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Gor'kov factorization, Qt(1)pt(2)tp(3)p(4)) -+ Qt(1+t(2))(p(3)p(4)), is made the basis of a generalized
self-consistent-field (SCF) theory precisely analogous to that previously developed for Hartree factoriza-
tion, (gt(1)kt(2)tp(3)|p(4)) ~ (pt(1)p(4))((tpt(2)f(3)). The generalized SCF method is reviewed in the
context of Gor'kov factorization. The corresponding simple SCF theory is developed to illustrate the
method and is shown to give a simple Hamiltonian version of the Bardeen-Cooper-SchrieGer theory of super-
conductivity and, more generally, of coherent pairing. The notion of an external pairing held is introduced
and the corresponding response functions developed via a formalism like that of Kubo. General Quctuation-
dissipation theorems are proved for the response functions. An equation of state is then obtained by a
formulation analogous to the dielectric formulation. The insertion of the simple SCF approximation to the
response function into the equation of state yields a generalization of the usual low-density (or short-range)
evaluation of the grand potential to arbitrary temperatures. Screening the bare interaction with this approxi-
mate response function converts the former into the t matrix of the independent-pair approximation. The
entire analysis gives an underlying unity to the currently disparate treatments of superconductivity, of long-
range correlations, and of short-range correlations.

I. INTRODUCTION simple SCF theory via a dielectric formulation' ' useful
at high densities for long-range interactions (Ref. 4 is
designs, ted as I here). For nonuniform systems, the
Hartree factorization plus dielectric formulation is con-
venient for the study of the interrelation of exchange
and correlation with the nonuniformity. '

Correspondingly, for normal systems the Gor'kov
SCF vanishes. The generalized Gor'kov SCF method is
then, as we shall see, suitable for discussing exchange
and correlation corrections via an analog of the dielectric
formulation, but now it becomes useful at low densities
or for short-range interactions. For systems with co-
herent pairing of the first and second kinds, '' the
Gor'kov field does not vanish. Our SCF procedure then
permits the development of a Hamiltonian formulation
of, e.g. , the theory of superconductivity which is simple,
convenient, and, because it is a Hamiltonian formula-
tion, of wider general utility than the Green's function
theory of Gor'kov. Our procedure, in a sense, provides a
bridge between the Hamiltonian formulation of Bo-
goliubov' and the Green's function formulation of
Gor'kov. One can proceed forward with the SCF theory
by putting it into a single-particle-like form which re-
sembles somewhat Anderson's pseudospin theory" or
Nambu's spinor theory. ' The new form which will be
discussed in a separate publication, looks promising in
relation to the general problem of developing transport
equations for superconductors. "Alternatively, one can

'HROUGH the introduction of appropriate self-
consistent fields, Gor'kov' and Nambu' have

elegantly and compactly reformulated the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity. '
Gor'kov, in particular, introduced into the equation of
motion of the single-particle Green's function the basic
approximation

Q t(1)ft(2g (3)f(4))—+ Q t(1)ft('2))Q (3)P(4)), (1.1)

which we call Gor'kov factorization. Here the inert(i)

and ll (j) are fermion creation and destruction oper-
ators, and the angular brackets indicate an appropriate
ensemble average. Gor'kov rationalized the number-
nonconserving character of the approximation (1) by
noting that the exact average (ll t(1)ll t(2)p(3)p(4) ) con-
tained, e.g. , the important terms (N ~ll t(1)p(2)

~
N 2)—

X(N —2~if (3)p(4) ~N) which are kept in the approxi-
mation (1.1).

In an earlier paper, 4 we made Hartree factorization,

Q t(1)ft(2)lh(3)ll (4)) -+ @it(1)lf (4))(li t(2)ll (3)), (1.2)

the basis of a fairly complete formulation of a general-
ized self-consistent-Geld (SCF) theory. In the present
paper, we make the Gor'kov factorization the basis of
an analogous theoretical development.

For uniform systems the Hartree SCF vanishes. The
generalized Hartree SCF method is then suitable for
discussing exchange and correlation corrections to the
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Tmr, z I. Restrictions on the interaction.

Restriction

eq(p p ) |x', 2' 2= (&q(p p ) x t', s' s)

=~q(n, u')-- --I,="--.
4 =&-q( Pi P)~Pa', ~2'~a

5. =e-q(p', p), ."
6. =f(PP'&v a,v' a)
7. =0 unless cr&+K], =02+0'2'
8 &t t t t =~tsst+~tscs

Origin

Convenience
Spin-rotation invariance
Time-reversal invariance
Inversion invariance
Identity of particles
Spatial-rotation invariance
Spin-rotation invariance
Spin-rotation invariance

work towards going beyond the BCS theory with the
aid of the "dielectric" formulation in order to shed light
on the nature of the superconducting to normal phase
transition. " Finally, we have already used the SCF
theory described herein as a basis for studying the
relative stability of normal and coherently paired
states. ' "

In Sec. II, we apply the generalized SCF method to
the present case of Gor'kov factorization. In Sec. III,
we illustrate the theory in its simplest form by applying
it to the familiar case of a coherently paired state
(e.g., the superconducting state). In Sec. IV, we study
the response of the system to an external pairing
potential, and, in Sec. V, derive the corresponding
fluctuation-dissipation theorems. An equation of state
is then developed in Sec. VI which is analogous to the
dielectric formulation of Ref. 5. These results are
simplified in Sec. VII by the application of various
symmetry and related considerations. An approximate
study of the equation of state valid for low densities
or short-range interactions illustrates the relation of the
present theory to other methods.

Although the theory has been presented herein only
for fermions, all general results hold equally well for
bosons, to which they may be applied simply by elimi-
nating the spin indices and substituting symmetrizing
for antisymmetrizing wherever the latter is indicated.

