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Faraday Effect in Solids
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Expressions for the weak-field Faraday eRect in cubic materials are presented for the cases of transmission
and reQection. These expressions contain the elements of the complex conductivity tensor. General quantum-
mechanical expressions for the diagonal and oG-diagonal elements of the frequency-dependent conductivity
tensor are computed for arbitrary external magnetic fields and in the zero-wave-vector limit with the aid of
dispersion relations. Sum rules for the conductivity tensor elements are also derived. The high-frequency
limits of the conductivity elements are shown to reduce to the free-electron-gas results. A simple physical
interpretation of the eGect of the magnetic 6eld on the conductivity tensor is given and this shows that two
effects could contribute to the Faraday eGect. These are the Zeeman splittings of the energy levels and the
changes of the matrix elements. A calculation of the Faraday eRect in the eGective-mass approximation is
performed. Special attention is given to the contribution of the spin-orbit interaction to erst order and it is
shown that for practically all nonferromagnetic metals this can be an appreciable eGect on the interband
part. The spin-orbit eGect should be observed as a rapid variation in a comparatively small frequency range.
The intraband part is not aGected by spin-orbit eRects to 6rst order.

I. INTRODUCTION but we also are interested in the application of the
Faraday effect as a means by which we may acquire
further information about solids. In particular, when the
period of the incident electromagnetic wave is much
smaller than the electron-lattice relaxation time, the
Faraday effect can yield information on the band struc-
ture. This condition gives ~7&)1, where co is the angular
frequency of the radiation and where ~ is the electron-
lattice relaxation time. The relaxation time for a typical
conduction electron at room temperature is about
10 "—10 '4 sec.' Thus the effect will be useful for such
purposes mainly in the infrared and optical frequency
regions, that is, co))10"(sec) ' or X(&10 ' cm, for which
the photon energies, Ace, satisfy Ace&)10 ' eV. The
quantity X is the wavelength of the radiation.

The usual method of measuring the Faraday effect by
observing the rotation in transmission is not convenient
in the case of most metals. In the visible and infrared
regions, most metals are good reRectors and the light
can transmit only through a very thin Glm. However,
the Faraday rotation also occurs on reQection from
nonferromagnetic metals with a magnetic Geld normal
to the surface and we may use the information from
this rotation to study the electron band structure. This
effect is called the polar reQection Faraday effect.

We mention the magneto-optic Kerr effect here in
order to prevent confusing this effect with the polar
reRection Faraday effect. When the medium is a ferro-
magnetic material, there is also an elliptic polarization
upon reRection with the axis rotated relative to the
plane of polarization of the incident wave. This phe-
nomenon, known as the magneto-optic Kerr effect, is

HE Faraday effect involves the interaction of plane
polarized electromagnetic waves with matter

under the inAuence of a magnetic field. An electromag-
netic wave propagating along the direction of an ex-
ternally applied magnetic Geld and normally incident
upon the surface of a solid will be partially transmitted
through and/or partially rejected from the solid, de-

pending upon the nature of the interaction. The trans-
mitted or rejected wave is in general elliptically
polarized with the major axis rotated from the plane of
polarization of the incident wave. This rotation of the
plane of polarization is known as the Faraday effect.
When the external magnetic Geld JI is weak and when
the solid is not optically active, we can treat the
Faraday eRect as a first-order effect in II. We shall
therefore restrict our considerations to solids which
exhibit no optical activity.

Ever since it was Grst observed in the last century,
the Faraday effect for gases, liquids and solids has
captivated the interest of many persons. ' ' However, we
are not only interested in the Faraday effect by itself,
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proportional to the net magnetization of the sample'
and not to the external magnetic field, as is the case of a
nonferromagnetic material. In the Kerr effect, the
external magnetic field merely serves to align the spins
and we neglect it in the calculation. Another difference
between these materials is the order of magnitude of the
effects. The rotation for a nonferromagnetic material in
an external magnetic field is about 1/1000 of that for a
ferromagnetic material in the same external magnetic
field. For example, iron (Fe) at room temperature and
in an external magnetic 6eld II of 10' G exhibits an
angle of rotation per centimeter of sample thickness 0,
with 0= 1.3X 10' (deg/cm); while aluminum under the
same conditions has 8=10' (deg/cm). The discussion
that follows shows that we can explain both the mag-
neto-optic Kerr effect and the polar reaction Faraday
effect by the electromagnetic vector potential-kinetic
momentum interaction term of the Hamiltonian. We
include both the spin-orbit interaction and the magnetic
field vector potential in the kinetic momentum operator.
For ferromagnetic materials the spin-orbit dominates
while for nonferromagnetic materials the magnetic field
vector potential is more important. However, spin-orbit
effects will still be observable in nonferromagnetics.

All of the electrons in a solid, both conduction and
"bound, " plus the nuclei contribute to the Faraday
effect. However, at optical and infrared frequencies, the
largest contribution usually comes from the conduction
electrons and sometimes an important contribution
arises from the electrons in the next lower band. Early
theoretical calculations of the Faraday effect in solids
considered only the effect of the conduction electrons
and then only in the case where the frequency of radia-
tion is low enough so that band to band or interband
effects can be neglected. ' However, as we approach the
optical region, the interband effects become more im-
portant. "For this reason, more recent calculations have
included the effect of interband transitions on the
Faraday effect. 4 ""

Section II contains the various preliminaries. We
present the general form of the conductivity tensor in a
magnetic field and assume the existence of an asymp-
totic expansion in II. We next give the expressions for
the Faraday effect in terms of the conductivity tensor.
After introducing the dispersion relations for the ele-
ments of the conductivity tensor, we then use them to
derive a general quantum mechanical method for
calculating these elements.

Section III reviews various expressions for the con-
ductivity; namely the conductivity of classical electrons

P. N. Argyres, Phys. Rev. 97, 334 (1955).' M. J. Stephen and A. B. Lidiard, Phys. Chem. Solids 9, 43
(1958).' S. D. Smith, T. S. Moss, and K. W. Taylor, Phys. Chem.
Solids 11, 131 (1959)."J.Halpern, B. Lax, and Y. Nishina, Phys. Rev. 134, A140
(1964); and L. M. Roth, ibid. 133, A542 (1964).' I. M. Boswarva, R. E. Howard, and A. B.Lidiard, Proc. Roy.
Soc. (London) A269, 125 (1962).

harmonically bound and the intraband contribution to
the conductivity of solids with conduction electrons.
We employ the dispersion relation method introduced
in Sec. II to derive a general expression for the con-
ductivity tensor. In Sec. IV we derive from this general
expression the sum rules and the high- and low-fre-
quency limits. We next calculate in Sec. V the Faraday
effect for a solid in the effective mass approximation.
We perform this calculation for a ferromagnetic solid
and for a nonferromagnetic solid in order to show
explicitly the difference between the magneto-optic Kerr
effect and the polar reQection Faraday effect. In ferro-
magnetics, spin-orbit effects dominate, but even in non-
ferromagnetics these effects are appreciable. In Sec. VI,
we give a summary and discussion of the paper.

