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these equations each contain a parameter which may be
chosen in an effort to improve the higher density
solutions. For this paper we have chosen these param-
eters by examination of the early terms of the density
series for g exp (Pg) and the pressure. We have compared
these new equations, with the MC method, as the
standard, against the PY and CHNC equations. These
comparisons were made for the Gaussian, Iennard-
Jones, and hard-sphere models. If we assume that MC
is reasonably accurate, then we may conclude that the
new equations show definite improvement over the
CHNC equation in the hard-sphere and Lennard-Jones
models, and improvement over PY for the Gaussian
model, for the cases studied here. Because of small
differences in the results and, the uncertainty in the
accuracy of all the solutions, it is not clear whether the
new equations are any improvement over the PY
equation in the hard-sphere and Lennard-Jones cases
or the CHNC equation for the Gaussian cases.

At worst, we feel that the equations presented here
will have the property of showing close agreement with
either the PY or CHNC equations when one of them
provides a good answer. We hope to be able to show
definite improvement over both of these equations by
selecting a case where neither the PY nor the CHNC
equation provides an accurate answer. We feel that,
relatively, in the case of the Lennard-Jones potential,

the PY approximation should worsen and the CHNC
approximation should improve as T* is lowered. '4 If this
is the situation there should exist a range in T* where
the new equations show definite improvement over
both PY and CHNC. Also, a calculation at lower T~

should begin to show up the differences in Eqs. (A) and
(8) and the differences in, methods of choosing the
parameters a and nz. Unfortunately, it is unlikely that
MC results are available in these regions and so a
detailed study must await such a calculation.

The methods of choosing the parameters a and m
used for this paper have the advantage of simplicity
but are not necessarily the optimum. Further studies
concerning the selection of u and m might lead to even
better representations of the radial distribution func-
tions over a wide range of temperatures, densities, and
types of potentials.
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n See also Khan (Ref. 4) concerning this point.
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The electromagnetic signal from a nuclear explosion is computed using the same method as presented by
Kompaneets. It is shown that some of Kompaneets' approximations are incorrect and lead to the wrong shape
for the radiated signal. His work neglects the important 6rst half-cycle of the signal and hence predicts an
initial deflection in the wrong direction. A more accurate solution is presented.

I. INTRODUCTION

" 'N a 1958 article in the Soviet literature, Kompaneets'
~ ~ described the basic mechanism for radio emission
f'rom a nuclear explosion. This description, however, is
incorrect at several points. The purpose of this paper is
to show that a correct solution for the same model
differs substantially from the solution presented by
Kompaneets. In particular, he leaves out the important
first half-cycle of the signal so that the initial deQection
is in the wrong direction.

We shall use essentially the same method of calcu-
lation: We numerically integrate Maxwell's equations

' A. S. Kompaneets, Zh. Eksperim. i Teor. Fiz 35, 1538 (1958).
LEnglish transl. : Soviet Phys. —JETP 8, 1076 (1959)g.

in dipole approximation, but with different conduc-
tivities and currents. We retain the electronic conduc-
tivity and neglect the ionic conductivity (he does the
opposite) and we retain the Compton current in the
field equations where he chooses to drop it (and there-
fore loses the first half-cycle).

II. RADIATION MECHANISM

The radiation mechanism used by Kompaneets is
essentially the following: A nuclear explosion emits a
small fraction (say 0.1%) of its energy in the form of
prompt gammas with a mean energy of one, or perhaps
several, MeV. Kompaneets takes the time dependence

dN/dt =N she s'
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with $&=10' quanta and b=106 sec '. In taking such
a simple expression one hopes that the radiated signal
is not very sensitive to the form of the time dependence.

The gammas travel for appreciable distances at sea
level (mean free path ),=3X10g cm) and Compton
scatter electrons in air molecules. The scattered elec-
trons acquire energies of about 1 MeV and travel pre-
dominantly radially producing large numbers of
secondaries (v=3X10' secondaries per MeV). The
Compton electrons travel about a meter in air (range
/=10' cm).

A substantial electric field (several hundred V/cm)
is set up by the resultant charge separation. The field
immediately causes an electric current to Qow back
through the ionized region. At the same time electrons
begin to attach to oxygen molecules with a time con-
stant of about 10-' sec.' The electric current, which is
initially electronic, gradually obtains a significant ionic
contribution and after several microseconds the electron
and ion currents are comparable. The calculation of the
conductivity will be performed in the next Section,
where we will also criticize Kompaneets' approximation.