After this work was completed, it came to the author' s
attention that a closely related use of Gor'kov factoriza-
tion has been made by Emery. '4 Emery introduces an
external pairing field and the corresponding generalized
response functions. He then developes an equation of
state analogous to the dielectric formulations of Nozieres
and Pines' and of Brout and Englert' by integrating
over the strength of the particle interaction. A simple
Gor'kov SCF theory analogous to that of Sec. III is

"That the BCS theory may need augmenting in the vicinity of
the transition temperature is suggested by the specific-heat
measurements of D. C. Rorer, H. Meyer, and R. C. Richardson,
Z. Naturforsch. 18, 130 (1963), and of D. C. Hopkins, Ph.D.
thesis, University of Illinois, 1962 (unpublished), both for Al. I
am grateful to Professor D. H. Douglass for calling this work to
my attention and for detailed discussions of these and related
matters.

"M. H. Cohen (to be published).' V. J. Emery, Nucl. Phys. , 57, 303 (1964). The author is
grateful to Professor R. A. Harris for calling this work to his
attention.

then introduced to give a result for the response function.
and grand potential analogous to the (=0 result of
Sec. VIII. The philosophy followed is thus related more
closely to that of Ehrenreich and Cohen" than to that
of the present paper and of I.

~TH X+ 0r ~ (2.1)

Here X is the kinetic energy K measured relative to the
Gibbs free energy pS, where p is the chemical potential,
or Fermi energy. Upon introducing second quantization,
with lt „tthe creation operator for a state of momentum

y and spin direction r, X may be written

(2.1a)

e„=(P'/2m) —p. (2.1b)

Correspondingly, 'Uz is the interaction potential, which
may be written generally as

«= s 2 eq(p, p'). ~ .. "
CP|P

O'1 O'I '(f2, 0'2

&0 s+q. i'li s -q-i'0 y "s4s.s (2.2)

In (2.2), wq(p, p')„„,„„is the matrix element of the
interaction for the scattering of a pair of particles from
the states po.s and p'o &' to the states p+qo. i and p' —qo i',.
Aq is the associated momentum transfer. We have
allowed for momentum and spin dependence of the
interaction for later application to o8-the-energy-shell
interactions of Landau quasiparticles. "The restrictions
imposed. on ttq (p,p') „, „„bysymmetry or convenience
are listed in Table I.

It is convenient to introduce pair-field operators
d+(p, p') and to resolve them into singlet d,+ and triplet

'~ H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
'6 L. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956); 32,

59 (1957); 35, 97 (1958) LEnglish transl. : Soviet Phys. —JETP
BS, 70 (1959)j.

II. THE GENERALIZED SCF METHOD

We consider a collection of 1V interacting fermions
confined within a volume V(E~~, V —+~, p=X/V
remains finite). Because we work with the grand canoni-
cal ensemble, we use the "thermodynamic" Hamilto-
nian to govern the motion of the system:
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components d +, ttt=0, A1. The latter resolution is made by observing that g»t and —Pyz transform as
the m=y component of a spinor and Pyqt and Ppt as the m= —

y component under spin rotation. We
have, then,

d. (P,P') = (1/~2)(4y~4p t —aptly ~); d. (P,P')-=~* (P',P),

d;(p, p') = (1/&2)(4pt t6 zt —A~Up t'); Ld. (P',P)lt=—d.'(P,p'),

(2.3a)

(2.3b)

dz (P P')=4p~fp ~

dy (P,P') = (1/~2)(AtA ~+Ayah t)

d-z (PP)=4'»6't
d=(P, P') =- —d=(P', P),

d~+(P,P') =4pt Vp t'
d+(p, p')=(1/~2)(A V; t+S, V; t),

(P~P ) =4&t4'y'&t ~

Ld-(P', P)j'-=d--'(P, P') .

(2.4a)

(2.4b)

Substitution of (2.3) and (2.4) into (2.2) yields for 'Uz of T, zz, and V. This variational principle together with
after use of Table I, (2.9) leads immediately to

&z= '2 -Ly (P,P').d.'(P+«, P' —«)d. (P',P) I'y exp& (——O' X,y)/—Ize T) (2.11)

happ

for the density matrix in equilibrium. The SCF Hamil-
+t'q(P&P )&~m (P+«~ P '«)d—~ (P ~P)j ~ (2 5) tonian X,' in equilibrium

where v, and v& are the singlet and triplet interaction
potentials,

X.'= X+ (1—$) Ug'+ g3z, (2.12)

pt=ptttt =pt44t+t't4t4 ~

(2.6a) now contains a SCF term 'Ug,

(2.6b) &e= Z [Vg-'(p, p')~-=(p', p)
ptp tz

It is convenient to abbreviate (2.5) still further by
writing

t (P,P') d +(P+«, P' —«)~- (P' P) (2 &)
%ip~p tzxI

where n stands for s, t, and/or ttz in turn.
We have to do with the average of KzII in the

formulation of the variational principles of quantum
mechanics,

+Vg=(p, p')d--'(p', p)j. (2 13)

In (2.13) Vg is the Gor'kov field, i.e., the self-pairing
field of the system,

Vg=(p, p') =2 Z y~(p, p').&d=(p+«, p' —«) &, (2 14a)

Ve-'(p, p') =
y 2 p~(p, p')-«-'(p+«p' —«)), (2 14b)

U = (Xrzz&, I:V =(p,p') j*=V .-«'(p', p) . (2.14c)

which is the difference between the internal energy U
and the Gibbs free energy G=Iz(E&. In U', the average
interaction energy ('Uz) contains averages of products
like (d +d ). The starting point of the generalized
SCF method introduced in I is to modify all such
quantities,

«-'d= )~ (1—&)(~-"&(d-=&+k«-'d-=& (2 9)

wherever they enter U' but otherwise to maintain the
usual variational principles unchanged. The parameter

$, which varies between zero and unity may be regarded
as a correlation coupling parameter. When $ is zero, we
have a sittyp/e SCF theory, and (2.9) reduces to Gor'kov
factorization. When P is unity, we recapture the exact
problem. At intermediate values of $, we have a
generalized SCF theory.

