this high-

temperature regime. At extremely low temperatures,
both experiment and theory should vary as T' and this

regime should be represented by a different ellipse. At
intermediate temperatures we might expect still differ-

ent ellipses as the weights shifts from short- to long-

wavelength phonons. If the theory were a correct
description of experiment these curves would intersect
at one or more points and there would then exist a set
of phase shifts which consistently predicts the resistivity
at all temperatures, including the liquid phase. The
curves obtained are shown in Fig. 4. From about 200'K
to the melting point there is one single ellipse io gp, gy

space which provides the observed resistivity. Below
200'K but above the T' region, there is a different

ellipse for each temperature, all roughly concentric with

size decreasing with temperature. The ellipses repre-

senting two points in the liquid, 373 and 598'K, are also

concentric, with thelow-temperature curve within, but are

oblique to the ellipses for the solid phase, crossing them
at several points. The nonintersection of all these curves

indicates that the observed temperature dependence of

p cannot be fitted with our model over the entire
temperature range, nor can a reasonable fit be made

over any substantial range below 200'K or above the

melting point. This leads us to believe that it is in these

two regions that the theory fails.
To study the absolute magnitude of the discrepancy

we chose two points from the high-temperature solid

ellipse. f~ is close to the estimated value f"&+f"&while

fry is near the intersection of the high-temperature

solid and high-temperature liquid curves. These are

VI. ROLE OF DIFFERENT GROUPS OF PHONONS
AND OF UMKLAPP PROCESSES

In the past the relative contributions of umklapp
processes to the thermal part of the electrical resistivity
has been a subject of controversy. Early authors
neglected them altogether or considered their contribu-
tion small. Recently writers have realized their im-
portance, with Bailyn4 even suggesting that at low
temperatures perhaps normal processes can be neglected.

During the course of our calculations we were able to
examine every phonon that contributes to the integral
of Eq. (2.2), note whether it takes part in normal or
umklapp processes, and compute its relative contribu-
tion to the resistivity. We also noted its actual wave-
length, i.e., 2s./q for normal processes and 2s./~ q

—G~

0-
4-
8

12

I6

t6-

12-

0
0 0,2 0.4 0.6 0.8 I.O 0.2 0.4 0.6 0.8 I.O

2KF

FIG. 5. Scattering amplitudes and weighting factors versus q.
(a) fx. (b) fs (c) rP~ f&~2. (d.) q'~ J's[' Arbitrary unit. s.

"'Dugdale and Gugan, Proc. Roy. Soc. (London) A254, 184
(1960).

~' Kapelner and Bratton, Pratt and Whitney Technical Report
3'76, Middleton, Connecticut (unpublished).

~ We also made a calculation for 40'K using another point on
the high temperature solid ellipse, go=0.6, gI.=0.23. This gave a
value of resistivity about 10'%%uo smaller than that for fa.

~ We have used a harmonic theory because experimental values
for S(q,ay) are not available for the solid. For the liquid phase these
e8ects are included.

'4 See, however, Ref. 6.
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for umklapp processes, where G is a nonzero vector of
the reciprocal lattice.

These relative contributions are, of course, highly
dependent on the form chosen for the scattering ampli-
tude f(4I). Using the estimated function f~ we found
that at 273'K umklapp processes contribute 72%, and
a.t 40'K, 79% of the calculated resistivity. Comparison
of the curves of Fig. 5 indicate that these fractions
would be even greater for the function f14.

Using f~, we found that at both 40 and 273'K, over
40% of the resistivity is due to phonons of wavelength
between 5.5 and 7 A and 80% to phonons shorter than
10 A. The shortest wavelength that contributes is equal
to the lattice constant 4.25 A, which corresponds to the
farthest point on the first zone boundary. The electrons'
Fermi wavelength is 6.9 A. 2hr corresponds to 3.5 A,
and so crystal momentum transfers near this magnitude
always demand umklapp processes and involve longer
phonons. The results are presented in Figs. 7 and 8. The
slight dip at 13 A we ascribe to nothing more than an
accident of the method of selection of points for the
numerical integration.

VII. DISCUSSION

(1) Effective Mass

In all our work we have tacitly assumed that in the
perfect sodium lattice the electrons may be treated as
though their E versus ir relationship is the same as for
free electrons. We believe that this is a well-justified
assumption. De Haas —van Alphen measurements have
shown" that the Fermi surface is spherical to within a
fraction of a percent. The mean cyclotron mass is
1.24."The eGect on the mass of the electron phonon

50
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interaction is estimated to be 33%22 and has been shown
not to inhuence the resistivity in lowest order. '

(i) Anisotropy of the I'honon Spectrum

At low temperatures where only low-frequency
phonons are present, an electron moving in certain
directions might not find a phonon available from which
to scatter. This would cause higher angular harmonics
to be present in the perturbed electron distribution. The
calculation of Eq. (5.1) included only the simplest trial
function with the proper symmetry P= h, . (Sond-
heimer" has used trial functions of the form k'"k, and
found very little contribution from terms with n&0.)
To take account of the anisotropy of the phonon spec-
trum some angular freedom is necessary in the electronic
trial function.