If the current is asymmetrical then the system will
radiate electromagnetic waves. We will assume (with
Kompaneets) that the asymmetry arises because the
gammas emerge preferentially in one direction.

After some time (say, tens of microseconds), the
current and the electric field are reduced to a low level
so that the system electively stops radiating. Eventu-
ally the positive and negative ions recombine.

In an axially synunetric explosion with a Compton
current which has only a radial component, the resultant
electromagnetic field will have only the components
E„, E&, and B~. Maxwell's equations in spherical
coordinates become

(2 2)

18 18 4n-

(rB„)=————Eg+—o (r-,8,t)Eg,
rBr c8t c

(2 4)

where j,(r,8,t) is the radial Compton current and
o (r,8,t) is the total conductivity of the air. We shall take
the current and conductivity to be of the form

j,(r,8,t) = jo(r,t)+ j&(r,t)cos8,

o (r,8,t) =o.o(r,t)+o r (r, t)cos8,

(2 3)

(2.6)

' Kompaneets takes 4)&10 ' sec which results in a low value for
the saturation 6eld. The more recent value is found in L. M.
Chanin, A. V. Phelps, and M. A. Siondi, Phys. Rev. Letters 2,
344 (1959).

8—(sin8B„)
r sin8 88

18 4m

E„+ tto(r, 8,t)-E—„+q„(r—,8,t)j, (2.3)
cBt c

Eg(r, 8,t) =Eg(r, t)sin8,

B„(r,8,t) =B(r,t) sin8.

(2.8)

(2 9)

Then, assuming tT~&&0.0, we obtain the following four
diGerential equations:

18 kr
——Eo =——(ooEo+jo),
cBt c

(2.10)

18 2 kr
Er=——B -(~oE—r+orEo+j r),

c8t r

18 18 4x
Eg =————(rB)——o gEg,

cBt r8r c

(2.11)

(2.12)

(2.13)

Before we can solve these equations we must have
expressions for the Compton current and the conduc-
tivities. The current is a relatively simple quantity but
the conductivity is obtained by solving the differential
equations which describe the air chemistry.

III. CURRENTS AND CONDUCTIVITIES

The equations governing the behavior of the electron
density n, the negative ion density E, and the positive
ion density N+=N +gg are

drg/dt = S(r,t) ngg gNN+, — —(3.1)

dN /dt=ngg PN+N, — (3.2)

d V+/dt= drg/dt+dN /dt, (3 3)

where S(r,t) is the secondary electron-source function.
The coefficient for electron attachment to 02 is n=10'
sec ' and typically the recombination coefBcients are
P=g=2X10 g crn'sec 'gg

Source of Secondary Electrons

For simplicity let us replace the gamma source with
an equivalent monoenergetic source of 1-MeV gammas
which emits radiation at a rate N f(t) where J'dtf(t) = 1
and N is the gannna yield in MeV (N=2.6X10gg Y
where F is the gamma yield in tons). At 1 MeV, the
main attenuation process is Compton scattering. Let us
ignore multiple scattering (so that all the energy of the
gamma is deposited at the first scattering). The rate
per unit area at which gammas are stopped in an inter-

3 W. H. Kasner, W. A. Rogers, and M. A. Biondi, Phys. Rev.
Letters 7, 321 (1961).

4 J. Sawyer, Proc. Roy. Soc. (London) A169, 83 (1938).

and we shall only keep the 'dipole part of the electro-
magnetic fields:

E„(r,8,t) =Eo(r,t)+Er(r, t) cos8, (2.7)
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val dr at a radius r is

Nf(t r/—c) (e "t~/4trr') (dr/X) (3.4)

where ) is the gamma mean free path (X=3&&10' cm at
sea level). The Compton electron slows down by
ionizing atoms (v ion electron pairs per primary elec-
tron, v=3)&104 for a 1-MeV electron) so the rate of
production of secondary electrons, per unit volume, is

S(r, t) =Nf(t r/c—) v(e ""/—4srr'X) (3 5)

~=0 becomes

dr& vE e—+crrt =- f(t x)—.
dt P' 4xx'

This equation is easily integrated:

v/ e
e= [e—s(t—e& e

—a(t—e&j
X' krx'n —6

(3.8)

(3 9)

vÃe b
e
—b(f—a)

X' krx'nComyton Current

We neglect the electron mean free path compared with
and for (t—x',)))n ' we have

the gamma mean free path.
(3.10)

e-rjx gj „(r,t) =eNf(t r/c)—
4m.r' X

(3 6)

It may be more accurate to use a somewhat different
time dependence in Eq. (3.6) than in Eq. (3.5) to
reproduce the e6ect of a velocity spectrum.