In thermodynamic equilibrium, the grand potential,

The Gor'kov 6elds are to be determined self-consistently
by averaging d or d+ in (2.14) with I'&, (2.11), which
in turn depends on the Gor'kov fields.

For time-dependent problems, the equation of motion
of the density matrix is

iAP= LX„Pj, (2.15)

which is to be solved self-consistently with the defining
equations of the Gor'kov 6elds (2.14).

III. SCF THEORY OF COHERENTLY
PAIRED STATES

To illustrate the formalism, we discuss brieQy in the
present section the thermal equilibrium theory of co-
herently paired states in the t=0 limit (simple SCF
theory). The SCF Hamiltonian is now

0= U' TS= —pV, — (2.10) Xe =Z &p4'pr 4'yr

is a minimum for arbitrary variation of the density
matrix P, subject to normalization of P and constancy

pd

+ Z LVg-'(p, p')~-=(p', p)+coni j (3 1)
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(3.13)

We restrict ourselves to uniform, isotropic, and non- in general. For our present f= O-case, (3.12) gives
magnetic states of the system. Elementary symmetry
arguments show that U'=g(e, L„)—I

p„I2+g E,f„„
p pzT

(d (p,p') )=0 unless p = —p' and o.=s, (3.2)

and similarly for Vg+, VG, and (d+). Moreover,
(d, (—p, p)) depends only on p; we thus have s wave,
singlet pairing as supposed in the original BCS theory.

The SCF Hamiltonian simplifies further to

~~ =Z Loy44t 4'2&+4'y& 4'yI

+~p62'4-yI'+ ~y+4-y4'yp) (3 3)
where

~p= ~p= (~y')*=2 p.(p —p).(4-y-216+yp) (3 4)

is the energy-gap parameter and is to be determined
self-consistently. At this point, one makes the Bogoliu-
bov transformation to diagonalize the Hamiltonian and
quickly recaptures all the familiar results of super-
conductivity theory. The Bogoliubov transformation is'

fpt pCp2 + pC—pi ) Pp$ y yt+ p C—p$

pI =QpC pI ppCpp ) P pl = Qp C yl
—pp Cpt ) (3 5)

I ~.I'+ I
"I'=1,

where the cp, are the Bogoliubov quasiparticle operators.
The diagonalization requirement gives A„real and,
together with the requirement that the lowest eigen-
value of K,P correspond to no quasiparticles excited,
gives also that

which is the usual result for the total energy.
We see that the present version of Gor'kov SCF

theory gives a simple Hamiltonian formulation for
superconductors (or for CP II') at thermal equilibrium.
The particular advantages of the present scheme, how-
ever, manifest themselves much more clearly for non-
equilibrium problems, which we have studied to some
extent but which cannot be dwelled upon here.

IV. RESPONSE TO AN EXTERNAL
PAIRING FIELD

We return now to the generalized SCF theory, (40,
and add to the Hamiltonian an interaction 'Up between
the system and its environment which transfers a pair
of electrons simultaneously from one to the other:

'Uo= Q I Vo (p'p)".4'y 4'p"
p p', 0 zr'

+V"(p,p'). .S, ;a,.) (4.1)

We are interested in the linear response of the system
to the (in general, time-dependent) external pairing
potentials, or pairing fields, Vp and Vp+, which may
be considered independent. Once again, it is convenient
to resolve Vp and Vp+ into their singlet and triplet
components as in (2.3), (2.4), and (2.7):

&o= 2 [Vo (p',p)-&--'(p, p')
p, p preI

+Vo'(p, p') 4-=(p', p)) (4 2)
IN„I =-;(1+.,/I:„),

I
"I'=2(1 ops'~y)—

—
(p 2++ 2)1.2 X,=X+ (1 f)Ug+—PUz+'Up (4.3)

(3.6a)
The total SCF Hamiltonian which governs the evolu-

(3 6b) tion of the system in time is now

(3.7)

&~ =D (py +p)++pL~y~ ci ~+cyI ci&)} (3 g) The external pairing Geld'Up induces a departure BUG of
the self-pairing field 'Uq from its equilibrum value 'Ut.-',

If the sign of v„ is taken as positive, the sign of I„ is
opposite to that of 6„. Finally, the self-consistency
requirement (3.4) gives the BCS integral equation for
the energy-gap parameter,

Ug UG +I-IUG ~ (4.4)

The SCF Hamiltonian correspondingly changes from
its equilibrium counterpart to

tanh2PEiy+pi
~.= —

2 Z pp(p, —p) ~iy+pi (3 9)
X,=RP+'Uz,

Vz= (1—g)hug+Vo.

(45)

(4.6)

It should be noted that I"he entity 'U~ is the effective pairing field accompanying
Up. It is necessary to introduce also the total internal

(~N')=2 L(py &p)+&p(fpt+fp2—)), (3 10) pairing field "U accoznpanying Vp.
p

where 'U =LUG+'Up. (4.7)

f„.=Le' +1)
is not the value of O'. Instead, we have

&'=(~.')—:(1—~)(~"&

(3 11)

(3.12)

The corresponding entities V~, V, Vp are analogous to
the Lorentz local field, the electric field K, and Maxwell's
displacement field D, respectively, in problems of longi-
tudinal electromagnetic disturbances (cf. also I).
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(4.15)'U(=d Vt.

In computing linear responses, we restrict ourselves and Y to be
to evaluating d Vg, and hence V and Vp, to first order
in Vo. There must result a linear relation between Vo

P= X Y=Q X, I';= Q X;I";= Y X. (4.14)

and V after all the mechanics of self-consistency are
worked out. In analogy with the relation D= e E of We see from (2.13) (4.2) (4.6) (4.12) and (4.14) that
electromagnetism, it is convenient to express this linear g& may be written as
relationship schematically as

Vp=e V, (4.8)

where all variables specifying the components of Vo, e,
and V have been suppressed for clarity. '~ The response
function e is thus analogous to the dielectric function
of I. The task of the present section is to derive ex-
pressions for the response function analogous to those
derived for the dielectric function in I.