The material in Secs. II, III, and IV of this paper was
presented first in an abbreviated form" and later in an
unpublished form. " Subsequently this material was
employed by several authors in calculating the Faraday
eGect."' In view of the proven utility of this material,
it was felt desirable to publish a coherent presentation
of it and to include it in this paper even though parts of
it have appeared in other published work as references
from the original unpublished material.

II. THE CONDUCTIVITY TENSOR AND
PRELIMINARIES

The interband effects are only important at fre-
quencies greater than or of the order of magnitude of the
interband frequencies of the solid. This means that it is
sufhcient to limit oneself to infrared and higher fre-
quencies of radiation when considering the contribution
of interband effects to the Faraday efrect. The inter-
action between the electromagnetic wave and the spins
of the electrons is negligible at these frequencies. The
interaction of the magnetic field of the electromagnetic
radiation with the orbital motion of the electrons is of
the order of magnitude (v/c) times the interaction of the
electric field of the electromagnetic radiation with the
orbital motion of the electrons. Here, e is the velocity
of electron, c is the velocity of light, and (v/c) = 10 ' for
thermal conduction electrons. Except for the innermost
electrons of the heaviest elements, we may neglect the
interaction of the magnetic field in the electromagnetic
wave with the electrons. We will neglect it throughout
this paper. Therefore, for our purposes, it is sufhcient
to consider the interaction of the electric field in the
electromagnetic wave with the orbital motion of the
electrons in the solid.

Various investigators have shown that the response
of the electrons in a solid to an arbitrary electric field
can be described in terms of a wave-number-dependent
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and frequency-dependent conductivity tensor, o;,(k,or).i6

When an electric field that varies in space and time as,
is also the positive s direction, then the conductivity
tensor has the form' '

E(r,t) = E(k,or) e'c~' "'&d'kdor
0 ex &xy

o(H) = —o,„o„O
0 0 r„

(4)

exists by some means in the solid, then the induced
current assumes the form,

(2)

where i and j refer to the Cartesian components. For a
homogeneous time-dependent medium, the conductivity
o,,(rt; r't') is invariant under displacements of position
and time, i.e., o;,(rt; r't')=o. ;;(r—r'; t—t'). The trans-
form of Eq. (2) then becomes,

J;(k,or) =P o;,(k,or)E, (k or) . (3)

A great simplication occurs for the long-wavelength
limit k —& 0. The long-wavelength limit is valid at optical
frequencies for which the wavelength, A=5)&10 ' cm,
is very much larger than interatomic distances, d=10 '
cm. The wavelength of light in a metal will be smaller
than that in free space because of the skin-depth effect;
but even in this case, the skin depth is much greater
than atomic dimensions. In such situations, we may
neglect the space dependence of the electric field ex-
perienced by both the "bound" and the conduction
electrons and we may therefore approximate the prob-
lem by setting k=O in the electromagnetic field. We
have then argued that the conductivity tensor
o;;(k=0, or) adequately describes in the optical region
the interaction between the electromagnetic wave and
the solid.

In metals, because the skin depth causes a much more
rapid variation of the electric field with position inside
the metal than with position outside the metal, this
approximation is valid for radiation between a few
tenths of an electron volt and the x-ray region. The
classical skin depth cr', i occurs when (ocr/cror)«1 and
(o/or)))1, and is given by cr,i=c/(2rroro)'r2. Here vcr is
the Fermi velocitv and 8 is the skin depth. Under these
conditions the optical properties may be adequately
described by o (O,co). However, at lower energies and at
low temperatures in pure samples, anomalous skin
eGects become important and in order to treat these
cases a knowledge of o (k,co) is required.

We will limit our considerations to solids with cubic
symmetry, and will write the general form of the con-
ductivity tensor in a magnetic field as determined by
cubic symmetry alone. If the constant magnetic 6eld
points along s direction of the solid, and if this direction

"I'or example: J. I.indhard, Kgl. I)anske Videnskab. Selska, b,
Mat. Fys. Medd. 28, No. 8 (1954); J. Hubbard, Proc. Roy. Soc.
(London) A240, 539 (1957).

The magnetic field is H=(O, O,H) and the x and y
directions coincide with the other two cubic axes of
the solid.

YVe now present some analytic properties of the con-
ductivity. From the conservation of energy for a source-
less medium and the principle of "strict causality" and
by the use of the calculus of residues, we can prove that
cT;,(or) must be an analytic function of or in the upper half
complex cv plane. ""This statement then leads to dis-
persion relations between the real and the imaginary
parts of o;r. Letting o,;=or;r+.fa ~;r, where both oi;; and
0-2;; are real, we obtain the dispersion relations,

2 "or'a 2;,(k,or' )
0'icr'(kror) = P —. ctor—

7P p M GO

o2;, (k,co) =
"o i;,(k,co')

p (or —or )

and

l +2n
(p)m ~

fTxx (2n)

+=i (2g)!

+2n+I
o. (2n+r)

=o (2m+1)

l +2n
io&y p o c2~r

n=i (2~)!
'7 H. S. Gourary, J. Appl. Phys. 28, 283 (1957). It should be

noted that the condition of analyticity for 0.(co) requires the pres-
ence of some mechanism by which energy may be removed from
the electronic system. For example, not withstanding the fact
that we are interested in the co~))1 region, r is to be 6nite.

We have used the fact that o;,(—k, —or) =- o;r(k,or)* and
have assumed that o,, is even in k (i.e., that the crystal
has inversion symmetry). The symbol P denotes the
principal value of the integral. We are interested in
calculating o;,(k=O, or) and will use henceforth the
simplified notation,

o.;,(k= 0, or)
—=o.;,(or) .

We may reasonably expect that a representation of
the conductivity tensor elements in terms of a power-
series expansion in the magnetic 6eld is meaningful at
least in an asymptotic sense as long as the Landau
quantization of energy levels plays a minor role. Ac-
cording1y, we write the asymptotic forms of the con-
ductivity tensor:
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where 0.; "' is independent of II. The integer / is limited
to values near one or to one only. Its specific value
depends in part upon the model used to compute r;; and
upon the value of II.

