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steady-state current. Rosenkrantz" has also observed
a similar behavior.

(3) The current remained steady for several seconds
and then rose steadily an order of magnitude in 10 or
15 sec when it suddenly dropped to its original value
and the process then repeated itself.

"D. Rosenkrantz (private communication).

The noise was neither 6eld-dependent nor wave-
length-dependent in the sense that the same percent
noise was observed for virtually all wavelengths in the
visible and near ultraviolet, and for all 6elds from about
500 V/cm (highest field used) to below 20 V/cm. Aside
from the possibility of charging and subsequent break-
down in the sample, no explanation can be overed here
for this phenomenon.
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A general method, based on the density-matrix formalism of magnetic resonance given by Bloch and
using the notational simplicity of RedGeld, has been described for analyzing relaxation and coherence ef-
fects in nuclear magnetic double resonance. The method consists of transforming the equation of motion of
the spin density matrix to a coordinate system rotating at the angular frequency of the strong irradiating
Geld. The effect of the strong Geld is then calculated in the absence of the observing Geld. The effect of the
observing Geld is calculated by obtaining a steady-state solution of the equation of motion. The method is

briefly illustrated for the case of a single nucleus of spin -,'.

1. INTRODUCTION

A STRAIGHTI'ORYARD eRect of the second
radio-frequency field H& on the resonance spec-

trum in a nuclear magnetic double-resonance experi-
ment is to cause additional transitions by mixing the
various unperturbed eigenstates of the spin Hamil-
tonian. Such features have been analyzed, in consider-
able detail and under various conditions' 4 by trans-
forming the spin Hamiltonian to a coordinate system
rotating at the angular frequency of the strong irradiat-
ing field and treating the weak observing fieM by first-
order time-dependent perturbation theory. However, in
addition to this eRect, the irradiating field introduces a
strong coherence in the motion of the spins; it also
provides a significant new factor in the dynamics of the
magnetic polarization of the sample„which is otherwise
determined by the interaction within the spin system
and by the interaction of the spin system with the
molecular surroundings and the static external field.
Depending on the strength of the irradiating field rela-
tive to the relaxation processes, a variety of intensity
and linewidth changes can occur in the spectrum. ' ' A

' A. L. Bloom and J. N. Shoolery, Phys. Rev. 97, 1261 (1955).' R. Freeman and D. Whiten, Proc. Phys. Soc. (London) 79, 794
(1962).' W. A. Anderson and R. Freeman, J.Chem. Phys. 37, 85 (1962).

4B. D. Nageswara Rao and J. D. Baldeschwieler, J. Chem.
Phys. B7, 2473 (1962).' A. W. Overhauser, Phys. Rev. 92, 411 (1953).

~ K. Kuhlmann and J. D. Baldeschwieler, J. Am. Chem. Soc.
85, 1010 (1963).

7 L. H. Piette, J. D. Ray, and R. A. Ogg, J. Mol. Spectry. 2, 66
(195S).' G. %'. Flynn and J.D. Baldeschwieler, J.Chem. Phys. 37, 2907
{1962).

knowledge of the different relaxation mechanisms in the
system and their relative importance allows a prediction
of these eRects on the double-resonance spectrum, or
conversely, the analysis of these effects on the spectrum
may furnish significant information on the relaxation
mechanisms in the system. Density-matrix techniques
provide a convenient method for describing these
features.

Bloch' has given a general density-matrix formalism
of nuclear induction and illustrated it for a variety of
general situations. Redfield" has given a theory of
relaxation processes with signi6cant simplidcation in
notation. In his calculation of the double-resonance
problem, Bloch' used the approximation that off-

diagonal matrix elements of the stationary part of the
spin density matrix are negligible in the rotating frame
in a representation in which the stationary part of the
spin Hamiltonian is diagonal. This approximation re-

quires that the separation of any two eigenvalues of the
spin Hamiltonian in the rotating frame should be large
compared with the corresponding oR-diagonal m.atrix
element of the relaxation Hamiltonian. Using the
general formalism of Bloch, and with the notational
simplicity of Redfield, BaMeschwieler" calculated the
double-resonance spectrum for a single spin —,

' and

applied this analysis to the description of double reso-
nance experiments on the proton in CHC13. It was

suggested from the results that when the frequency of
the irradiating field is nearly equal to some single-

9 F. Bloch, Phys. Rev. 102, 104 (1956).
"A. G. Red6eld, EBM J. Res. Develop. 1, 19 (1957).
"J.D. Baldeschwieler, J. Chem. Phys. 40, 459 (1964).
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resonance frequencies, the approximation proposed by
Bloch is not valid. The procedure given by Balde-
schwieler for obtaining the complete density matrix
involves two steps: The deviation caused by the irradi-
ating 6eld, in the absence of the observing field, on the
density matrix is 6rst determined in the laboratory
frame of reference and the resulting matrix is trans-
formed into the rotating frame; the effect of the observ-
ing held on the transformed density matrix is then
calculated in the rotating frame of reference. In the erst
step of this method, it is assumed that the only im-
portant off-diagonal matrix element of the deviation
density matrix occurs between states with their differ-
ence in energies close to the frequency of the irradiating
6eld. This assumption is valid only for small amplitudes
of irradiating Geld and large separations between differ-
ent single resonance transitions such that other states
of the system are not appreciably perturbed, and thus
precludes application of this method to a number of
cases of high-resolution NMR spectra.