The procedure we follow is similar to that system-
atized by Kubo."We order the calculation in powers of
'Uo and keep only 6rst-order terms. For the density
matrix we have, then,

Similarly, we see that & de6ned through the relationship
(4.8) must be a matrix e in the same sense tha, t Vp and
V are vectors

Vp ——e V or (Vp);=+ e;;V, . (4.16)

(d;) &'j = trd, Pi. (4.17)

This completes the introduction of the compact nota-
tion; we now turn back to the calculation of e.

We start by evaluating

P= Pp+Pi,

iAPi ——[3'.,',Pij+[mt, Ppj.

(49) Putting (4.15) into (4.11) and the result into (4.17)
leads to

4.10 00

Requiring that 'Uo and I'j vanish in the remote past,
the solution of (4.10) is

g

p, pj exp =——x,'(t' —p)u&(&'j
ih „ I|

Xexp~ —BC.'(t' —t) ~Pp d&' (4 11)

It should be noted that (4.11) is written in the
Schrodinger and not in the Heisenberg picture.

To proceed further at this point by evaluating the
SCF implicitly contained in (4.11) through 'Ut would
get us involved with a very heavy notation. Accordingly
we now introduce a compact, abstract vector and matrix
notation for the entities we deal with here. Let the super-
script r stand for the superscript & of the pair fields d
and pairing fields Vt, V, Vp. Regard X(yi,ps) ' for any
such quantity X as the p&, p2, n, r component of the
column vector X in an appropriate Hilbert space. The
row vector Xt which is the Hermitian conjugate to X is

(d)l'j= A(j,'—&') Vt(t')dh'. (4.18)

The entity A(t —jl') is a matrix in the same sense that
s is a matrix in (4.16). It is causal and has the elements

~' (~—~') = ((4(t),d'(~ )))
=0, t&t'.

(4.19)

The bracket symbol used in (4.19) stands explicitly for

(( (~)»(l')))= (1/'@) t [ (~)»(1')jPo (4 2o)

where a(t) and b(t') are second-quantized operators in
the Heisenberg picture generated by BC,P. In (4.19), in
particular, the Hermitian conjugation d-+ d& is to be
taken according to (4.12) before passing into the
Heisenberg picture.

It is convenient to specialize the time dependence of
Vp, etc. , to exp( —ioj+j!), oj+=oj+io., n-+ 0+, in which
case (4.18) becomes

(4.21)

X (pi,ys)~'=X(ps, yi) ~ '. where
4.12

e'"+l' ' jA(t —j!')dj,". (4.22)A(oj+) =
For convenience, we can specify the entire collection of
variables specifying a component of X or Xt b the
subscript i,

X;~X(pi,ys) '.
In the representation based on the functions +

(4 13) diagonalizing K,p,

We now define the scalar product P of two vectors X Bc,% =E 4 (4.23)

"The symbolic product in (4.8) must be regarded as nonlocal
in time as well, except in the case of harmonic time dependence,
mid. Kqs. (4.14), (4.1'7), (4.23), and (4.24)."R.Kubo, J. Phys. Soc. Japan 12, 570 (1957).

P„.„'=(P„8 „., (P„=—e ~e"/Q„. e ee"', (4.24)

Eqs. (4.19) and (4.22) imply the following explicit
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expressions for A:

A(a)+) = P (p„
tnm' E„—8„+tpo~+

dm, &~dm~~ t
(4.25)

E, —E —L)+

We now symbolize the particle interaction vp(p, y') of
(2.2) and. (2.7) as a matrix v and indicate the contraction
(summation over tl) involved in obtaining Vg from
(d), Eq. (2.14), by

Vg=-,'v (d). (4.26)

Inserting (4.21) into (4.22) and recalling the definitions
(4.6)—(4.8) leads, then, to the reciprocal relations be-
tween e and —',v. A:

e(o~+)= I —[I+(oiv A(o~+)] '-', v A(&o+), (4.27)

A( ') = —[ ( ') —l] [i+5( ( ')—l)] ' (4 28)

This derivation of Eqs. (4.27) a,nd (4.28) completes the
task of this section.

'Uoo= tp(v'dp) 'do= pdo' Vo,

the time rate of change of which is

&op=do Vo.

(5.6)

(5.7)

If we substitute (5.5) for Vp in (5.4), we can transfer the
v from dp to d by virtue of the symmetry properties
of v, Table I,

U'=dp Vg. (5.8)

We can now express Vg to first order in Vo through
the definition (4.7) and (4.8):

U'=[do e 'Vo —do Vo]. (5.9)

The sum of the field energy of the external system and
the U' of the system proper, which includes the inter-
action between the two, varies with time as"

We mean by the term "classical" that the individual
components of dp are c numbers, whereas those of d are

q numbers, i.e., operators in Fock space. We suppose
also the existence of a self-interaction energy for the
pair 6elds of the external system

V. FLUCTUATION-DISSIPATION THEOREM d(Uoo+ U')/dt [d=p e '~V-p] (5.10)

In the following, we develop the theory of the dissipa-
tion of the energy of the external system caused by the
interaction between the external system and the system
proper, 'Uo. W'e then go on to examine fluctuations in
the system proper rig the causal matrix A, and, finally,
to establish the connection between the fluctuations
and the dissipation —the required Ructuation-dissipation
theorem for generalized SCF theory.