It is desirable to choose a representation that most
conveniently expresses the relationship between the
Faraday effect and the conductivity tensor. Therefore,
we consider the incident plane wave to be the super-
position of equal amplitude right and left circularly
polarized waves. We de6ne the two senses of circularly
polarized electric 6elds as the real part of

E,= I'.'(rn)(x&zy)e '"'
L

The plus sign and the subscript r refer to right circularly
polarized (RCP) electric fields and the minus sign and
the subscript l refer to left circularly polarized (LCP)
electric fields. The unit vectors in the x and y directions
are denoted by x and y, respectively. In a similar

manner, we de6ne the RCP and LCP currents as the
real part of

J,=J(cc)(xWiy) e'"'
l

The quantities e and J{: are the real and the imaginary
parts of the complex index of refraction for II=0,

(n+ irr) ' = 1+i(4zr0 „"'/cr) . (17)

To first order in H, the Faraday rotation becomes for
transmission,

where

(2~/c) (n2+~2) —
1(11~ (1)+no (1)) (19)

is the Verdet constant. "Whenever KO 2 y&')(&eo.~ „&'), we

have that
V=—(2zr/Cn) o 1.„&". (20)

In the case of reAection of radiation normally incident
from a region of vacuum upon a boundary between
vacuum and the medium, we have the result,

greflected 1 (nyz&)

+incident 1+(n+2&)
(21)

Again, the difference in phase angle between RCP and
LCP radiation is twice 8. Denoting the phase angle
change on reflection by p, we have from Eq. (21) that

It is straightforward to show that the conductivity
tensor in Eq. (4) gives the relationship

p= tan '{—2~/(1 —n2 —~')) (22)

Jr=erEr r
l l

(12)
(8 tanp 8 tan

p, p1 20=—(cos——zp)i h~+
a~ an

De, 23

where
0 g= 0~~&M~y (13)

where 6K=K„—K) and he=a„—e&. By methods which

are similar to those used to determine Ae, we find that

is a simple scalar. Maxwell's 6eld equations then relate
the complex index of refraction, (n+i11), for RCP and
LCP electric fields to the complex conductivity

(n,+i',)2 = 1+i(4zrrr„/tc) .
l l

(14)

where d is the distance propagated along the s axis in
the medium. When IIWO, we expand the quantity
(n„—ni) in a power series in H using Eqs. (7), (8), (13),
and (14). We will be interested in the weak Geld case
and will calculate 0 to first order in the magnetic 6eld
B.We 6nd that to first order in H,

n„nt —(4z—r/t0)——(n2+112)—'(202,„&'&+note„t'&)H. (16)

We now express the Faraday rotation 8 in terms of
the complex index of refraction. We divide the plane
polarized incident radiation into RCP and LCP waves.
Each sense of polarization has its own index of refrac-
tion. The angle 0 is just one-half the phase angle change
between the RCP and the LCP waves for both trans-
mission and reAection. In transmission, the Faraday
rotation is

0»„.——((cd/2C) (n„—ni),

where the symbols with no subscripts refer to the values
when H=O. Combining the results in Eqs. (16), (22),
(23), and (24) we obtain to first order in H,

where
~defi

4x 0~y
P=—Re

(n+ Z11)L1—(n+ irr) 'j

(25)

(26)

"F. A. Jenkins and H. E. White, FNndamentals of Optics
(McGraw-Hill Book Company, Inc. , New York, 1950), p. 597 and
Chap. 28.

'~E. A. Stern, J. C. McGroddy, and W. E. Harte (to be
published).

Here Re{ ~ }means real part of {
We have tacitly assumed that a surface phenomenon

like reAection can be described by the gross properties
of the bulk medium. In metals this assumption should
be valid because we expect with an ideal boundary that
the bulk properties will prevail beyond a few angstroms
from the boundary. This is due to the short shielding
length in metals. Recent experiments with ahiminum
61ms" con6rm that it is possible to produce such a suK-
ciently ideal boundary.
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Expressions (19) and (26) fulfill our goal of expressing
the Faraday rotation in terms of the conductivity
tensor. The only new quantities introduced by the
presence of the magnetic field are the real and the
imaginary parts of 0- „&').The literature already contains
expressions for e and ~ evaluated at zero magnetic
6eld."We will devote the next section to calculating 0- „.

We have obtained the form of the conductivity tensor
given in Eq. (4) by assuming that the Cartesian co-
ordinate axes coincide with the [100]directions of the
cubic crystal. To 6rst order in H, O-„=o-, & ), and for
such cubic solids this is independent of the orientation
of the crystal axes."Also, to first order in II, we have
0.,„=Ho.,„' .By performing rotations on the third rank
tensor o.,„~'), we can show that 0- „'"is independent of
the orientation of the crystal axes for cubic solids. '
Thus, to 6rst order in the magnetic 6eld, the conduc-
tivity tensor of Eq. (4) is valid for any orientation of the
crystal axes of cubic solids relative to the magnetic field.
We must choose the Cartesian coordinates, however,
so that the magnetic 6eld is in the s direction. Since
Eq. (4) is independent of the orientation of the cubic
crystal axes to first order in the magnetic field, the weak-
6eld Faraday effect is also independent of the orienta-
tion of the cubic crystal axes to 6rst order in the mag-
netic 6eld.

We conclude this section by relating the elements of
the conductivity tensor to quantum-mechanical transi-
tion rates. It is most convenient to use plane polarized
waves when computing the diagonal elements and
circularly polarized waves when computing the trans-
verse elements. The power P absorbed by a solid of
volume V interacting with an electric 6eld is given by,

And 6nally, we may compute the quantities P, P&, and
P„ from the relation

Pro= h(u Q; W;, (34)

where 8'; is the probability per unit time that a process i
will occur which absorbs a quantum of energy in the
range hem to A(~+des). In the next section, we shall
calculate 5"; for plane polarized, RCP, and LCP
electric waves.

m(d'r/dt')+ (m/r)(dr/dh)+m(oPr
=eE+nuvp(dr/d/) &&z (35)

where ~p ——(eII/rrlc), &o~ is the natural frequency of the

system, and ~ is the damping time. The m~&'r term of
Eq. (35) effects a localization of the electron, and there-

fore, when or~
——0, Eq. (35) describes a conduction elec-

tron and when cv&&0, Eq. (35) describes a bound
electron. The equation of motion (35) then yields,

III. CALCULATIONS OF THE CONDUCTIVITY
TENSOR

In this section we review some of the models used
to calculate the conductivity and then present our
quantum-mechanical calculation.

Classical theories exist to calculate the conductivity.
For example, we may use harmonically bound classical
electrons with a finite relaxation time v as a model of
the solid upon which to base our discussion. We call this
model a Hookean solid. The equation of motion for a
Hookean solid electron is

P=-,'fRe{J* EdV}. (27)
op{(1+v&p r'+a&p'r')+i~pr(1+&up'r' ~p'r')}

0 —,(36)
{(1 ~p'r'+(up'r') '—+4(v2'r'}

P= (-', V) Re{+o,,*E;*E,}.

Since we are neglecting the space variation of I,
Eq. (27) becomes

(2g)

where &vp ——co{1—((oy/co) } o'p= (ne'r/m), and where n is
the number of electrons per unit volume. The transverse
conductivity element is,

Hence, for the plane polarized electric 6eld,
o pNpt{(1 —M2 r +Mp r )+2zM2r}

{(1—M2 r +cop r ) +4%2 r }
(37)

R=x Re{E(&o)e '"'}

P,= (-,' V)E'og„,.

while for circularly polarized electric fields,

P„=(-,'V)E'(o ...Wo.p,„).