A method for analyzing the relaxation eQects appli-
cable to most high-resolution nuclear magnetic double
resonance experiments is described in this paper. It is
also shown that the approximation proposed by Bloch
is valid, for systems with weak relaxation, over a wide
range of conditions usually obtained in these experi-
ments, even when irradiation is done very close to single-
resonance transitions. The density-matrix formalism of
Bloch forms the basis of this work, and the notation of
Redfield' is used for the relaxation matrix. The general
notation of the paper is similar to that given by
Baldeschwieler. "

2. EQUATION OF MOTION OF SPIN DENSITY
MATRIX IN THE ROTATING FRAME

The development of the equation of motion for the
spin density matrix' " is briefly described here for the
sake of completeness. The Hamiltonian 3C, in angular
frequency units, of the complete system is given by

K = x (l)+8+x', (1)

leads to the equation of motion for pI.

pr/dh = —i[x",p'7. (7)

Integrating Eq. (7) in two successive approximations
and neglecting higher-order terms, and replacing )or(0)
by t)r(t) in the integrand by assuming that the correla-
tion time is short, gives

dpI
= —i[x"(t),p'(0) ]

[K"(t),[x"(l—r),p jJdr. (8)

The spin density matrix 0- is de6ned through the
equations

o.(t) =Trt{p(t)} and o (t) =Trt{p (l)}, (9)
with

which, under the assumption that the lattice remains
always in thermal equilibrium because of its very large
heat capacity, lead to

where
p(t) =P(F)a(t),

P(F) —e aztkT/Tr{e az—tkT}—
(10)

Taking an ensemble average on both sides of Eq. (8)
gives zero for the fsrst term, if K'(t) is assumed to be a
random operator uncorrelated with o(0) and yields the
result

dol/dt =.

where U(t) = U(t, 0) obeys the differential equation

d U(l)/dt =i Ux(t),

with

U(l„lo) = 1 and U(t —r) = U(t) U(l —r, l), (6)

where K(t), F, and X', respectively, represent the
Hamiltonian of the spin system, which in our case is
time-dependent, the lattice and their mutual interaction.
The equation of motion of the density matrix p of the
system in Schrodinger representation is

dp/dt= —i[x,pj.
Introducing operators in interaction representation

X."(t)= U(t)e'~'x, 'e '~'U '(t)—(3)

t'()= () '"t '" '() (4)
"A. Abragam, Principles of 1Vstclear 3lagrsetisnt (Oxford Um-

versity Press, London, 1961). The development of the equation
of motion of the density matrix described here )until Eq. (15)j is
similar to that given in Sec. D, Chap. VIII and Sec. A, Chap. XII
of Abragam's book. Therefore, no attempt is made to reconstruct
all the arguments except mentioning some relevent assumptions
and introducing the notation.

"A. Abragam, Ref. 12, p. 516.
'4 A. Abragam, Ref. 12, p. 288.

with the understanding that 0- hereinafter represents an
average density matrix. The angular brackets in Eq.
(11) denote the ensemble average.

We assume "extreme narrowing" or
~
K()r.

~
&&1, where

K0 is the stationary part of the spin Hamiltonian and
7 ls the correlation time. This assumption is likely to
hold for most high-resolution NMR spectra in liquids,
and would allow us to write U(l r, t) =1 and extend-
the upper limit of integration Eq. (11) to ~ ."Assuming
further that ttX()/kT«1 in taking the trace over f, '4

and that
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leads, at erst, to becomes

do r/dt do—= —z[Xp+(opk. +Xp+X,(t),o)
df

[x"(t)[X"(,l ), —'—,j]d ).„(13) —.([x'(t),[Ã'(l), (p —g]l). , (23)

with
Ao 1

op= 1 = gXo)
E kT S (14) xp —TxpT Dfi++Dp ) (24)

Xi——TxiT '= D,p
—exp(i(o't)+Di exp( i—(o't), (25)

sinceitcanbeseenfromEq. (17) thatxp ——TxpT '=Xp
and from Eq. (14) that op ——TopT '=op. Furthermore,

where S is the number of eigenvalues of Ko and
q=h/I(IkT. Transforming back to Schrodinger repre-
sentation and using the above-mentioned assumptions
gives so th