The time rate of change of the U', Eq. (2.8) et seq. ,
of the system proper is given by

This result is of complete generality; it is valid for all
problems of second-order perturbation of one system by
another and is, of course, not peculiar to our present
generalized SCF theory with Gor'kov factorization.
Only in the present context can it be regarded as a new
result. It is implicit in (5.10) that the interaction Up

vanishes in the remote past and is subsequently turned
on adiabatically. Integration then yields for the second-
order energy change the same result as would be ob-
tained by direct calculation,

&(zoo+ U') =-',do. e ' Vo. (5.11)
(5 1)

"pU'/tiI' =K„
it follows that the first term in (5.1) vanishes:

8U'. 1
tr P=—trX.[X„P]=0.

zh

(5.2)

(5.3)

We have, then, from (4.2)

U'= aU'/Bt=Vp (d). (5.4)

We now give a more concrete meaning to the external
pairing field Vo by supposing it to arise from a "classical"
fermion pair field do and dp+ external to and independent
of the system proper:

Vo= —v do. (5 5)

where BU'/Bt is the contribution of the explicit time
dependence of the external fields. From the basic equa-
tions of the SCF method, Eq. (2.15), and

One sees from (5.11) that pairing interactions are
screened by the linear response function s in precisely
the same way that the Coulomb interaction is screened
by the dynamical dielectric function. As we shall see
later, this result provides a convenient basis for making
contact with the more familiar pair scattering-matrix
approach to pair interactions.

The part of d('Upp+ U')/dt which is x/2 out of phase
with 6('Upo+ U ) is stored, and. that part of it which is
in phase is dissipated. Thus (1/2i) {e '(&o+)—[e '(o~+)]t)
determines the dissipation for arbitrary dp ol Vp,

through (5.10). Inasmuch as the chemical potential p is
kept as a constant explicitly entering the effective
Hamiltonian governing the motion of the system, it is
clear that only processes in which the chemical potential
is unchanged are embraced here. The system remains
open to, and in equilibrium with in regard to transfer of
particles, a large, unchanging reservoir of particles. If,
in addition, we restrict dp and do+ in such a way that
(1V) remains constant, we can identify U' and. hU' with
V and AU, U being the internal energy of the system
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proper. Im[e '(oo+)$ then determines the usual dissipa-
tion of energy by transfer from the external system to
the system proper, where it is ultimately converted to
heat. If, on the other hand, (N) is nonzero, U' contains
the term ti(N—) in addition to U, ti(N—) being the rate
of change of the internal energy of the particle reservoir.
Im[e '(&u+)j then determines the dissipation of energy
by transfer from the external system to both the system
proper and the particle reservoir.

We now turn from the study of dissipation to the
study of Quctuations in the pair fields at thermal equi-
librium. We define the correlation matrix C(t—t') to be

C(t—t') = (1/h)(d(t)dt(t')) = (1/fi) trd(t)dt(t')Po (5.12)

with d(t) and d&(t') in the Heisenberg picture generated
by K, and with Hermitian conjugation applied before
entering the Heisenberg picture. We see by comparing
(5.12) with (4.19) that A(t —t') is (—i) times the causal
antisymmetric part of C(t—t'). The Fourier transform
of C(t —t'),

C(&o) = (1/2m) C(t t')e'"—" "Ct', (5.13)

and the pair operator d. We introduce the notation
(M), ; for the anti Hermitian part of the matrix M.
From (5.17) it follows that

1 (-,'v. A(oo+) ).
(Vg'od)„—Vg'(d)'5(ho)) = —— . (5.19)

zi 1—e—t'""

We re-express the right-hand side of (5.19) through
(4.28):

(Vg.od) Vgo(d)og(ttoi)

Equa, tion (5.20) is the desired fluctuation-dissipation
theorem in its most general form. We can derive from
it the equal-time fluctuation-dissipation theorem by
integration over frequency

op 0 p 0

is proportional to the spectral distribution function for
d(t). In explicit matrix form, C(oi) is

nims

VI. AN EQUATION OF STATE

Equation (5.21) provides the basis for the derivation of

+~ ) (5 14)
an equation of state in the next section.

It follows from (4.25) tha, t

A(or+) —[A(o~+)]t= —2xi(1—e e"")-
X Q'6' d„„d„ th(F —8„+boo). (5.15)

In thermal equilibrium, the fundamental thermo-
dynamic variables of our system are T, p, , and V. The
grand potential then depends on T, p, and V; for axed
T, ti, V, it depends on g as well:

Equations (5.15) and (5 14) together yield
Q=D(T, ti V $) (6.1)

1 A(oi+) —[A((o+)]'

27ri

The total derivative of 0 with $ for fixed T, ti, V, is

= C(oo) —Q (P,„d „d„J8(ho)). (5.16)

1 A(o~+) —[A((a+)j'
C(~)-(d)(d')b(hoo) =— (5.17)

2xi

In the absence of coherent pairing, d vanishes; other-
wise, X 6' d d t differs from (d)(dt) by a quantity
which vanishes in the limit N-+oo [cf. the discussion
following Eqs. (IV.18') and (IV.19') in IJ. In either
event, we have

The basic variational principle of the generalized SCI'
theory for equilibrium problems is that 0 is stationary
with respect to variations of the density-matrix Pp,

(6.3)

ol

(6.4)

Vg o=-', v.d, (5.18)

The left-hand side of (5.17) is the unnormalized spectral
distribution function of the fluctuations in d(t); the
right-hand side is related to the dissipation through
(4.28).

I et us now consider the joint fluctuations in the
Gor'kov fie]d operator,

The explicit dependence of $ on 0 arises from the
presence of P in U', through the replacement (2.9).

The compact notation of Sec. IV needs a slight ex-
pansion at this point. The indices r or 7 (=&), indi-
cating whether one is dealing with a particle pair (+) or
a hole pair (—), must be made explicit at this point.
This we do and suppress the remaining variables in a
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submatrix notation (cf. the introductory paragraph of the form (4.25):
Sec. VII). Equations (6.4) and (2.9) then lead to

~(yl, y2; yi', y2', ~')-';- "
»(~)~

=L&(~ ")+ ~+)'—(~ ')+ (d+)'j (6.5)
&t &r. v tntn/

(d(y»y2)a )mm'(d(y2 ~yl )-a' )m'm
5'

E —E„;+bio+

in the current notation, recalling that the scalar product
in (6.5) is a Hermitian product. The $ derivative of the
grand potential is thus one-half of the Quctuation in the
interaction of the Gor'kov field of the system (Vg'i')+
with the pair field d .