(29)

(31)

The semiclassical approach for the intraband con-

tribution to the conductivity uses the linearized Boltz-
mann transport equation which inherently involves the
wave-packet concept. For conduction electrons with

arbitrary energy surfaces and a constant relaxation
time, 7., the results are that' "

The minus and plus signs refer to RCP and LCP waves,
respectively. From Eqs. (30) and (31), we obtain,

e'I,.r (1+icur)
(0)a

4m'A' (1+(o'r')'
(38)

op„——(2P /VE') = {(P„+Pg)/VE'},

op*p= {(Pi P.)/VE'}. —
'0 See Chap. XVII of Ref. 7.

(32)

(33)

and

e'I,prP {(co'r' —1) i2~r}—
(1)a

Sg/ 7

4rr'b4c (1 o+)'r')'
(39)
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where a stands for intraband,

and

86
dkydkz y

gg Bk~

(Bp cj p (Bp) 8'p—dk„dk, .
sy &~k. cjk„' &~kp& akp~k,

The quantities p and k are, respectively, the energy and
the wave vector of the conduction electron described by
the Bloch function and J'q~ means an integration over
the Fermi surface. In the derivation of Eqs. (38) and
(39), we have neglected the quantization of the electron
orbits in the magnetic 6eM. This is justified as long as
the quantity kT is much greater than the cyclotron
energy.

At the present time there appear to be two nonfield-
theoretic ways to carry out a quantum-mechanical
calculation of the conductivity tensor. Both methods
require the use of time-dependent perturbation theory.
In one method, we explicitly evaluate the expression
for the current density when charged particles move in
an electromagnetic 6eld; that is,

e e
j=—Re @* —~+-A+ x ~ U(r) @, (40)

m i c 4mc'

and we then identify the coefFicients of the electric and
magnetic 6elds with the respective conductivity tensor
elements "'

The second method is based upon a more general
formalism and turns out to be less laborious. One
purpose of this paper is to present the physical concepts
which are needed to justify the procedures used in this
second method. The method contains two parts. This
6rst part consists of a phenomenological approach to
the Faraday eA'ect and is the subject of the previous
section. The second part involves the consideration of
models from which we Inay obtain explicit expressions
for the transition rate. This will be the subject of the
present section.

We briefIy state the principles that this second
method incorporates. The analytic properties of the
conductivity tensor give us integral equations which
relate the real and the imaginary parts of the con-
ductivity tensor, L see Eqs. (5) and (6)).Hence, we only
need either the real or the imaginary part of the con-
ductivity tensor. The absorptive part of the conduc-
tivity tensor is easier to calculate since it is proportional
to the probability per unit time for absorption processes
to occur Lsee Eqs. (32), (33), and (34)j. A probability
per unit time is less cumbersome to handle than a time-
dependent wave function upon which the first method
relies. The integral equations $Eq. (5)j then give us the

"M. S. Dresselhaus and G. Dresselhaus, Phys. Rev. 125, 499
(1962).

dispersive part of the conductivity. Having thus ob-
tained expressions for both the absorptive and dispersive
parts of the conductivity, we will be able to treat the
Faraday effect.

We will first calculate the transition probability 8'; of
Eq. (34), and then we will compute o i, and o p „by use
of Eqs. (32) and (33), respectively. The semiclassical
approximation for treating the interaction between
electromagnetic radiation and the system of electrons is
adequate for our purposes. The Hamiltonian denoting
the system has the form

e2e
se, =pep+ p ~; A, (r,)+ A, (r,.), (41)

mc 2m2c'

where 3Cp is the Hamiltonian in the absence of the
radiation fieM. The kinetic momentum operator,
~;=P;+(k/4mc')(o; x V V(r;)), satisfies the relation,
$r;,Xpf= (ih/m)pp;: where P;= y,+(e/c)A~(r;), p; is the
canonical momentum operator, A~(r;) is the vector
potential of the uniform magnetic field, and Ar. (r~) is
the vector potential of the electric radiation field. The
quantity e; is the Pauli spin operator; and the periodic
potential V(r~) is invariant under any transformation
contained in the cubic point group of the crystal.

For the approximation of interest here, we may
neglect that part of the Hamiltonian (41) which is
second order in the vector potential Az. We shall also
assume that the Coulomb interaction between the elec-
trons, (e'/r;;), may be replaced by an effective one-body
operator which maintains the lattice periodicity, and
that to a good approximation the wave functions for
electrons in the solid are product wave functions of
single-electron wave functions. The Hamiltonian 3Cp
under the above assumptions becomes a one-body
operator

Xp' ——P; Xp
where

AP;P.2

Sep = +U(r;)+ Efr;xVV(r, )/+V, ff(r,). (42)
2m 4m2c2

The term containing the spin operator is the spin-orbit
interaction.

Let us denote the eigenfunctions and the eigenvalues
of Kp ' by X and 8, respectively;

Gap X =IX, (43)

where 0. includes all the quantum numbers associated
with the symmetries of 3Cp . The total Harniltonian for
the solid now assumes the form,

K,=Q;K;=Q;(Kp +%a;),
where

xff;——(e/mc) pp; Al, (r;) . (45)

The term BCg; represents the interaction between the
electric field and an electron of the solid, and thereby,
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causes an electron initially in a state In& to make
transitions to other states. We shall treat X~, as a small
time-dependent perturbation.

The vector potential for the plane polarized electric
field is

where P '{. . }denotes a summation over the occupied
states and Pp"( } denotes a summation over the
unoccupied states. The dispersion relations (5) and (6)
then yield

Ar, &=xc Re{(E(a))/ia))e
—'"'},

and for the RCP or LCP electric 6eld it is

(46) I &J3 I ~.
I ~& I

'

I» I(» 2—~2)
(54)

Al, '——c Re
Z(s))

(x&iy)e '"' (47)

Time-dependent perturbation theory gives us the transi-
tion probability per unit time from the state In& to
the state IP&;

2'
p'p ~=—l~~p„&l'fb(ha)p, —bs))+8(ha)p +h(o)}, (48)

for plane waves; and

2'
Fv p

'=—( I
Bcgp

+
I '6(Scop +Ace)

+lee.p+I ~(a p.—~)}, (49)

E&,'*Ee'

4m'co'
(50)

for RCP and LCP waves, respectively. The respective
absolute values squared of the indicated matrix ele-

ments are

n m e
0 I~@=

2Pgm2'V p ~ (~p 2 ~2) (~p 2 ~2)
. (55)

Similar procedures show that o-~„has the same form as
Eq. (54) with the subscripts x replaced by the subscripts
s. Expressions (54) and (55) are exact to all orders in the
external magnetic field II.However, since we have made
no explicit statements concerning the states X„, these
expressions are only formal solutions.