XVe considered trial functions of the form

(2) Low-Temperature Solid

Attacking first the discrepancy at low temperatures
we considered two eGects which might tend to lower the
resistivity from the calculated value.

0.1
0

I

200

expt

fa

fg

I

400
I

600

4'1 1511S)

4'2 4521Z+ 1522Z

45=45srs+4522Z +45sss p

4'4 1541S+4542S +4542S +4544Z(X +y ) y

4'5 4551S+1552S +4555S +4554S(+ +y )+4555S+ y

where s= h, /hr, etc. We inserted the functions (6.1) into
the variational expression (2.1) and minimized with
respect to the u's. The procedure is described in the
appendix and results presented in Table II.

FIG. 6. Resistivity versus temperature for sodium.

'5 D. Schoenberg and P. S. Stiles (private communication)."C. C. Grimes and A. F. Kip, Phys. Rev. 132. 1991 (1963).

27 R. E. Gaumer and C. V. Heer, Phys. Rev. 118, 955 (1960)."S. Nakajima and M. Watabe, Progr. Theoret. Phys. (Kyoto)
29, 341 (1963)."E.H. Sondheimer, Proc. Roy. Soc. (London) A20$, 75 (1950).
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trons interact always with a thermal distribution of
phonons. For this condition, we must have 7„;&7-„„
the average time for the collision of a phonon with an
impurity must be smaller than that for a collision with
an electron. The former interaction is governed by a
Rayleigh-type scattering law" so that v-„; X', where X

is the phonon wavelength. Since the most effective
phonons are of short wavelength, a small amount of
impurity might serve to equilibrize the phonons. Then
the change in resistivity due to the addition of impurities
will consist of a part due to the scattering of electrons
from the impurity atoms themselves and a part due to
decrease in phonon drag. The first part should be
temperature-independent and should depend linearly on
the concentration. The second part should have more
complex dependence on the concentration and tempera-
ture and disappear altogether at concentrations and
temperatures at which 7.„,&&7.~,.Thus we should observe
a breakdown of Matthiessen's rule. An experiment to
look for this effect is now being carried out.

We conclude from this small change that higher
ha, rmonics in the electron distribution contribute little
to the resistivity. The reciprocal lattice is face-centered
cubic and an electron in a state at any point in the zone
is never very far from a symmetry (low phonon fre-

quency) axis. Our calculations indicate that it would

find no dearth of phonons with which to interact.

(si) I'homos Drag

Equation (2.1) was calculated under the assumption
that the phonons are in thermal equilibrium. But the
presence of a current in the metal distorts the phonon
distribution; if it is not brought to equilibrium in a time
small compared with the phonon-electron mean collision

time, the phonons will in turn drag the electrons along
and lower the resistivity. This effect is most pronounced
a,t low temperatures when the phonons interact pri-
marily with electrons and the inQuence of other relaxa-

tion mechanisms is diminished. Sondheimer' has calcu-
lated this effect using the Debye theory of lattice vibra-
tions and found it small. In view of this and the pre-
ponderance of umklapp processes we do not expect much

of a phonon drag effect. Nevertheless, to obtain further
empirical evidence on this point we have proposed an
experiment.

If impurities are present in suKcient concentration,
the phonons may be returned to equilibrium by colli-

sions with impurities rapidly enough so that the elec-

16t' kp 'vp

where

d w'I f(q) I' &~S(q,ro)
1—e t'"

P= h/kT.

Then, above the melting point,
3

X d~S(q, ~)D+(P~/2)+ "j

(&) Liquid

Our calculations substantially overestimate the
change in resistivity at the melting point and fail to
predict the observed rapid increase with temperature
in the liquid. The magnitude of the calculated resistivity
then comes into fair agreement with experiment at
598'K. It seems clear from Fig. 3 that the neutron data
themselves do not reAect the rapid change with tem-
perature of the resistivity.

One possible explanation might have been that the
static approximation fails for the slow-moving neutrons
and hence the scattering data does not correctly picture
the ionic configuration. To check this we have examined
a higher order term in the expansion of p in the fre-
quency moments of S(q,&u).

From (2.2)
3 GO

Tmx, z II. Resistivity in pQ cm calculated by use
of trial functions (6.1).

r ('x)
40 0.295

273 4.0

A . A
0.284 0.284
3.95 3.95

0.284 0.283
3.95 3.90

expt.