In the last section, we derived a general Auctuation-
dissipation theorem relating such fluctuations as (6.5)
to the response matrix 2, Eq. (5.21). Insertion of (5.21)
into (6.5), followed by integration over f from 0 to 1
leads to

Q(T,p, V; 1)=Q(T,p, V; 0)+— d$
7l l 0

{(( ')—l) Lt+ ~( ( ')—l)3 '}"
g tr d~ . (6.6)

VII. SIMPLIFICATION BY SYMMETRY AND
OTHER CONSIDERATIONS

Equation (6.6) rela, tes the grand potential for the actual
system Q()= 1) to the grand potential for the system
treated in the simple SCF approximation Q()=0). The
trace in (6.6) means simply that the diagonal elements
of the ++ submatrix in the curly brackets are to be
summed: i.e., the trace is taken with respect to the
orbital and spin variables and not the particle versus
hole variables. The relation (6.6) is seen to be an equa-
tion of state through (2.10); it gives the functional
dependence of the pressure p on T, p, and V.

(d(y»y2) a )m'm(d(y2 yy1 ) a' —)m 'm

+ . (7.2)
E —E —hen+

In the remainder of this section, we shall suppress all
indices not directly relevant to any given argument,
including the dependence on co+, leaving us with a sub-
rnatrix notation of varying degrees of completeness. For
example, we can suppress all but the destruction/crea-
tion indices, leaving A'" (already used in Sec. VI), or
all but the spin indices, leaving A ., etc.

ÃNmber coesermtioe. In the normal state at thermal
equilibrium, Vg' and (d)' vanish; there is number con-
serva, tion. As a consequence, those components A'"
which do not conserve number, i.e., A+ and A +, must
vanish. Fields of (+)-type and (—)-type are uncoupled
in the normal state. For coherently paired states with

$(1, on the other hand, V02 does not vanish so that
X,' is not number conserving; A+ and A + do not
vanish when coherent pairing (CP) occurs.

Spin rotation illear-iance. In an unmagnetized state,
i.e., a total spin singlet, the system is completely in-
variant under change of the axis of spin quantization,
neglecting spin-orbit coupling. There can be no singlet-
triplet coupling, and the triplet-triplet submatrix of
A, A, must be of the form (Al)5 . We have left
of A ., then, only (A )8,A =A, or A, . For simplicity,
we can use All for Al.

Trmslatiox imari ance. The translation invariance of
a uniform system requires that

A(yly2; yl'y2') '"=0
unless r(yl+y2) = r'(yl'+y2') . (7.3)

The compact notation we have used from Sec. IV
onward greatly simpli6es the writing of the fairly com-
plex relations we have developed thus far. At the same
time, however, it obscures the interrelations among the
individual components of, e.g. , the ma, trix A, (4.19) and
(4.22), which may be regarded as a kind of suscepti-
bility, cf. (4.18). These interrelations are imposed by a
variety of symmetry and other considerations like those
leading to Table I for ~. To facilita, te application of
these symmetry arguments, we 6rst write out a matrix
equation in complete detail, Eq. (4.21) in particular,
in order to exhibit all of the indices, and then introduce
a submatrix notation adapted to the symmetry argu-
ments. In detail, then, Eq. (4.21) reads

The restriction (7.3) (i.e., conservation of momentum)
makes it convenient to introduce the total momentum
and the momentum relative to the c.m. , P and y„re-
spectively, in place of the two rnomenta p& and p2 of
the pair operator d(yl, y2) ' via the transformations

(7.4)P= r(yl+y2) y yr 2r(yl y2) .

The detailed product (7.1) becomes, then,

(~(P,y.)-'&"'= E ~(P,y; P,y.')-"'V2(P,y.')-"; (7 5)

= Z ~(yl, y2; yl'y2'; ~+).':."V2(yi', y2')- ''.

momentum conservation thus decouples different total
rnornenta. We are left with a functional dependence of
A on P, co+, and o. and a matrix dependence on p„and

(7 1) r, A (P,al+; y„,y,') '"& where Pcf. (7.2))

The detailed definition of A emerges most clearly from
~(P,~";y. ,y.')-'"—=~(r(y.+2P),r(—y.+2P);

r'(y„'+-', P),r'( —y„'+-',P); M+).'". (7.6)
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The definition of Vo, (2.14), becomes

Vo(P,p.)-'= l E ~~(P,p.)-(d(P, p +q)-') (7 7)

in total and relative momenta; one sees again the
conservation of total momenta, i.e., decoupting of
different P.

Simptiged equation of state. In the absence of coherent
pairing and magnetism, the results obtained thus far in
the present section permit writing the equation of state
(6.6) in a more explicit form. We need consider e as a
matrix, or better operator, only with regard to the
relative coordinate r and momentum y„ in the c.m.
frame of a pair, e(P,co+),++. The simplified equation of
state is

Z - plane

FxG. 1. The contour C for the integral of Eqs.
(7.10), P.11),and Sec. VIII.

One can alternatively inquire as to the response to a
time-reversed external field, co+ —+ —co+, with the result
that

A(P, —su+; p„p„')=A(—P, (u+; p„',p,) . (7.12)

Statistics. Fermi statistics impose restrictions on A

and a through the commutation relations satisfied by
the field operators, which amount to relations between
spin and parity:

Q(T,u, U; 1)= Q(T,u, V; 0—)
d. (P,p.)'=d. (P, —p.)'
d (P p)'= —d (P —p.)', (7.13)

QO

+— d&Q tr
7I1 0

e—ekco]—i

x{((P, ')'+—I) [I+i( (P, ')"—I)] '

+3( (P, +),++—I) [I+&( (P, +),++—I)]-').. (7.8)

The trace and operator products in (7.8) now refer only
to the relative coordinates.