6) =GOD C02)

at 3C2 is stationary. The stationary part of the spin

d~/dt = —i[x(t),~$—(r.[x'(t),[x'(t),o(t) —~,]]),. (15)

In the double-resonance problem with a static mag-
netic field Hp=IIpk, and radio-frequency fields Hi
=Py coscoyfi —H& sin~&tj and Ho= H2 cosM2/l —Hp slnc02/j

used for observing and irradiating purposes, respec-
tively, the spin Hamiltonian X(t) takes the form

xp =xp+(dpkg+xp

where
+(Dp++Dp ), (26)

with

x(t) =xp+x, (t)+x,(t),

Xp=2v {Pvp;I, (i)+P J;,I(i) I(j)), (17)

A;= vp;+((op/2)r) .
(16)

Equation (23) may then be rewritten as

do/dt= i[X—p~+X, (t), oj
(r [X (t) [X (t) o'(t) —(rp]]) . (27)

The explicit form of X'(t) depends on the relaxation
'+ p(' " )+ "- p( ' i") ) ' ' ( ) mechanism. For convenience X'(t) may be written as

~I„———y;HI, //2x, k=0, 1, 2, (19) X'(t) =P I) ip)g (p) (28)

Di~ rr Q vt,;Ip(i)——, k=1, 2,

where l(i) and y; are the spin and gyromagnetic ratio
including the chemical shift of the ith nucleus and J;; is
its spin-spin coupling constant with nucleus j. The
quantities J';; and vt, ; (k =-0, 1, 2) are expressed in cycles
per second. In the present calculation, only the steady-
state solution of the spin density matrix is required. The
deviations caused in the unperturbed spin density
matrix pro, in the steady state, by the two radio-frequency
fields are introduced explicitly by writing

p«)*—p(—a)

g (a)t —g (—c)
(29)

The correlation functions, with this form for X'(t),
simplify through the relation

where F«' are random functions of the lattice operators
and A«) are spin operators expressed in irreducible
form. The functions F«) are, in general, complex and
the operators A «' are, in general, non-Hermitian. The
Hermiticity of BC' is obtained by requiring that

o(t) =~o+X(t)+n(t), (21)

T=exp( —i~pk, t), (22)

where k,=P;I,(i). Designating all operators in the
rotating frame by putting a tilde ( ) on top, Eq. (15)

where x(t) is the effect of H& on the unperturbed system
in the absence of Hi and ))(t) is the effect of Hi on the
resulting system.

It is convenient, at this point, to introduce a trans-
formation to a coordinate system rotating at the angular
frequency —(p&k of H& through the operator

for most of the relaxation mechanisms or combinations
of them. With the requirements of Eqs. (28), (29), (30)
and using Eq. (22) it can be shown that the ensemble
average of the double commutator in Eq. (27) is un-
changed by replacing X'(t) by X'(t), resulting in the
equation

do/dt = —i[xp~+Se, (t), oj
—(r,[X'(t),[x'(t), o (t)—o p$]), . (31)

Taking matrix elements in a basis
I u), Iu'), IP), IP'),

etc., in which XP is diagonal, such that Xps
I
n) =&

I ((),
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r- (~—~o) = —2 ~- p p (~—~s) pp,
pp1

(33)

~ma'pp' ~apa'p' ~a'O' Z s~vpv~ ~~p Z s~v~'vp' (34)
7 7

and
I-p- p =« l~'(t) li3&& 'I&("(t) IP'&*&-2" (35)

Substituting from Eq. (28), and using Eqs. (29) and (30)
and the fact that the matrix elements of A «~ are all
real, Eq. (35) becomes

&.p- p =2v. 2 &I
J""I'&.-&~I ~'" IP&&~'I-4'" l0'&. (36)

and using the notation developed by Redfield ""Eq
(31) may be rewritten as

do/dt= —iLSCs +Ki(t), o]—I'(o —oo), (32)

for Xp fioill Eq. (17) and making the assumption that
the Larmor frequencies of the irradiated nuclei are much
larger than the chemical shifts and spin-spin coupling
constants between them, an assumption which is amply
justified under the conditions in which double resonance
experiments are usually performed, Eq. (42) becomes

L~o'xj —sr(x) = —(2~po)(»)Zl I+0)—1-(i)3, (43)

where the summation is taken over all the irradiated
nuclei. Taking the matrix elements of Eq. (43) in the
n o,

' . ~ basis gives

(F. I:.)x—..+t P R...pp. xpp
ap/

= —(2 Po)( -)2 Ll+(') —I-U)j..' (44)

Since x is Hermitian,

This form of J p & readily yields the equalities"

J p tpt J I pl p Jt' pf I Jpf I
p (37)