0.T76
4.35

where

X S(ol (q)+—Si'& (q)
2

S'"'(q) = rrroS(q u)(o"

"K.H. Sondheimer, Can. J. Phys. 34, T246 (T956). "P.G. Klemens, Solid State Phys. 7, l8 (l958).
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There is a sum rule, whose derivation depends on
the potential being a function of particle coordinates
only, "which gives 8&'& (q) immediately. It requires

g "& (q) =Aq'/2M,

where 3f is the ionic mass. So

(7.2)

d'w
I f(a) I

'
168 kP VP q(2IeZ

X g&'&(q)+ +" (73)
4MkT

The second term was calculated using both f~ and f»
at 373 and 598'K and found to add less than 2% to the
resistivity in all cases.

S(g,co) was recently measured and its moments com-
puted for liquid sodium by Randolph. "He found that
his g "&(tI) agreed with Gingrich and Heaton's results"
but found g&'&(ti) to be two to three times greater than
predicted theoretically by Eq. (7.2). This in itself would
change our results little but it might be indicative of
velocity-dependent forces in the liquid metal.

Alternatively it is conceivable that the electronic
states undergo a signi6cant change in going from the
solid to the liquid phase. This would show up in a com-
parison of the additional resistivity induced by a 6xed
concentration of impurity atoms in the liquid with that
in the solid. This also remains to be checked
experimentally.

with temperature. This rather large efkct (c44 changes
by other 30%!) is a result of anharmonicities and was
neglected in our paper along with all other anharmonic
effects. When we incorporate the temperature de-
pendence of the elastic constants into our calculation,
we find that we can fit the experimental resistance over
the entire temperature range to within about &20%.
We And rather surprisingly that these anharmonic
eGects are already very important even at 150'K.
What the importance of other anharmonic effects is we
do not know. In any case it appears that a quantitative
harmonic theory for Na is not possible.

Under these circumstances the following experimental
information would be especially valuable: phonon fre-
quencies measured at several temperatures, and a direct
measurement of S(g,~) for solid Na at several tempera-
tures, which would include all anharmonic effects.

APPENDIX

The variational solution of the Boltzmann equation
was obtained by Kohler" and Sondheimer" and is
clearly set forth by Ziman" from whom we borrow the
general formulation.

The variational expression for resistivity is

(A1)
where

(A2)
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1Votes added iN proof.

1. Since this work was completed there has appeared
a paper by A. Hasegawa'4 dealing with the same problem
in the low and high temperature solid regimes. His re-
sults are qualitatively similar to ours although some
of the numbers differ slightly.

2, In a recent paper Darby and March" (DM) report
good agreement between their theoretical calculations
for solid sodium from 15'K to 300'K and experiment.
(Actually their theory should be compared with experi-
mental data at constant pressure which at room tem-
perature are about 20% higher than those quoted. ) We
wish here to clarify the relationship between their work
and ours. Our calculation is in most respects more re-
fined than that of DM; however DM include in an
approximate way the change of the elastic constants

2 A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev. 126,
986 (1962)."P.D. Randolph, Phys. Rev. 134, A1238 (1964).' A. Hasegawa, J. Phys. Soc. Japan 19, 504 (1964)."J.K. Darby and N. H. March, Proc. Phys. Soc. (London) 84,
591 (1964).

P= (1/2kT) L@&,
—

y&, )'sr(k, k')d'kd'k'. (A3)

Here k is the wave vector defining the one particle state,
and vi, is the velocity and EJ, the energy of that state.
The probability of occupancy is given at equilibrium by
the Fermi function f&, (expL'(Es ———E& )/kT]+ I) '. Q&

is a trial function, de6ning a perturbed distribution of
the form F(k)= f&,+g&,(Bf&,/BE&,). We can see from
(A2) that J represents the current carried. by the func-
tion F (k), while I' is related to the rate of return of the
system to equilibrium when sr(k, k') is the total proba-
bility that an electron is in state k and is scattered to
state k'. The variational principle states that P&, must
be chosen to make p of Eq. (A1) a minimum.

From time-dependent perturbation theory

sr(k, k') = (2sr/0) i M(ir, k')
i

'
&& fx(1—f&,.)5(E&,—E&,.+%to) . (A4)

According to Van Hove, ' in the weak-scattering case
we can write this

sr(k, k') = (2sr/&s')
~ f(q) )'f&, (1—fx )S(q,to),

where g=k' —k, f(q) is the scattering amplitude, and

"M. Kohier, Z. Physik 125, 679 (1949).
s' J. Zirnan, Ptoctrorss old Photsorss (Oxford University Press,

New York, 1960), Chap. 9.
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