Time-reversal inmri ance. Time-reversal invariance
imposes restrictions on the entities A and e viewed as
operators in the relative coordinates. For nonmagnetic
states, complex conjugation is equivalent to time re-
versal, yielding

A((u+) =At(co-) . (7.9)

In (7.9), Hermitian conjugation is applied to the entire
matrix A. Let us now introduce the complex frequency z.
It follows from (7.9) and (4.28) that the frequency inte-
gral in the equal-time fluctuation-dissipation theorem
(5.21), and all results derived from it, such as the equa-
tion of state (6.6) or (7.8), can be re-expressed as an
integral along a contour around the real axis enclosing
none of the poles of [1—e ~"*]on the imaginary axis,
cf. Fig. 1,

,op 0 0 0

h (e(z) —I) [I+g(e(z) —I)]-'
dz, (7.10)

2~i g
—tgkz

where only the principle part of [1—e e"*] ' is to be
taken.

The equa, tion of state (7.8) may be similarly re-
expressed as

Q(T,p, V; 1)=Q(T,ti, V; 0)
1

d$ P tr [1—e-~"']—'

0 p 2xi .

Xj(.(P,.),++—I).[I+(( (P,.).++—I)]-'
+3(e(P,z) E'"—I).[I+5(e(P z)~"—I)] ')«(7 11)

A(P; p. ,p ')=~(—P; —p„—p').
Equations (7.14) and (7.15) together give

A(P) =A( —P).
Equations (7.16) and (7.12) together give

~(P —'p p') '"=~(P 'p'p) -" '

(7.15)

(7.16)

(7.17)

Orbital-Rotation imuriaece. Isotropy of the system
requires that

A=A@', p„,I' p„; p„',P p„'). (7.18)

Equations (7.14) and (7.18) together state that only
odd Legendre polynomials in P p„or P p„' enter 2 &

whereas only even enter A, .

VIII. THE )=0 APPROXIMATION FOR a

As in the case of Hartree factorization in I, the
obvious first approximation to use for e(P) in the equa, -
tion of state (7.8) is the (=0 approximation, e ($=0) .
The integration over ( can now be performed immedi-
ately after interchanging it with all other sums and
integrals,

Q(T,u, V; 1)=Q(T, tJ,,V;0)

ln[.(P,', P= 0).++]—P tr — dz. (8.1)
2mi ] ~

—Pkz

i.e., all singlet fields must be even in the relative mo-
mentum or coordinate and all triplet fields odd. Equa-
tion (7.13) implies

A(p. ,p.')-= ~A( —p. , p.')-
=~A(p. , —p.')-= A( —p. , —p.'). , (7.14)

where the upper sign goes with n= t and the lower with
n=s.

Imersiom symmetry. We infer immediately from in-
version symmetry that
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FIG. 2. The diagrams which contribute to A++: (a) particle
pair, direct; (b) particle pair, exchange; (c) hole pair, direct;
(d) hole pair, exchange. To each pair, the pair propagator
"LE(pi)+E(ps)+hey+) ' is attached. To each particle line the factor
(1-n(p;)) is attached; to each hole line, n(p;). The sign is negative
for a direct particle pair, positive for a direct hole pair, and ex-
change reverses the sign.

In (8.1) e and lne are operators in the relative coordi-
nates, and tr inc refers then to the relative coordinates.

Before we can relate (8.1) to previous results for the
grand potential, it is necessary to evalua, te e(/=0) and
to explore its meaning. Setting )=0 is equivalent to
working in the simple, as opposed to generalized,
Gor'kov SCF theory. We are concerned with the
dynamical version for no coherent pairing of the equi-
librium theory of coherent pairing given in Sec. III.
From (4.28) it follows that

e((=0)= I ——,'v A(&=0). (8.2)

I (P &v+) =
t e(p o)+) ++] ' v. (8.5)

In the )=0 limit, we may rewrite this as the operator
equation

I(P,co+) ==v(1,2) —v(1,2)-.,'-(lag„)
XL(1-f.-f.)/(E+E.+f- )jf(P,-'). (86)

We have assumed that no coherent pairing occurs so
that Vg =0 and K," is the free-particle Hamiltonian.
The evaluation of A by the standard methods of
quantum-field theory is then straightforward. The four
diagrams which contribute to A++ are shown in Fig. 2,
and their contributions are described in the figure
caption. There results for A++,

A (P,or+; p„p,') ++= —L(1—fi—fs)/(Et+Es+Ao)+) j
X (1ag„')5,„,,„. (8.3)

Here pi ——p +-,'P; ps ———p +sP; Ei, Es and fi, fs are
the corresponding single-particle energies and Fermi
factors; 8„' is the inversion operator for relative co-
ordinates, the prime signifying that its acts in (8.3) only
on y„', the plus sign goes with n= s, and the minus with
n=t. The corresponding expression for e, with the
multiplication of v in (8.2) carried out in relative co-
ordinates and with a regarded as an operator in the
relative coordinates, is

e(P,a)+) ++=1+Lv(1,2)-', (1ag„)
(1—fi —fs)/(Et+Es+&~+)1 (8 4)

Equation (8.4) is the desired result for the )=0 ap-
proximation to the response function.

The physical significance of r. ($=0) becomes apparent
if we introduce for arbitrary $ the matrix

It follows from (8.5) and (8.6) that screening the bare
interaction n by the response function e converts v to
the usual scattering operator or t matrix. The t matrix of
(8.5) and (8.6) represents the exact solution of the
Bethe-Salpeter equation in the low-density limit (with
causal boundary conditions); it gives the scattering of
a pair of electrons or of holes, computed in the inde-
pendent-pair approximation, but including all exchange
and exclusion effects."