Re(x„)= Re(x. .),
Im(x, .)= —Im(x. .), (45)

~~~'pp'= J pp'~~'=~~'~p'p=~, ~ p~ ~ ('38)

QR pp
——0.

p
(39)

and substituting Eq. (37) in Eq. (34) gives the extremely
useful relations

and the diagonal matrix elements g are real. Further,
it may easily be verified that the right-hand side of
Eq. (43) is a real and skew-symmetric matrix. Using
Eqs. (45) and (38) to separate the real and imaginary
parts of Eq. (44), the following equations are readily
obtained:

Equations (32) through (39) form the basis for the equa- (E L~' .) Re(x„,.)——P (2 .pp. —R;p. p) Im(xps. )
tions derived in the rest of this paper. p&p'

3. EFFECT OF STRONG IRRADIATING FIELD H2

The calculation of the spin density matrix describing
double-resonance experiments is best accomplished in
two steps, by determining separately the deviations
caused by the strong irradiating field and the weak
observing field on the unperturbed system. The eRects
of the irradiating and observing fields are given, respec-
tively, by x(t) and vt(t) defined in Eq. (21). In the
rotating frame

o(t) =o's+X+tt(t), (40)

where x is time-independent because when Xt(t)=0,
vt(t) =0; the Hamiltonian in the rotating frame is time-
independent, and a steady-state solution of the equation
of Inotion is likewise independent of time. When
3Ci(t) =0 and vt(t) =0, Eq. (32) becomes

L~,n, x+,j—sr(x) =0. (41)

Substituting for Xsn from Eq. (26) and for o.s from
Eq. (14) gives

= —(2~Po)(~t's)Z LI+(i)—I-(i)j-, (46)

2Z &-pp Re(xpp)+2 ~-ppxpp=0
g(pf p

(48)

Equations (46) and (47) each represent a set of
X(1V—1)/2 equations, and Eq. (48) represents cV equa-
tions, forming in all a set of X' homogeneous linear
simultaneous equations in the matrix elements of x. But
it can be easily shown that the Ã equations given by
Eq. (48) are linearly dependent by virtue of Eqs. (38)
and (39).A nontrivial solution for x can be obtained by
replacing one of the Eqs. (48) by the relation

Z xpp
p

(F-- I'--) I (x-—)+ 2 (~- pp+~-"p) R (x. p)
p&p'

+ Q &. ppxpp=0, (47)
p

with o.&o.', and when e=-o.'

L~o )x$—sr(x) =
ql Ds++Ds-~ ~o] (42) which obtains from the condition

Substituting further for Ds+ and Ds from Eq. (20) and

' See also J. M. Anderson, thesis, Harvard University, Cam-
bridge, Massachusetts1963 (,unpublishedl."J.M. Anderson, Mol. Phys. (to be published).

Tro =Troo= 1 .

Baldeschwieler" suggested a method of calculation of
x(t) in the laboratory frame of reference in the repre-
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senta. tion a, a', -, in which SCo is diagonal, so that
Xo

I a& = aI a&. The set of equations (2.30) in that refer-
ence were obtained under the assumption that X, is
the only important off-diagonal element of x(t) when
irradiation is done near the transition u ~ u'. It should
also be noted that this assumption is implicit in the
derivation of Eq. (2.21) in that paper, though it enters
there indirectly through the truncation of the expression
for I'„(o—«) in Eq. (2.14).'i The assumption that
X„ is the only important off-diagonal element of x(t)
is based on the argument that, in the absence of de-
generacies, X, is large only when the denominator in
Eq. (2.22) (Ref. 11) is small, that is, when the irradia-
tion is done close to the transition u —+ a'. But it should
be noted that the numerator in that expression is of the
order of the strength of the irradiating field yH2, which
is commonly of the order of 5—10 cps. Thus all the transi-
tions which are in the vicinity of the irradiated transi-
tion separated by a frequency of the order of pH2 will

be affected, and therefore the assumption that only a
single off-diagonal element of y(t) is significant at one
time does not hold for many cases of high-resolution
spectra even in the absence of coincident transitions.
All the elements of x are, in general, interrelated, and
the set of simultaneous equations (46) through (49)
afford an exact solution of x™matrix. It should be noted,
however, that the assumption that only one off-diagonal
element of x(t) is important does not affect the calcula-
tions on the single spin--', case, as there is only one o8-
diagonal matrix element for that particular case."

If the spin system has a first-order single-resonance
spectrum, a simplification in the calculation m.ay be
realized. For such systems it is well known3»' that
Ko~ can be brought into a form diagonal in the spin-
product representation by a transformation of the type

s = expLi8 P I„(j)$, (50)

where j represents the irradiated nuclei. In such cases,
it may be simpler to transform Eq. (32) using this
operator which gives