In passing, we can use Eq. (3.5) to obtain an approx-
imate expression for the Compton current. It is con-
venient (and conventional) to make some rather
drastic simplifications here. One assumes that the
Compton electrons move with the speed of light c, and
that the electrons moving past a given point r are
roughly the electrons that were produced between r-1

and r where l is the electron range (i=10' cm). From
Eq. (3.5) we get

In the initial phase the ions can be neglected so the
conductivity is given by a-= eye. In fact, it is not a bad
approximation to neglect the ion conductivity entirely
and to keep only the electronic conductivity. This is
exactly opposite of what Kompaneets does.

Radial Electric Field

Then
jt& = (Nel/) s) (e e/4trx') f(t-x)—(3.11)

t

dh' exp —4tr dt"o. (t")

The radial electric 6eld Eo is now obtained by inte-
grating Eq. (2.10) with

Conductivity

The conductivity is conveniently written in the form

-= ("+N;,+~ .) (3.7) Since ct))b we have

Eel e
X4 b;s«' *& (3 1-2)

A' 4m@'

where p, , p+, and p are the electron and ion mobilities.
Strictly speaking the mobilities depend on the electric
field but for the present we assume they are constant.
The values of the mobilities are somewhat uncertain but
we can take @=10 cgs' and p+

——p =SX10' cgs. ' In
these units e=4.8&(10—' .

From now on we shall use a set of units in which
distance is measured in units of X (we let x= r/X), time.
is measured in units of X/c= 10 ' sec.

The gamma output is taken to be of the form

f(t) e st with b=10s sec '. The steeply increasing
initial part is disregarded. ~

In the new units the electron density equation with

5 R. A. Nielsen and N. K. Bradbury, Phys. Rev. 51, 69 (1379)' American Institttte of Physics Handbook (McGraw-Hill Book
Company, Inc. , New York, 1963), 2nd ed. , pp. 7—228.

7 In the paper by Kompaneets the time behavior of the system
is artificially separated into two phases: a short electronic phase
lasting about 10 6 sec during which a strong radial electric field is
established, and a later ionic phase during which the system
radiates if the currents are asymmetrical. Electron recombination
is neglected (e=0). This is reasonable where etV+« tt, or tV+«10"
cm

—4tr dh"o (h")

and

pvEe e
P—b(t' —e& e—b(t—e&1 (3 13)

nX' x'

S

Ert=E 1—exp —— L1—e
—sit—e&]

E, x'
(3.14)

where E,=otl/ttv and Es=Nel/X'. Note that the field is
essentially independent of yield and typically crl/ttv =0.5
esu. For t —x))b—' we have

E e
EO=E 1—exp ——

E, x'
(3.15)

At relatively close distances the time to reach E„=crt/ttv
is about (t—x) = (btsv Ve/otX') '. At greater distances the

't A numerical solution of Eqs. (3.1) and (3.2) indicates that the
electronic and ionic conductivities become comparable at about
t—x=10 ' sec.



RADIO EMISSION FROM NUCLEAR EXPLOSION

time to reach the asymptotic value is (t—x) =b '. The
electric field is fairly constant with Eo~nt/pv and then
drops off rapidly. The effect of higher yield is to extend
the region in which there is an electric Geld and to
decrease the time constant for approach to the asymp-
totic Geld. '

If the gamma output is just a very short pulse which
can be approximated by f(t) = B(t), we obtain

—0 (t—x) (3.16)

S E~e *
Eo Ei, e——xp E1 e ~ *j (3.1 )

E, x'

At t=x the field has its maximum value Eo=Ebe /x'
and then it decays, initially at a rate pi Xe/&I.'. For large
t—x it reaches the value

e *
80=E~ exp ——

$9 E x'
(3.18)

This function is zero at x=0, rapidly increases and
reaches a maximum at (Ei/E)e /x=1 and then
diminishes. The value at the maximum is Eo=e 'E .
Even though the time behavior of the Gelds is quite
different, the asymptotic results are quite similar. Note
that if E,~ oo (i.e., n —+ co) then Eo —+ Ei,e */x for
both inputs. It is the Gnite attachment rate cx which
makes the residual Geld depend on the gamma input
time behavior. At sufBciently large distances the GeMs

are again identical because there is very little current
fiow before attachment.