The asymptotic expansions of the conductivity tensor
elements in Sec. II are valid only when the splitting of
the energy levels due to the external magnetic field,

I (h~o/H) =0.5 X 10 '(eV/G)), is much less than the gap
energies 8, of the band structure. Most solids have gap
energies of the order of magnitude of tenths of electron
volts or more, 8, 0.1 eV, and this energy corresponds
to a magnetic field of more than 10' G. Hence, we may
assume that Scop«8, . Whenever Lr«&8„ then we
expect that the effects of H should be small and that
the following inequalities apply to the interband fre-
quencies of such solids:

and

E*E&e'

88$ M

(51) and

Np~ Mp~(0)

cup„(0)
(56)

where x+=7r,&i~„and ~p~= & '(bp —B~).
Referring to Eqs. (32), (33), and (34), we obtain

L)m'V u

x(~( .—)+&( .+ )} (52)

where

and

Q K 0! p

7r+np'

lim(op =(ap (0)
II~0

»m &PI~'I~&=&pl~'I~&0

(57)

2"2'I I&PI
P n

x (&(~p.—~)+&(»-+~)}—I && I
~'I ~& I

'

The above limits imply a correspondence between
states with a Inagnetic field present and states with no
magnetic 6eld present. This correspondence exists within
the context of the effective mass approximation. In this
paper, we shall not discuss whether it exists for other
approximation schemes. Inequalities (56) and (57) and

X{~( ~)+g(» +~)}), (53) Eq. (55) allow us to write o,„o& for nonferromagnetic
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solids as

e2
(t) Q/I Ql

2Am'V e

pl I )I

(~ p-' —~')'

—{corresponding terms with the +(RCP) selection rules} (58)

Here the quantities co+p refer to those frequencies for
which the matrix elements of n.*with the states P and n
are nonzero; i.e., &/Is. ~ln&&0. In general, re+p may be
different from co p . Also all terms are evaluated at
H =0. From Eq. (58) we see that the weak field Faraday
effect may be considered as being produced by two
effects. One is the Zeeman splitting of the energy levels,
the factor r)~ p /BH; and the other one is the change
of the square of the matrix element with H. The Zeeman
splitting term produces a singularity of higher order
near Mp and we might expect this term to dominate
near the absorption edge. For frequencies much higher
than ~p„ the term from the variation of the matrix
element will dominate. At frequencies much less than
~p both terms will be of the same order of magnitude.

Some metals have gap energies near 10—' ev because
of spin-orbit splitting or because of a point of accidental
degeneracy near or at the Fermi surface. Vnder such
conditions the inequality &cop(&bg may not necessarily
be satisfied. For the case where Lrp b„so called mag-
netic breakdown in the crystal occurs." The above
inequalities (56) and (57) are then violated and for
such cases Eq. (58) will not be meaningful.

IV. SUM RULES AND LOW- AND HIGH-
FREQUENCY LIMITS

In this section, we shall give the sum rules" and the
limits satisfied by the elements of the conductivity
tensor. The sum rule and high-frequency limits for the
diagonal elements of the conductivity tensor are well
known when II=0"; and for HWO, the same results
also obtain. We will therefore only state the results here

of states for the one-body Hamiltonian. From Eq. (53),
we have that

17{e
~os.„(~)ace=- Q"P' {&rrI7r,

I p&&pI7r„ln&
2Am'V p

where we have used the fact that the solutions to the
eigenvalue problem of Eq. (43) form a complete set.
Inserting the relation (62) into Fq. (61) produces the
result

-..„(-)d-= —2 L&-IL-.,-,jl-)
2Am''V ~&7

—&' {&~l~ l&&&PI ~.I~&—&~I~. IP&&r3I ~.I~)}j (63)

When the magnetic field is in the s direction, H=zH,
then we may prove that

&nl I m„s-„jlu&= (ikeH/c)&nla), (64)

where the expectation value of the terms containing the
spin operator e is zero. The substitution of the com-
mutator (64) into Eq. (63) gives,

I-et us denote the occupied states by the region n&p,
and the unoccupied states by the region P)p, where
y represents the quantum numbers of the highest
occupied state. We then have the following relation,

(62)

and

o ui(~)d~=
7i"Ae

Mo rgb((v) dc' =
iheH

2Am'V

'Ae

hm o. (&st) = (60) «v P&v
0! X'g Ãy 0!

—
&~l ~.l&)&PI~. I &} (65)

where j is either x, y, or z.
Deriving the sum rule and the high- and low-frequency

limits for the off-diagonal element requires only the
commutation relations and the completeness of the set

The second term of Eq. (65) is zero since it is anti-
symmetric in the dummy variables a and P which are
both summed over the same region. Equation (65) then
leads to the sum rule» M. Cohen and L. Falicov, Phys. Rev. Letters 7, 231 (1961)."The reader should be aware that other proofs based upon field

theoretic concepts exist for the sum rules. t See for example, P. C.
Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959); and M.
Ashkin, thesisHarva, rd University, 1962 (unpublished). g

(Oo s~v(to)dry=
2m c

(66)
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where n=(1/V)P'&min)=1V/U. A term proportional
any

to &0., |7'V) would have appeared in Eqs. (65) and (66)
if we had not dropped such a term in Eq. (64) by assum-

ing &e)=0. Sum rule (66) is thereby exact only for the
case in which &e)=0.

We compute the high-frequency limit of o-&.„ from
Eq. (55),

us write it as

e' n 7t-+ m' n
G P// Pl

2km2 V P

&-l=l~&&~l-+I-&
(71)

pa 2

But the summation of Eq. (67) is just the summation
of Eq. (61).Hence, we arrive at the high-frequency limit

—e'H n
lim (ri,„(o~)=
co ~oo yg2~2g

Equation (68) is the same as the free-electron-gas limit.
The limit given in Eq. (68) is also equal to the limit
obtained for the Hookean solid of Sec. IIl. The corre-
sponding limit of Fq. (37) is

0'OMO —8 HR
lim 0„„(oi)=
+~00 7. 822C02C

(69)

The sum rule and high-frequency limit given in Eqs.
(66) and (68) have also been given elsewhere. "

A question arises as to how well the sum rule (66) and
the limit (68) are satisfied when only conduction elec-
trons are considered in the evaluation of a. For this
case, n is the number per unit volume of conduction
electrons alone. The extent of agreement depends upon
the smallness of the last terms in Eq. (65) which are
summed between the core states and the conduction
states.

ln order to study the low-frequency behavior of o-&

we write Eq. (55) in the form

tp2

i&PI~ l~)l'
2Am2 V P

x + —
I &Plir'la&l'

(~p oo )

X
oop ~p (oip oo )

=G+ 'Z" 2'&.,( ';,P) (7o).
Observe that as cv —& 0, o lgo(co) —+ G. To evaluate G let

»m ai.,(o~)= 2"2' {I &Plier la&l'
2 Am2co2 V p

—
I &P I

ir+
I a& I

') (67)

Since L(x+iy), V(r))=0, we have

I (zaiy), xo') = ibm-+/m. (72)

The matrix element of the operator Eq. (72) leads to
the equation

&P I (xaiy) ln&intro~ p
=

&P I
~+

I ~& (73)

Applying Eq. (73) to Eq. (71) reduces G to the form

$/2 2"&' {&~I*II)&J3lyl~)
AV p

lyl&&&&l I &} (74)

