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to 1 part in 10,* the hyperfine anomalies (as defined on
p- 280 of Ref.6) can be calculated. The results are given
in Table V. The precision is, at present, limited by the
uncertainties given for the ratios of the dipole moments.

The magnetic field produced at the Sn nucleus by the
electronic configuration can be obtained from the
relation®

halJ
H;=— .
Mr

(6)

From Tables IT and IV and Eq. (6), the internal fields
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are found to be
H(P;)=+40.3626X10% G,
H(*Py)=—1.592X108 G,
to within about 0.19%,.
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Approximate Methods for Obtaining Radial Distribution Functions of Fluids*
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Two integral equations are proposed whose solutions approximate the radial distribution function of
classical fluids whose single-component particles interact with pairwise radial forces. Solutions to these
equations are obtained for several temperature and density conditions for particles interacting with
potentials corresponding to the Lennard-Jones, the hard-sphere, and the Gaussian models. When Monte
Carlo results are used as a standard, these new equations provide answers which often show improvement
over the answers obtained by the Percus-Yevick or convolution-hypernetted-chain equations.

I. INTRODUCTION

HE theory of fluids in thermodynamic equilibrium

has undergone considerable progress in recent
years as a result of studies of the radial distribution
function gl. Although several new methods have been
advanced for computing g, the convolution-hypernetted-
chain? (CHNC) and the Percus-Yevick? (PY) equations
have received the greatest attention. A large number of
solutions have now been obtained for these equations
over a wide range of temperature and density conditions
for several forms of the pair potential function* and

* This research was supported in part by the National Science
Foundation and the National Aeronautics and Space Administra-
tion.

1For a general discussion of the radial distribution function,
its relationship to various thermodynamic quantities, and its
role in the theory of fluids, see, J. O. Hirschfelder, C. F. Curtiss,
and R. B. Bird, Molecular Theory of Gases and Liguids (John
Wiley & Sons, Inc., New York, 1954). .

2 E. Meeron, J. Math. Phys. 1, 192 (1960); T. Morita, Progr.
Theoret. Phys. (Kyoto) 23, 385 (1960); J. M. J. Van Leeuwen,
J. Groeneveld, and J. DeBoer, Physica 25, 792 (1959); M. S.
Green, Technical Report, Hughes Aircraft Corporation (un-
published). .

3J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958);
J. K. Percus, Phys. Rev. Letters 8, 462 (1962).

4A. A. Broyles, J. Chem. Phys. 33, 456 (1960); 34, 359, 1068
(1961); 35, 493 (1961); A. A. Broyles, S. U. Chung, and H. L.
Sahlin, ibid. 37, 2462 (1962); A. A. Khan, Phys. Rev. 134, A367
(1964) ; D. D. Carley, ¢bid. 131, 1406 (1963); D. D. Carley, zbid.

136, A127 (1964); M. Klein, J. Chem. Phys. 39, 1388 (1963);

these results indicate that the PY and CHNC equations
provide considerable improvement over previous
methods. However, neither the PY nor the CHNC
equation has obtained a clear advantage over the other
for all potentials under varying temperature and
density conditions.

The PY and CHNC equations may be looked upon as
a partial summation of terms® (from all orders of
density) of the density expansion for g. The CHNC
summation includes all the terms summed by PY plus
an additional infinite set. The remarkable success of
the PY equation, in spite of its summation of fewer
terms, suggests that there is often better cancellation
among the terms omitted than in the CHNC equation.
The techniques of summation of certain terms from the
density expansion, as exemplified by the CHNC and
PY equations, suggests two possible procedures for
obtaining better distribution functions: (1) to systemat-
ically include more terms in the summation or (2) to
eliminate more terms or to weight certain ones dif-
ferently to obtain better cancellation among the terms
M. Klein and M. S. Green, bid. 39, 1367 (1963); M. Klein,
Phys. Fluids 7, 391 (1963); M. S. Wertheim, Phys. Rev. Letters
10, 321 (1963).

5The original derivation as published by Percus and Yevick
employed collective coordinates. G. Stell studied the equation

from the summation point of view. G. Stell, Physica 29, 517
(1963). See also Khan, Ref. 4.
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omitted.® Animportant consideration must be the time or
effort involved in making these corrections since if the
method is too laborious or involved the time might be
better spent in obtaining Monte Carlo? (MC) solutions.
It is in the spirit of (2) that in this paper we present
two equations for obtaining radial distribution functions
and apply them to the Lennard-Jones, the hard-sphere,
and the Gaussian models. We compare these calcula-
tions with results obtained by Monte Carlo methods
which we take as a standard. The main advantages of
the integral-equation methods over the Monte Carlo
method are the greatly reduced computer time needed
to obtain solutions and the possibility of solving the
integral equations for the potential when given an
experimental g.

II. SUMMARY OF SOME WELL-KNOWN RESULTS

We are concerned with a classical one-component
fluid having an average number density

a=N/V, )]

where N is the number of particles and V is the volume.
The potential energy U of the system is assumed to be
the sum of pair potentials so that

Y (),

1,7=1,i7#]

U(l'l, . (2)

.rN)z%

where 7;; is the separation between particles ¢ and j.
For a system in equilibrium at temperature 7, the radial
distribution function is given by!

g(ri)= VzZ—I/ cee /e_ﬁvdl‘a' -+dry, 3)
v
where
-_-/ cee /e—ﬁvdrl- ..dr (4)
v
and
B=(KT)". ®)

Equation (3) is valid in the limit of N —w», V —x,
and 7 remaining constant. Boltzmann’s constant is
denoted by %.