o (r,8,t) =o.o(r, t)+ go 0 (r,t)cos8. (3.20)

If we measure the fields in units of fE, then the equa-
tions we have to solve are

BE,/8(= (2/x)B —pro.oEi—4iro iEo—4~rji, (3 21)

BEq/Bt = —(1/g) B (gB)/Bx 4~~oE2, . —(3.22)

BB/Bt = —(1/x)Ei —(1/x) B (xE2)/Bx, (3.23)

with

4vro. o
——ym(x) (nb/a —b)Pe ~&' *&—e ~' *&j, (3.24)

4, ,E=4,[1—exp( —yQ(x)L1 —e "' *&j)j, (3.25)

47rji———yu(x)be '~' *', (3.26)
9 Actually, Kompaneets disregards the retardation of the

gammas and the decrease of the electric Geld at large distances.

Asymmetry

Let us suppose (with Kompaneets) that the gammas
are emitted with a small dipole asymmetry.

j,(r,8,t) = jo(r,t)+$jo(r, t) cos8 (3.19)

where $ is a small parameter. Therefore

where u(x)=e */x'. In our units n=i00, b=1, snd
y=Ei/E = 100F where F is the gamma yield in tons

The inhomogeneous term in Eq. (3.21) can be rewrit-
ten, in our approximation, as

4mo iE&+4m ji=expf —yet(x)L1 —e "' '&j)

Xyit(x)be —'&'- &. (3.22)

IV. RADIATED FIELDS

In general, the dipole approximation implies that the
size of the source is small compared with the wavelength
of the radiation. If this condition is not satisfied higher
multipoles make signiGcant contributions, unless they
happen to vanish or are very small. In our model we
have assumed a dipole asymmetry and the only term
dropped in arriving at Eqs. (2.10)—(2.13) is the product
(47r/c)o iEi cos'8 which is proportional to the square of
the small asymmetry parameter $.

There is another more important question: How
accurately will the model describe a real source? One
can expect that the dipole approximation will be ade-
quate for a rough description of the signal but will not,
in general, give the detailed shape. In particular one can
expect that the early part of the signal, which arises
from a source which is expanding with almost the speed
of .light, is not given correctly at all. However, the
closer the asymmetry in the brompton current is to the
dipole form the better the over-all result will be.

The Distant Fields
In the radiation zone (that is, x))wavelength

))source ra, dius) we have

Eg=B„=LZ(t —x)/xgsin8 (4 1)

where Zis the dipole moment, Z=Z ex. It is most useful
to present results for the quantity Z(t —x).

At shorter distances, approximately of the order of
the wavelength but still much larger than the radius of
the source, the Gelds are somewhat more complicated.

B„=(Z/x+Z/x') sin8,

Eg (Z/x+Z/x'+Z/x') s—i—ne,

E„=2(Z/oo+Z/x') cos8,

(4.2)

(4.3)

(4.4)

where again Z=Z(t —x). By extending the numerical
calculation out to some intermediate distance (say,
x=10) and comps, ring with Eqs. (4.2)—(4.4), one can
extract the quantity Z(t —x). Note that the above fields
are exact solutions to Maxwell's equations in free space.

The solutions are required to satisfy the boundary
condition By=0 at x=a for all t, where a(&1. In other
words we assume that at the center of the explosion
there is a small perfectly conducting sphere.

Numerical Solution

We shall now present a number of solutions. The
Gelds E~, E2, and 8 are obtained by integrating out
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FIG. i. Second derivative of
the dipole moment for several
values of E«/Eo: (1) Es/E'
= 100, (2) E«/E, = 10, (3)
E«/Eo=1 Cur.ve (4) is also
for Es/E, =1 but with a=0.1.
The previous curves were all
run with a=0.5. Since Es/E,
=1 corresponds to the smallest
ionized sphere the discrepancy
would be greater for this case.
The unit of time is 10 ' sec.

-0.2

-Oe3-

along characteristics. The fields satisfy the boundary
condition Es(a) =0 with a=0.5. (The results of several
cases with a=0.1 were not significantly different. ) The
center of the burst has in effect been replaced by a
perfectly conducting sphere.