We might be tempted to use Eq. (62) as the next step.
However, in general, this is incorrect because not all
states

I P) are present as one might casually assume. For
nonzero co, transitions with cop

=0 contribute nothing
to G+oo'F, „.Hence, the transitions to unoccupied

I

P'&

states for which cop
=0 do not occur in the sum over

states which gives Eq. (71). But in order to use the
closure property (62) in the sum over the matrix ele-
ments of x and y, we must include the terms from these
unoccupied states IP'). The matrix identity obtained
from Eq. (72) clarifies the above:

&Plil~&™p-=(—i~i/~)&PI7r l~& (75)

where j can be either x or y. When cop =0, then it is
possible to have &P'Iir;In)=0 but (P'Igln&NO. Such a
possibility occurs in the case of free electrons in a mag-
netic field. This physically corresponds to the situation
that in a uniform static electric field in the x or y
direction no absorption occurs when collisional effects
are negligible (the ~ matrix element is zero for oip =0);
but a current is produced (the x or y matrix element
is nonzero corresponding to motion of the average
position of the electrons) ~ Adding and subtracting the
matrix elements of x and y to these states

I
J3') and now

using Fq. (62), we find

G= —(i"/~iV) 2'I &~IL*,y)lo&

—E' {& lzl~&&alyl &
—

& lyly)&&l*l &)

—2" {&alzl&')&&'lyla& —&alylP'&&&'l*l~&)) (76)

The last sum in (76) now includes a sum over the states
IP'&. The first term of Eq. (76) is zero since Lx,y)=0
and the second term of Eq. (76) is zero because it is
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antisymmetric in the dummy variables n and P. Hence,
we have that

order:

4-(r) =F-,t(r) U-o(r)

(n —n )„
(78)

G=+(ie'/t'l')Z. &,'Ze &,
"((~I~II')&O'Ixl~)
-&-Ixl~')(~'l*l-)), (77)

where IP') are all of those unoccupied states for which
pptt =0 and &nlpr, lP')=0.

We may easily perform the evaluation of Eq. (7'7) by
using the Boltzmann equation instead of directly calcu-
lating the matrix elements. The low-frequency limit of
0.&,„evaluated in this way for a solid with no open
orbits is"

where

+»U-p(r) PF-,t(r)+-(&/i)(XF-, t(r))
2

(vrt&tn*+vtn&rt )
U.o(r), (8o)

r, g

r gt'~ gn

U„p(r)v„„
p pU„,(r) = —P

A Qn ~Q)+r&

where n is the number of electrons per unit volume and
n+ is the number of holes per unit volume.

The low-frequency limit for 0.&,„has caused some con-
fusion in the literature because a simple evaluation of
Eq. (74) could easily assume that all possible matrix
elements of x and y are present in G. In this case we
would wrongly conclude that G=O. We see from Eq.
(28) that G=O only when there are no "free"carriers.

The subscript n refers to the band number, U„p(r) is the
Bloch wave function in the eth band at k=0. Here,

and
P= (v/i)+xsy,

s= eH/c.

(82)

(85)

We have chosen a particular gauge to represent the
magnetic 6eld in the s direction.

Here also,

V. FERROMAGNETIC AND NONFERROMAGNETIC
SOLIDS

and
v = (V/im)+ (4m'c') '(tr & V V(r)), (84)

So far we have made no distinction between ferro-
magnetic and nonferromagnetic solids. All statements

apply equally well to both except where we explicitly
state otherwise. In this section we consider the "effective
mass approximation" model and calculate O~,„ for a
ferromagnetic and nonferromagnetic solid and illustrate
the difference between the two. We use the formulation
of the model given by Luttinger and Kohn. " The
effective mass approximation assumes that only states of
the band in the vicinity of a maximum or a minimum in

energy are important. For this to be the case, the mag-
netic 6eld must be weak enough so that the radius of the
orbit of the electron is large compared to interatomic dis-

tances. This will be the case for usual 6elds. We choose
the model for which all bands are simple and nondegen-
erate. Only the lowest band is occupied and all energy
maxima or minima occur at k=0. We assume cubic

symmetry about k=0 so that to order k' the energy for
states in the eth band for H=O are given by,

(79)

In what follows we find it convenient to set A=1.
We want to evaluate ot,„as given by Eq. (55) in the
effective mass approximation. This requires the evalua-
tion of the matrix elements of x+. In order to evaluate
0'y y asymptotically to the 6rst order in H it is necessary
to use the wave function" evaluated to the following

2 A. B. Pippard, Rept. Progr. Phys. 23, 202 (1960).
't J. M. Lnttinger and W. Kohn, Phys. Rev. 97, 869 (1955l.

v„t—— U„p*(r)vUtp(r)d'rp. (85)

The integration is over a unit cell and the U„p(r) are
norm. alized in the unit cell. We also define

~„=h„(0)—h, (0) . (86)

h„(P)F„,t(r) = B„tF„,t(r) . (87)

The subscript l denotes the quantum numbers required
to specify the state. In order to estimate the order of
magnitude of the various contributions to P„(r) we use
the relations

U 0-a~ 0,

PF„,t (F„t/R),
s R—'

(v„t/~„t) -tt.

(88)

Here a is of the order of interatomic dimensions and R
is of the order of the radius of the electron orbit in the
magnetic 6eld and R is much larger than a. It is assumed
as part of the effective mass approximation that the
average momentum of an electron is of the order of l/R.
We see that the second and third terms on the right-
hand side of Eq. (80) give contributions to the wave

The wave function F„,t(r) is determined by the differ-
ential equation
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function of order a/R and a'/R', respectively. However,
as we will see, the contribution to 0&,„is of order u'/R'
and we must use all of these terms. We have not in-

cluded all terms of order a'/R' in the wave function of
Eq. (80).We have included those terms which contribute
in the lowest order to 0-~».

Landau was the first one to give the solution of Eq.
(87) in Cartesian coordinates":

R., l,k„k„(r)= (L.L.) '"c"""+"*'~l(y—yo) (89)

Here X&(y
—yo) is the normalized harmonic-oscillator

function centered about the point y, =k,/s.
It is now a straightforward though tedious matter

to use the wave function given in Eq. (80) to calculate
0.&,„ from Eq. (55). To simplify the problem somewhat,
we consider only the contribution from the e 611ed band
inside the Fermi surface and the next higher empty
band e'. The band edges may be either maximums or
minimums of energy. We also limit the frequency
MQMn&n. We find

(e', i',k,'k, '
i
or+

i e,l,k,k,)

= (2s) U'b„„bI. I,bg;I,
(&+&)'"bt; ~+i

+4;a.4. ~.b~ ~ m~ ~ +~s
&n'n

i (s/4)—M„++i (s/2) 1V„„+

P"b
+(2s)~'2b„, ,g,.b, „, m~. . (9o)*

(&+&)'~ &i;t+i~a+

e upper terms in the brackets and the upper signs go with the m+ matrix element and the lower terms and signs

go with the x matrix elements. We also define:

Vq+= 8/ jk.&i 8/Bk„, v» .+ e„„'&=in„.„", M„„+=M;„&iM„„",lV„.+=&7. „+iN. .",

M„'=m
r, ~

rgt
tgn or n'

+rt&tn&(
&rP&tm'+&'r~*&~n") (&ri"&~~"+&r~ &'~nl"

C~f

i
(9l)

(v,„*v„,—v„„'v„,*~
E„~'=m P ~ ~v„,',

r Hn'
tyn

VA&n n'=
r

r /n'
tgn or n'

(ve'r&rn' vrn&a'p')—+
M M

From Eqs. (55) and (90), and assuming no spin-orbit coupling, we 6nd that the conductivity per unit volume
and to 6rst order in s becomes

e $R
&ixy=

m~ (Ni &) &n'n

es 2m@ ~ v ~ m2 2 +
——3E ~ &v ~nn nn

m'- 2

m 2
+ Mn'n &n'e +m (&k &n'n+)(&k~&n'n )+m P n'u &n'n* &n'n*&n'e )

2 (2z)'
(92)

((o„„'(k)—(o')

where the integral in Eq. (92) is over the interior of the Fermi surface, ~,=eFF/m„c, and ~„.„(k)= h (k) —h (k).
Notice that the result for 0'&,„given in Eq. (92) has a frequency dependence which implies that only changes in
matrix elements contribute and the Zeeman splitting eGect does not contribute. We have used the property that
with no spin-orbit coupling"

"=(&' *)*=(im) ' U 0*(8/Br') V„od'ro. (93)

'6 See, for example, Ref. 7, pp. 583-585.
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We perform the integral over k by using Eq. (79),

2 d'k n'"ko ( n' 'k
(o~„„+o))1t2 tan —1 —

I

—(Oi„.„—co) ii2 tan —
1I

I (94)
(2n-)' &om .'(k) —(o' 2ir'urn'" (~, +~)1/2 j k(~..„—~)'&'&

where
n= (1/m„) —(1/m. ),

and t|0 is the Fermi momentum.
The matrix element given in expression (90) has been previously calculated" but not to such high order in a/E.

As can be seen in Eq. (92), every term in expression (90) contributes to o i,„to the same order even though they are
of different order in expression (90). The reason for this is that when the matrix element of expression (90) is
squared the term of zero order in a/R gets multiplied with the terms of order (a/It)2 and the terms of order a/g
multiply with themselves, all giving terms of the same order. The terms obtained by the square of the zero-order
terms of expression (90) cancel.

Including the spin-orbit interaction to first order and neglecting terms of order of the spin-orbit interaction times
the magnetic field, we find the following additional terms add to the expression for oi,„given in Eq. (92):

0 80 =2g2ilsd
1 —

t aU(r)q (BV(r)

4m'c' k ax J„„. \ ay )„„,
t H, „,'g„,* (H,„.'e.P) 2 d k(~,(k))+o-,." Z I e'Wn, (95)

imam' k oi,„. imam E &oi„~ I (2ir)i (oi„~„2(k)—io2)
0 "=0 e=tslay

where

H i' ——(4m'c') ' U 0~(~ V(r) XV/i), Uiod'ra.

and
(H,„)*=H„,= Hi„. —

The terms given in Eq. (95) come from the first term in
the parentheses of the second expression on the right-
hand side of Eq. (90), i.e., the term proportional to
nsv ~ +. With no spin-orbit coupling the absolute magni-
tude squared of this term is the same for both + and-
and does not contribute to 0.~,„. However, when the
spin-orbit interaction is included then

I
o„„+

I
'0

I
v

for two reasons; one, the wave function to 6rst order
becomes

Ht 'Vto
(96)

The U 0 used to evaluate all of the matrix elements of
Eq. (95) are those for the spin-orbit interaction equal
to zero. The v„„'are given by Eq. (93). The quantity
(a,) means the avera, ge value of o,. In deriving Eq. (95),
we have used the relations that,

(w V( ))..*=(vV( ))..= —(v V( ))...

from the change in v„„and the rest of the terms come
from the change in wave function. Argyres has also
calculated the spin-orbit effect and his expression agrees
with our Eq. (95) except that he does not have the
terms that come from the change in v„.We feel that
these terms should be present. Notice that the spin-
orbit interaction contributes only to the e'Ae term and
does not contribute to the e'= e term.

When the metal is ferromagnetic (o,)=—1, and, as
shown by Argyres, s the spin-orbit contribution of Eq.
(95) dominates over the magnetic 6eld contribution of
Eq. (92). When the metal is nonferromagnetic and be-
cause of the Pauli spin paramagnetism X~, (o,)=0 for
all k except those values of k right at the Fermi surface
where (o,)= —1. The number of states per unit volume
X(H) for which (o,)= —1 is given by

Ã(H) =2tjeHg(E i,), (97)

where tie =e/2mc is the Bohr magneton, and g(E p) is the
density of states per unit volume and unit energy at the
Fermi energy Ep. For our model of unit volume,

tQn COtn g(E )=m "2(2E )3'2m-2 (9S)

Ep ——kp'/2m .

We now estimate numerically the contribution of the
spin-orbit interaction in momferromagrtetic metals and.
compare it with the magnetic contribution given by

'VR. J. Klliot, J. P. McLean and G. G. MacFarlane, Proc.
Phys. Soc. (London) 72, 553 (1958);Corrigenda, ibid. 73,976 (1959).

and two, v„„contains the spin-orbit interaction as where
indicated by Eq. (84). The first two terms in the
parentheses on the right-hand side of Eq. (95) come
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Eq. (92). From Eqs. (92), (95), and (97), we take the
ratio of the ieferbaed parts and find approximately that

or „" m'AlI~H. g(Er)
(99)

where n is the number of electrons per unit volume, A is
i times the curly brackets in Eq. (95), and 8 is the term
between the curly brackets in Eq. (92).We can estimate
8 from the high-frequency limit of o.