do, /dt= —i XLo+Se,'(t),o, j—I', (o,—oo,), (51)

where s is added as a superscript or subscript to denote
the operators transformed using Eq. (50), and then
calculate x, and p, . It is then possible to work entirely
in the spin product representation in which Ko' is
diagonal. It is also worth noting that in the calculation
of z, for which the basic equation is obtained by trans-
forming Eq. (43), using the operator s, the right-hand
side of the equation remains invariant and therefore
retains the simple form it has in the spin-product repre-
sentation. The relaxa. tion matrix, however, becomes
considerably different, and use can be made of the well-
known properties of irreducible tensors under rotation-

"This fact has been discussed in some detail by M. Barfield
and J. D. Baldeschwieler, J. Chem. Phys, (to be published).

like transformations" to evaluate the transformed re-
laxation matrix.

= Y +e'"'+Y e *'"'.

Since g is Hermitian,

Y„.+= (Y..—)*.

(54)

Taking matrix elements of Eq. (53) in the a, n',
basis, by using Eq. (54) and collecting the terms varying
as e'"', e '"', and terms constant in time, and dividing
the resulting equations into real and imaginary parts
leads to the following sets of simultaneous equations:

(o)'+Jl E~' ) Re(Y +)—

+(Y - —Y- )Di+-+ 2 &- pp Im(Ypp+)
PP'. P~P'

= —LDi„(Rex'«)j... (56)

(&u'+8 E i) Im( Y I+)——P R i ppi Re(Yppi+)
PP' P~P'

= —LD,+, Imgj... (57)

(—o)'+E —E .) Re(I' . )
+(Y —Y )Di + Q R pp Im(Ypp )

PP'. P~P'

= —LDi, («x+«)j-, (5g)

( oi'+E E) Im(Y— )——Q R, pp Re(Ypp )
PP', P~P'

= —LD, , Iinxj..., (59)

2 Q Di+, Im(Y .+)+2 Q Di „, Im(Y ~ )

+Q E pp Ypp=O, (60)
P

where
Di+- = {~IDi+ I

~'&= {~'IDi+
I &

It is possible to obtain a complete solution for the g
matrix by solving these simultaneous equations with

'8I'or example, M. E. Rose, L'lernerIttJry Theory of Angular
Momentum (John Wiley R Sons, Inc. , New York, 1957), Chap. V.

4. EFFECT OF THE OBSERVING FIELD H1

The deviation in the spin density matrix (x+oo) due
to the observing field Hi is given by it(t). When Ki(t) AO
it can easily be shown from Eqs. (32), (40), and (41) that

de/dt = —iLXo~, it(t) $
—'L~(t), + (t)+"j—I'(). (52)

Substituting for X„(t) from Eq. (25) gives

(de/dt)+iLÃo, it]+iI Di, it je' '+ iI Di, itje '"'+ I'{it)
= —iLDii. , x+oo$e "' il D, —, x+ooje-'"'. (53)

A steady-state solution for the p™matrix may be obtained
by assuming that the diagonal elements of it(Y,) are
constant in tiIne and the oA-diagonal elements vary with
time as
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the additional condition

(61)

This condition should be used in place of the set of
Eqs. (60) to avoid linear dependence, analogous to the
determination of y™.

A general solution of the type given by Eqs. (56)
through (61) is usually quite cumbersome. Considerable
simpli6cation may, however, be obtained by restricting
the strength of the observing 6eld. For small values of
H„ it can be seen froin Eqs. (56) through (59) that
Re(V +) and Im(F +) are large only when
(~'+E E;) is—small, and Re(F' ) and Im(V —

)
are large only when ( cv'+E —E) is s—mall. Thus
both V + and Y can be simultaneously significant
only if (E E) is —very small. This can happen for
vanishingly small strengths of irradiating 6eld H~
applied very near a single-resonance transition and when
the observing field is also introduced very close to the
same frequency. The immediate vicinity of the irradi-
ating frequency is usually covered by a beat pattern" in
a frequency sweep double-resonance spectrum and does
not provide any useful information. Thus the equations
for F' + (or F' ~ ) and F —(or F ~ +) can be made
independent of each other by rewriting Eqs. (56)
through (60) as

(&o)'+E E) Re(F .+)—+(F ~ —F )Dip

(F&,.+)= —LD+, (R x+ o)]... (62)
P&P'

= —[D,~, Imp]... , (63)
2 Q Dig ~ Im(F +)+Q R ppFpp=0, (64)

with the understanding that equations with positive
sign are important when (+~+E E) is small and-
those with the minus sign are important when

( ~'—+E E—) is small. It may be noted that this
simplification in equations for p obtains for moderately
small values of H&, even though these values are large
enough to cause appreciable saturation and to make
off-diagonal elements of p between all pairs of energy
levels simultaneously significant. It is therefore appro-
priate to solve the set of Fqs. (62) through (64) along
with (61) if saturation effects due to the observing field
are required. A calculation of saturation effects was
performed by Barfield and Baldeschwieler, '~ with the
implication that, when the value of the observing field