To compare with Kompaneets we shall take b=10'
sec ' and the attachment coeKcient a=10 sec '. Since
$&, is simply a scale factor we are left with only one
parameter, Es/E„ to vary. In Fig. 1 we present
Z(t—x) for several values of E&/E, (essentially the
yield).

Kompaneets entirely neglects the direct eGects of the
Compton current, and he therefore obtains an initial
downward deQection (positive Es) for the case where
the initial asyrrunetry results in an excess of electrons
moving upward. One would expect to get the opposite
result as in Fig. 1.
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APPENDIX: REVIEW OF KOMPANEETS' SOLUTION

For the purpose of solving Eqs. (2.11)—(2.13)
Kompaneets disregards j&, the asymmetric part of the
Compton current, and he neglects the electronic con-
ductivity. That is, he imagines that the Compton cur-
rent has died out and all the electrons have attached to
oxygen molecules before the system starts radiating so
that for the purpose of computing the radiation source
we need only use the ionic conductivity. This last
approximation is poor but the 6rst is even more serious.
It causes Kompaneets to miss entirely the first main
half-cycle of the signal. His initial half-cycle is therefore
in the wrong direction. We shall, however, make the
same approximation in order tp check his numerical
results.

Ionic Conductivity

When all the electrons have attached, there are equal
numbers of positive and negative ions which disappear
through recombination at the rate p:

0N+/dt =—PN+'.

One has immediately

N+=Ne/PNeP(t tp)+1j. —

(A1)

(A2)

Kompaneets treats the case of small dipole asymmetry
in the gamma source which results in a small asymmetry
in the initial ion density: Ne = ¹ (1+$ cos8) .Expanding

7(x

Oe3—

002

Oe I

0
0 IO

y -x+ IO
I

30 40

-Oe I

Fj:G. 2. Second derivative of the dipole moment as obtained in
Ref. 1. Values of parameters: (1) «=4, i« =200; (2) «=1, m =10;
(3) «=1, i«=i.
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Fro. 3. Z(t x) rec—omputed
for the same cases as in Fig. 2.
Curve (4) has the same values
of «and tn as curve (3) but was
computed with a=0.1.
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¹ep; N petr;
o;= +," cos8 (A3)

Ny(t t,)+1 (N—y(t —t,)+1)s
=0'p+0'r cosg.

Eq. (A.2) in P yields for the conductivity o,=et',m r)Es/r)t = —(1/x) 8 (xB)/r)x —4n.o pEs,

BB/R = —(1/x)E,—(1/x) 8 (xEs)/cjx,

m«u(x)
kr0-0=-

emu(x) t+1]

(A8)

(A9)

(A10)

Kompaneets puts t0=0 and¹= (vtV/)P) (e
—'/4n. x') . (A4)

m«u(x)
4mo gE0 ——

Pmsu(x) t+1j'+"
(A11)

The ionic current leads to a gradual decrease of the
large radial electric Geld. Since the Compton current is
absent we have

and
BEp/r)t+4ro pEp=0

t

Ep(t) =E exp —4n dfo p(t')
0

=E./(¹Pty1)

(AS)

Numerical Integration

Kompaneets then integrates the following equations:

BE(/Bt = (2/x) B 47ropEr 4rro rEp, —(A.7)—

where E,=nl/pn and «=4n.etr;/p.
Note that at the beginning of the radiation phase we

have a spherically symmetrical radial electric Geld and
an asyDUnetrical conductivity resulting in a net current
which is the source of the radiation.

with u(x) = e '/x and m u(x) =NpP. The fields Er, Er,
and B are now measured in units of (E,. Kompaneets
compotes the radiated field for three sets of values of
the parameters m and «: (1) m= 1, ir = 1; (2) m= 10,
«=1; and (3) m=200, x=4. The actual numerical

process is not described.
In Fig. 2 we reproduced the Ggure from Kompaneets'

article. He presents the second derivative of the dipole

moment Lwhich he calls f(x y), where y=—et) for three
values of the parameters ~ and m.

We have also computed Z(t x) for the —same values
of the parameters and the results are presented in Fig.
3. The results differ from those in Fig. 2 in several
respects. First, our results are smaller by a factor of
about four. Second, the shape of the signals is different
in that our signals are relatively steeper at the leading
edge. And finally, the two sets of curves do not have the
same relative positioning. The discrepancy is hard to
explain.