& „given in Eq.
(68). This limit shows that the slm of the interband
terms are of the order of the intraband terms or

(100)

To estimate A we consider a typical term,

H„g' 1
c~ ~"(H'e*)..' (101)

gran Mgn Mg&

or,„' H, g, ;,'h'peH. g(E p.) 1

&lory 8 SQ2
GOg~

(99a)

Roughly speaking, for a metal E&g(E' z) =n and
p~H=s/nz. Also for a metal Es=h'/ma'. Inserting
these estimates into (99a) gives

.."/ *.=H"-'(1/ -) (99b)

Typical interb and energies are of the order of

Here (1/cu, „)is some average of the inverse of interband
frequencies. After taking this out of the sum, we may
sum the rest of the terms by closure. Since the missing
term (t= e) is zero we can sum over a complete set ob-
taining the result on the right-hand side. Just as in the
estimate for 8 we estimated the sum of the interband
terms, we will also estimate the sum of the interband
terms to obtain an estimate of A. Summing over all
e'/e and remembering that the contribution for n'= e
is zero we obtain

A = (1/~, „)(H'w'u") „„. (102)

In general we expect that (H'e*s~)„„ is nonzero. We
know from the high-frequency limit of o.&,„as given by
Eq. (68) that A summed over all bands is strictly speak. —

ing zero. This is owing to a cancellation between the
various terms. However, the method used here should

be adequate to estimate the contribution from a single
band for which the various terms are not expected to
cancel one another. A rough order of magnitude estimate
for the matrix element (102) is

(H'e*v").„=H,g. ;.'h'/m'a', (103)

where a is of the order of the lattice spacing and II,~, ;,'

is the atomic value of the spin-orbit interaction term.
Inserting these various order of magnitude estimates
ba,ck into Eq. (99) we obtain

1 eV. For materials around nuclear charge a=30,
Hatomic

The spin-orbit contribution in nonferromagnetics has
a frequency dependence which diRers from that of the
magnetic Geld contribution. The magnetic Geld con-
tribution comes from all electrons while the spin-orbit
contribution comes from only those electrons in the
vicinity of the Fermi surface where (o,)NO. The spread
in energy of these electrons, 2 p~II, is quite small com-
pared to the Fermi energy, and this causes the energy
denominator, (s&„„'—~') ', for these electrons to vary
much more strongly than that for the magnetic Geld
contribution for which the contributing electrons are
spread over an energy range of the order of the Fermi
energy. Because of this strong frequency dependence of
the spin-orbit contribution, its effects should be notice-
able even when the ratio in Eq. (99b) is small. For
example, "for s= 10, II,~. ..'=0.01 eV and the ratio in
(99b) is about 0.01.However, because (lJpH/Ep) =10 '
in metals for H=10' 6, we expect that the spin-orbit
contribution is concentrated in a much smaller fre-
quency range than the magnetic-Geld contribution and
that it should be observable as a comparatively rapid
variation of the Faraday eRect with frequency even for
s= 10 or smaller.

VI. DISCUSSION AND SUMMARY

Ke have presented a general formalism for calculating
the Faraday effect in cubic materials. Ke base the
formalism on dispersion relations which relate the real
and imaginary parts of the elements of the conductivity
tensor. A knowledge of the conductivity tensor permits
a calculation of the Faraday effect from Eqs. (19) and
(26). The imaginary part of the off-diagonal conduc-
tivity element 0,„ is proportional to the diRerence in
absorption of right and left circularly polarized radia-
tion. Once we calculate this, we may calculate the real
part of the oR-diagonal conductivity element by the
dispersion relations.

After presenting the sum rules and the low- and high-
frequency limits for the elements of the conductivity
tensor, we obtain the physically reasonable result that
at high frequencies the conductivity tensor becomes
identical with the free electron result, i.e., at high enough
frequencies the effects of the periodic potential disappear.

Paying particular attention to the role of the spin-
orbit interaction, we perform a calculation of 0. ~ for a
solid in the eRective mass approximation for nonde-
generate bands. In ferromagnetic metals the spin-orbit
interaction dominates and produces the large magneto-
optic effects of ferromagnetism. Even in nonferromag-
netic metals, the spin-orbit interaction contributes to
the interband part of the conductivity tensor through
the Pauli paramagnetism. The Pauli paramagnetism
causes the electrons in the vicinity of the Fermi surface
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to have a nonzero average value of spin. The spin-orbit
interaction to first order produces effects proportional
to the average value of spin. Because the spin-orbit
contribution to 0. „ is concentrated in a much smaller
frequency range than the magnetic field contribution,
the former contribution should give, as an observable
effect, a comparatively rapid variation with frequency.
This rapid variation should occur even for metals with
as small a nuclear charge as x=10. Large z materials
will show correspondingly larger spin orbit effects since
the spin-orbit interaction varies roughly as s . The
intraband contribution to the conductivity is inde-
pendent of spin-orbit effects to first order.

The general expression for the off-diagonal element of
the conductivity tensor a.i,„as given by Eqs. (55) and
(58) shows us that two factors contribute to this ele-
ment. One is the difference in matrix elements between
RCP and LCP radiation and the other factor is the
Zeeman splitting of the levels. In the effective mass
approximation for cubic solids only the difference in
matrix elements contributes to a-~,„.The Zeeman split-
ting effect does not contribute. To first order in II, the
Zeeman splitting is proportional to the average angular
orbital momentum of the state. However, in cubic
solids, the average angular orbital momentum is zero
and thus we do not expect a Zeeman splitting effect to
first order in H.

We base these conclusions on the assumption of non-
degenerate bands and thus such conclusions are appli-
cable to the usual case of a metal. However, for the case
of degenerate bands such as in Si and Ge the situation
can be quite different from the conclusions in this paper.
For instance, a Zeeman splitting effect can exist via the
spin-orbit coupling in the degenerate bands case.""

In real metals the division of 0&,„ into a frequency
dependence produced by Zeeman splitting and one
produced by a change in matrix element is not the most
useful division because the 6nite lifetimes of the states
in the metal cause the overlap of a very large number of
states. We usually neglect this finite lifetime and assume
an infinite lifetime of the states as we have done in
Sec. V for the calculation of the Faraday effect. Using
the general dispersion relations (5) and (6) we may
treat the situation of finite lifetimes. In Eq. (5), 0.2„, is
one-half the difference in absorption between LCP and

RCP radiation. When the states have finite lifetimes,
o.2,„(cv) has contributions from all of the states within
approximately the energy half-width of a single state.
Each state within this energy range contributes to
a2,„(cv) for two reasons. One is the change in matrix
element to which o2,„(~) is directly proportional, and
the other is the Zeeman splitting of the levels, which is
present when the orbital angular momentum is not
quenched as in hexagonal metals. The Zeeman splitting
contributes a term to 0.2,„(cu) which is proportional to the
slope of the absorption versus frequency curve for either
RCP or LCP radiation. Adding these various contribu-
tions to 02,„(or), we may obtain oi»(&a) from the dis-
persion relation (5) for which the frequency denominator
is simply (sr, '—cv').

The dispersion relations (5) and (6) plus the inter-
pretation that a2,„ is the difference in absorption be-
tween LCP and RCP radiation is a very powerful and
general method to attack the calculation of the Faraday
effect. Contrary to other calculations of the Faraday
effect which are dependent on various assumptions such
as an independent particle model, the dispersion relation
approach is always valid regardless of the type of inter-
action between electrons and the nuclei or between the
electrons themselves. It is valid in the relativistic or
nonrelativistic limits, when spin-orbit interactions are
present, etc. Another advantage of the dispersion rela-
tions approach is that it permits us to calculate 0.2 „or
0-& „if we know the other over a wide enough frequency
range by any means such as, for example, experimental
measurements. Although we have limited the work in
this paper to 0. „(Op&), the dispersion relations and the
physical interpretation in terms of RCP and LCP
radiation also hold for 0,„(k,~).
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