is large enough to cause saturation, the diagonal ele-
ments of q become significantly different from zero, but
only the off-diagonal element corresponding to the
transition being observed is important. When the value
of H& is made large, not only the diagonal elements are
signi6cant, but also the other off-diagonal matrix ele-
ments become nonzero, particularly when there are
transitions close to the one being observed. Whether the
effect is large on the diagonal elements or off-diagonal
elements or comparable for both depends on the charac-
teristics of the particular spectrum and the strength of
relaxation. It should be pointed out further that the
frequency of the observing field is usually swept in the
double resonance experiment and, if the strength of this
field is large, the steady-state solution may not give a
correct description of the spectrum obtained by sweep-
ing the frequency co&. In a normal double-resonance
experiment, it is important to determine that the ob-
serving 6eld is small enough not to cause any saturation
effects. Under these conditions, and if there are no
coincident transitions in the double-resonance spectrum,
Eqs. (62) and (63) become

(+(v'+E E) Re(F +)—+R .„ Im(F -)
[D, (Re„+,)]—. , (65)

(&a&'+E —E ) Im(F, +)—R . ~ Re(F, ~)
= —[Dig, Imx], (66)

leading to the solution

Re(F' +)=

Im(F +) =

—(aa)'+E —E )[D&,(Rex+ao)] +R [Di~ Imp]...
(&(u'+E E)'+R-

—R....[D,~,(Rex+0 o)] —(+~'+E.—E.)[Dig, Imp]..
(&(o'+E —E )'+R

(67)

(68)

When there are coincident transitions present in the
double-resonance spectrum, more than one off-diagonal
element is important at one time and a set of simul-
taneous equations should be solved to determine the
matrix elements of g.

5. SIGNAL INTENSITY

The intensity of the nuclear induction signal observed
in a double-resonance experiment may be calculated in

a manner similar to that given by Bloch' and Balde-
schwieler. "The signal intensity S is defined as

S= E Py, (I„(i))——
di

(69)
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where E is a proportionality constant. Since the trace is
invariant under a unitary transformation, using the
operator T defined in Eq. (22), one obtains

E
S=———+7;Tr/TI+(i)1 'T~T '

2z 4 —TI (i)T-'T02 'j
E

= ———g 7; Tr/I+(i) e '"~'o I (i—)e'""o).
2z tA i

(70)

where the two alternative signs refer to the two situa-
tions (&~'+E E)=0. Th—us a nonvanishing signal
intensity is obtained at two places in the spectrum for
a pair of energy levels n and n'. The two signals are, in
general, 180' out of phase so that one is "inverted" with
respect to the other. Such transitions were observed in
systems with single spin- —', nucleus by Anderson" and
Baldeschwieler. " The occurance of significant signal
intensity of the two places (&a&'+E —E .)=0 results
from the existence of rather large oB-diagonal elements
of p, which describe the coherent perturbation by the
radiofrequency field, in the vicinity of these two points.
The integrated intensity of the signal may be obtained
by substituting for Im(V .+) in Eq. (71) from Eq. (68)
and integrating over A&a= (&~d'+E —E ).

6. BLOCH'S APPROXIMATION

In the original calculation of Bloch, ' the application
of the density-matrix method for double resonance was
illustrated for systems with weak relaxation, with the
approximation that (g+0.0) is diagonal in a basis set in
which Ko~ is diagonal. This approximation obtains as a
result of the condition

(72)

for all nWn'. It can be seen from Eq. (41) that this
condition leads to very small values for the off-diagonal
matrix elements of (x+o-o), so that it may be assumed
to be diagonal. Baldeschwieler" pointed out that this
approximation may easily be violated when the fre-
quency of the irradiating field or& is set close to a single-
resonance transition, since some of the (F J'. ) in—

The time-independent part of 0. contributes to a signal
intensity at frequency co2 and the time-dependent part
of 0, which is the off-diagonal part of q(t), gives signals
at frequencies (&~'+~d2) or cubi, and 2~2—~di. If g ~ and

are the only important off-diagonal elements of
g(t), Eq. (70) may be simplified readily to obtain the
absorption-mode signal intensity, at the frequency
co +Glu=Gli, as

S += WX&oi Q y;I~(i) Im(F' +) sin~it, (71)

Re(x...)»Im(x...) (73)

for all n and n'. From Eq. (46) it can then be seen that

—(2~po)( )2 Lf+u) —~-(i)]-
Re(X„.) =— (74)

or the off-diagonal matrix elements of x are independent
of the relaxation matrix. This situation is similar to

that case become very small and may be zero when co2