It should now be clear from the structure of (7.8)
and (8.1) and. from the above discussion of the )=0
approximation for e that the approximate equation of
state (8.1) is the same as would be obtained by carrying
out the semi-invariant expansion" of the grand potential
in powers of the interaction e and summing all terms
which correspond to all ladders obtained by iterating
the four prototype diagrams of Fig. 2 among themselves.
Previous results of a related nature are reviewed and
discussed by Bloch" and include the work of Brueckner"
and the binary collision approximation of Yang and
Lee.23

The rela, tionship between the )=0 approximation of
the present formalism and earlier work becomes clearer
still after carrying out the integration over frequency in
(8.1). Integrating by parts, with s= As, gives

1ns kgT d inc
ds = ds ln(1 —e~') — . (8.7)

2~i 1—e t" 2xi 8$

One simple way of evaluating the derivative of inc in
(8.7) is to carry out the formal expansion of lne in
powers of v by use of (8.4):

00 1
inc= P —fv(1,2)-,'(1mg, )(1—f —f )

XLEi+Es+sj '}". (8.8)

Differentiating the eth term of the right-hand side of
(8.8) generates I separate terms in each of which the
factor [Ei+Es+sj ' is replaced by —$E&+Es+s] ' in
all e possible orderings. However, we use d lne/ds only
in a trace so that the ordering is irrelevant. The (1/ti)
in (8.8) can be canceled and the extra factor of
$Ei+Es+sj ' moved to the left. We can thus make in
(8.7) the replacement

d inc/ds ~ LEt+Es+sj '{L1—v(1,2)-,'(1ag„)
X (1—fi—f2)(E1+E2+sj '$—1}. (8 9)

' For references and discussion see, e.g., C. B. Duke, thesis,
Princeton University, 1963 (unpublished); and to be published.~ R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962)."C. Bloch, in Studies in Statistical 2lfechanics, III, edited by
J. de Boer and G. E. Uhlenbeck (North-Holland Publishing
Company/Amsterdam, to be published),

~ K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958); K. A. Brueckner, in The 3fany-. Body I'roblens (Les
Houches, 1958, John Wiley R Sons, Inc. , New York, 1959)."T.D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959);117,
22 (1960).
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Ks' ——Xsp+8(1,2)-,'(1ay, .),
~2P +1++2 1

(8.11)

(8.12)

It is unnecessary to symmetrize the factor sr(1&8,)
because it commutes with e(1,2) (cf. Table I) and
(fr+ fs 1). T—he entity Xsp is the Hamiltonian for two
free particles except that in it energies are measured
relative to the chemical potential. Correspondingly,
BC2 is the Hamiltonian for two particles interacting via
the potential 8(1,2). The eigenvalues of both 3Csp and
Xs' are all on the real axis. Hence the contour C of (8.7)
surrounds all poles of d inz/ds and (8.7) may be evalu-
ated by the residue theorem for operator-valued
functions

inc
dS

2xg 1 g
—Ps

knTDn(1 —e e~&') —ln(1 —e e&»)j . (8.14)

Matrix elements of the right-hand side of (8.14)
vanish unless the two-particle wave functions involved
are totally antisymmetric, including both space and
spin. Thus we can collect the sum over the spin index o.,
the sum over the center-of-mass momentum P, and the
trace over the relative coordinates into a single trace
denoted by tr2, which signifies taking the trace with
respect to antisymmetric two-particle wave functions
depending on both space and spin variables. It is then
possible to drop the projection operator sr (1&S„).We
obtain, finally,

Q(1)=Q(0)+AN'T
)&trs, [ln(1 —e ~ ') —ln(1 —e ~ ")j (8.15)

where
3Cs=Er+Es+8(1,2) =Xsp+8(1,2) . (8.16)

Recalling that coherent pairing is excluded from the
present considerations we see that the exponentials in
(8.15) are small at low temperatures so that the
logarithms can be expanded, yielding

&(1)=&(0)—ABT tl g[e s~ ' e~ »'j, T—-+0. (8.17)

The result (8.17) is usually obtained directly by the
summation of ladder diagrams (cf. Ref. 21), and stated
to be valid at low densities. We see here that low tem-
peratures are also required for its validity.

The analysis of the present section has shown that
Gor'kov factorization gives results via the )=0 ap-
proximation for c in the equation of state which are

Moreover, since we are again dealing only with a trace,
we need only consider the symmetrized part of
e(1,2)s(1&6„)(1—ft —fs). This leads to the further
replacement,

d 1ne/ds ~ [Ks'+s]—' —[Kgp+s] ', (8.10)
where

Fxo. 3.Representative
fourth-order diagrams:
(a) a conventional polar-
ization graph; (h) a con-
ventional ladder graph;
(c) a Hugenholtz graph
in which the conven-
tional interaction line
terminating in two-prop-
agator vertices is re-
placed by a single four-
propagator vertex. It is
evident that (a) and
(b) are diferent special
cases of (c).
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correct for low densities or short-range interactions.
There is a simple explanation for this. The For'kov
factorization Q«gt)(PP) means that the motion of a
given pair of particles after a collision is treated as
independent of the motion before collision. The motion
consists thus of a sequence of binary collisions, each one
independent of the last, so that Gor'kov factorization
gives a compact and elegant mathematical formulation
of the binary collision idea.

Inasmuch as the low-temperature, low-density result
(8.17) can now be obtained almost trivially through the
semiinvariant techniques of Kubo, 20 its rederivation
here provides no justification for the introduction of all
the preceding formal machinery. Rather, the present
work should be regarded as an attempt at demonstrating
the underlying unity of the presently disparate theories
of coherent pairing, of short-range correlations at low
densities and of long-range correlations at high
densities. Here we have used generalized SCI' theory
for all three, the Gor'kov factorization for the erst two
and the Hartree factorization for the latter.

The close similarity thus demonstrated of treatments
of long-range correlation by summation of polarization
graphs, Fig. 3(a), and short-range correlation by sum-
mation of ladder graphs, Fig. 3(b), may be further
understood by recognizing that each is a subclass of
the same class of Hugenholtz graphs s4 Fig. 3(c).

We have thus far restricted ourselves to the case of
no coherent pairing. However, the )=0 approximation
to the response function can still be made in the presence
of coherent pairing and would result in an appropriate
generalization of (8.15). All four components of z'"
would be nonzero, but otherwise the structure of the
calculation is not greatly changed.

I N. M. Hugenholtz, Physica 23. 481 (1957).
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