coincides with the single-resonance frequency. It is
important to note that even though (E Ji —) does
become small when n and n' correspond to the single-
resonance transition being irradiated, it will never be
zero, even when or& is exactly equal to the particular
single-resonance frequency. When co2 is varied, E and
8 change. The behavior of contours of these eigen-
values as functions of the irradiating frequency has been
discussed before. 4 It has been shown that any crossing
of a pair of contours, occuring in the absence of the
irradiating field, becomes forbidden when the perturba-
tion is introduced, so that it connects the two eigen-
functions representing the particular contours. The
smallest value that (E E) reac—hes is of the order of
v2, the strength of the irradiating field. Thus, for values
of v2 suAiciently large compared with the matrix ele-
ments of I'(x), which are of the order of the linewidths
involved in the spectrum, Bloch's approximation is still
applicable, since the condition in Eq. (72) obtains even
when cv2 is made to coincide with a transition frequency
in the single-resonance spectrum. This is shown to be
the case in the analysis of the double-resonance spectrum
of an AB system 2-bromo-5-chlorothiophene. " When
the value of ~~ approaches the order of linewidthsin
the spectrum, the condition in Eq. (72) is not satisfied
if the irradiating frequency is close to a single-resonance
frequency. In many high-resolution NMR spectra,
where the relaxation is weak and the linewidths are
small, the strength of irradiation required to violate the
requirement of Eq. (72) may be too feeble to be interest-
ing. It may thus be possible to apply the density-matrix
method for a variety of interesting cases of double
resonance spectra using the approximation proposed by
Bloch. The validity of the approximation should, how-
ever, be tested for individual cases. When the approxi-
mation is not valid, the procedure given in Secs. 3 and 4
provides a complete solution for the density matrix.

It is important to note, further, that x and 0-0 are not
usually diagonal in the n, n', basis set, but (x+~o)
is diagonal with the above approximation. If an exact
solution of x is attempted using Eqs. (46) through (49)
for systems with weak relaxation one usually finds

"W. A. Anderson, Phys. Rev. 102, 151 (1956}.
' B. D. Nageswara Rao, J. D. Baldeschwieler, and J. M.

Anderson (to be published).
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7 SINGLE SPIN-x, PROBLEM

The double-resonance problem for a single nucleus of
spin-~ can be solved in closed form without making any
restrictive assumptions. Most of the assumptions cited
in the calculation of X and lt(t) become either super-
Quous or unnecessary for this case. This problem has
been solved earlier by both Bloch and Baldeschwieler. "
The results presented in the following mainly serve as
an illustration of the present method and essentially
reproduce the results of the earlier calculations. The
spin Hamiltonian for this case is of the form

Xp= 2' vpIg ) (76)

BC1(t)=lrvpLI+ exp(ipllt)+I exp( —2pll t)j, 4= 1, 2; (77)

and if the relaxation is assumed to be through an iso-
tropic random field, GC'(t) is of the form

se'(t) =F.(t)I.+-,'P'+(t)I +P (t)I+], (78)

Bloch's approximation and leads to the condition

(X+0 0) = Q for nAn'. (75)

Thus Eq. (73) may also be taken as a criterion for using
Bloch s approximation. The use of this approximation
provides considerable simplihcation in the problem of
solving for the density matrix because the number of E.
elements required is reduced. Furthermore, even in cases
where the approximation is found not to be applicable,
the conditions represented by Eqs. (72) and (73) are
likely to be satisfied for most pairs of energy levels,
except those affected most by irradiation. In such cases,
all X ~ that satisfy the condition in Eq. (73) may be
written down readily using Eq. (74), thereby reducing
the number of simultaneous equations and R elements
required for a complete solution.

The elements of the relaxation matrix R can easily be
calculated using Eqs. (78) and (79) for X'(t) and the
definitions in Eq. (34) and (35).It can be shown that the
rotation represented by Eq. (81) leaves invariant the
values of R calculated in the I;), I

——', ) basis. This
property can be derived for this case by considering
properties of irreducible tensors in Eq. (78) under rota, -

tions. "For the present case, the only nonvanishing ele-
ments E., out of a total of sixteen, are given by

F1111 ~2222 fTc y

~1122=E2211=fry,
+1212 E2121 —1/T2 = 2fr c—

(84)

which can be readily solved to give

xgy= x22=0,
Re(xlp)/22rqv0

= —(~v2) 7.2(E,—E2)/j1+ T,2(E,—E,)2$ (86)

Iin(X12)/2lrqvp (prv2)72/L1+72 (EI E2)

These expressions can be shown to be equivalent to
the solution of X(t) given by Baldeschwieler in a different
basis set and in a slightly diferent notation, by appro-
priate substitutions and simpli6cations. The O.

p matrix
in the

I 1), I 2) basis is given by

The simultaneous equations (46) through (49) for
determination of y, for this case, are

(E,—E,) Re(X,2)+ (1/T2) Im(X12) = —(pr V2) (22rqVp),

(El E2) Im(x12) (1/7 2) Re(x12)
X11+X22 (85)

Xl1+X22

0

2m.qvp ixqvp Eg —E2 —e2
(87)

Re(X12)))Im(X12),

&I p «) I'&-=2&IE+(t) I&-'=l&IE-(t) I&-'=f (79) I
Transforming to the rotating coordinate system, Xpa of then
Eq. (26) becomes (88)

Xpa 22r(A I,+v2I,).—— .(8Q) and further,

I 1)=cos8
I 2)+sin 8

I
——',),

I
2)= —sin8

I
21&+cos8

I

——,'),
and eigenvalues

F.l ——lr(A '+ v2') '"
F = —lr(A2+v 2)'~2

(81)

Starting with the eigenfunctions of I, denoted by
I-', ) and

I
——',), KP can be readily diagonalized by

a rotation transformation through an angle 0 leading
to eigenfunctions

Re(X12)/22rqvp ———pr v2/(El —E2),

which makes the (Re(X)+op) diagonal in this basis set.
This is exactly the approximation proposed by Bloeh. '

The simultaneous equations for the calculation of q
can now be set up, and they are

(+00 +El E2) ReI 12 +(I 22 I 11)D1+12

+~1212 Im712 — LD1+ (Rex+0'0)j 2

(&pl +El E2) Im F'12+—E,2, 2 Re—V,2+

[Dl~, ImXj, 2, —
1+12 ImI 12 +~1111'll++1122I 22

Fll+ F22=0,
where

tan28= v2/A . (83) (9Q)
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which leads to the solution

(&~'+Ex—Eo)LDiy, Rex+&o]so+(2/f7' )(f'& '+DE+12 )PDi~, Imx]12
ReI'g2+=—

(~(o'+Eg Eo—)'+4(f'r '+Dg~ fo')

2fr,LD~~, (Rex+ ~o)]u—(&~'+Ei—Eo) fD~~, Imx]im
ImI"g2+=

(~~'+Ey E—,) + 4(fo7o+. Dyyyo )

I 22 I ll — Diplo ImI lo /f&c ~

The relative intensity of the two signals observed in a double-resonance experiment near (&a& +E„E)=—0 is
given by

~12 P12 I—21™I 12 /1+21 ™lo (92)

Substituting in this equation the values of ImI', 2+, when (&co +E E)=—0, leads to

Sgo+ &+cos2& Dz+yoL(Rex+&o)u (Rex+oo)zy]+(Rex+o'o)so(Dr+pi Dxqoo) f & +Di ro-
&u & cos2&%—xoL(Rex+o'o)oo (Rex+oo)xi]+(Rex+&o)12(D1—11 D1—22) f'-7'+%~in'

(1+cos20) ' 2

(1—cos28) 1—cos28To (E —Eo) 1+4D~+q2 To

If there is no saturation due to H~, the last term becomes
unity and a result equivalent to that given by Balde-
schwieler" is obtained. If, further, the relaxation is weak
enough to provide the condition

~
E~—Eo~))1/~ T2~, the

second term also becomes unity and the result given by
Bloch' is obtained.

8. CONCLUSION

The density-matrix method can be used with con-
siderable advantage to analyze relaxation and coherence
effects observed in nuclear magnetic double resonance.
A method for obtaining a steady-state solution of the
complete density matrix, similar in part to the one given
earlier by Baldeschwieler" but applicable more generally
to a variety of high-resolution %MR spectra is de-
scribed. It involves transforming the equation of motion
of the density matrix to a coordinate system rotating at
the angular frequency au2. The e6ect of the strong irradi-
ating field is calculated in the absence of the observing
6eld, and then the effect of the weak observing field
is considered. It is shown, further, that an approxima-
tion proposed by Bloch' is generally valid for systems
with weak relaxation, if the strength of irraidation is
large compared to the linewidths in the spectrum, even
when the irradiation frequency coincides with any of the
single-resonance frequencies. The present method, with-

out this approximation, gives a considerably more com-
plex set of equations than those given by Balde-
schwieler, "but with the approximation becomes simple
and straightforward. It should be possible to apply this
method not only to steady-state conditions but also to
transient experiments, ""by appropriate modification.
The validity of Bloch's approximation depends more on
the strength of irradiation and relaxation than on the
irradiating frequency. It appears to be considerably
more advantageous, therefore, in describing the variety
of high-resolution nuclear magnetic double-resonance
experiments in systems with weak relaxation, to use the
approximation to simplify the calculations than not to
use it and achieve simplicity by making other restrictive
assumptions which may not, in fact, have as wide a
range of applicability as Bloch's approximation has for
these systems.
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