Thermodynamic quantities can be calculated from
the radial distribution function. In particular, the mean
potential energy U is given by

E=U/N="2x78 f oWerdr,  (©)

6 L. Verlet and D. Levesque, Physica 28, 1124 (1962) ; M. Klein,
Phys. Fluids 7, 391 (1963); G. S. Rushbrooke and P. Hutchmson
Physica 27, 647 (1961) ; P. Hutchinson and G. S. Rushbrooke
zbtd 29, 675 (1963).

7 For a discussion of the Monte Carlo method, see, N. Metro-
polis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, J. Chem. Phys 21, 1087 (1953); W. W. Wood and
T.R. Pa.rker, ibid. 27, 720 (1957)
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Fic. 1. Examples of the nomenclature of linear graphs.

and the pressure p by
* de(r)

1____

P*=pB/A= . (r)r’dr. M

0

The isothermal compressibility K, in terms of the
correlation function G, is given by

=_1(ZI;) 3[ﬁ—1+47r fo i rzG(r)dr:l, ®)

G(rn)=g(r)—1. 9)

The radial distribution function can be written as a
power series in density.® This expansion is best described
in terms of linear graphs or diagrams.

A linear graph is a collection of points with lines
joining certain pairs of points.® The graph is discon-
nected if it is composed of two or more groups having no
line joining a point of one group with a point of the
other. If a graph is not disconnected it is connected. A
point is an erticulation point of a connected graph if,
when it is removed, the graph becomes disconnected.
A connected graph which contains no articulation
points is a star. A graph is a rooted graph if one point or
a subset of points of the graph has been given a special
designation. In the study of radial distribution func-
tions, doubly-rooted graphs are of importance. Figure 1
illustrates some of these definitions.

There is associated with each connected linear graph
products of Mayer f functions,

flrij)=exp[—Be(r:i)1—1, (10)

such that there is a correspondence between the linear
graphs and integrals over products of f functions. It is
convenient to associate integration over the coordinates
of the particles with the nonroot (or field) points. We

where

8 J. E. Mayer and E. W. Montroll, J. Chem. Phys. 9, 626 (1941).

9 There seems to be a great dlver51ty in the current literature in
the notation used to describe the diagrammatic methods. Here we
follow quite closely Uhlenbeck and Ford. For more details concern-
ing the following paragraphs, see J. DeBoer and G. E. Uhlenbeck,
Studies in Statistical Mechanics (North-Holland Publishing
Company, Amsterdam, 1962).
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Fic. 2. Examples of the correspondence between diagrams
and integrals of Mayer f functions.

will denote the field points by open circles and the
rooted points by black circles. Figure 2 illustrates the
correspondence between the diagrams and integrals. A
line between points ¢ and 7 denotes the presence of the
factor f(z) in the corresponding integral .’

The radial distribution function as a power series in
density can now be written as

w AED

Bo—1
gett=1t2, (k—2)!

f (X II fidrs: - - dr, (11)
(@) @k

where the integrals over the sum of products of f
functions are those corresponding to all doubly-rooted
graphs Qy, of k labeled points, which become stars when
points 1 and 2 are connected. [Points 1 and 2 are the
rooted points and are not connected in the diagrams of
Eq. (11).] This expansion through 72 is given in Fig. 3.

It is convenient to classify the diagrams Q; described
above into series, parallel, and bridge diagrams. If all
paths from 1 to 2 pass through a given point, the
point is a nodal point. A diagram which contains one or
more nodal points is a series diagram. If the graph

qi20e®2 +lﬁ—|[ -9 ] + -glf[&—é—?)—zo +

3
3 4- 3 4 1 Ol2
+1 :&24. L3562 + 18 .2+l&§_5+

1 4 32
009

Hen e or] e
stias [ ooe |+ eooe +2 o A ] + e
efree]+
B12) = ®° B_'QC:)’] + o

Fic. 3. The density expansions for gexp(B8¢), S, P, and B
through 72, In the top equation the points are labeled according
to Eq. (11). Because the values of the diagrams do not depend
upon the labels of the field points and because the functions of 1
and 2 are symmetric, many of the terms may be combined, as
in the other equations in this figure.

P(12) =

10 For ease in writing we will often use the shorter notation
FGg) for f(rij), ¢(@F) for ¢ (ri7), etc.
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breaks into two or more disconnected graphs when
points 1 and 2 are removed, the diagram is a parallel
diagram. If a diagram Q is neither a parallel nor a series
diagram, then it is a dridge diagram. If we denote!! the
contribution to g exp(8¢) in Eq. (11) of all series dia-
grams by S(12), of all parallel diagrams by P(12), and of
all bridge diagrams by B(12), Eq. (11) can be rewritten as

g(12)efs =145(12)+P(12)+B(12).  (12)

Figure 3 lists the terms in S(12), P(12), and B(12)
through 7.2

Several useful relationships between these functions
have been obtained and we list them here. First we

- - 3 —
re B8] HLA - B TTET
SIS S AN,
] - o

- i | kg B fikd
sy oo] - Fs A )-8
3 |
SR RANEE 3o I
Fi1c. 4. The virial expansion for the pressure. In the top equation
the diagrams have been labeled according to Eq. (17). Because the
value of a given type of diagram does not depend upon the labels

of the points, several terms may be combined as in the second
equation.

define the direct correlation function 7',
T(12)=G(12)—S5(12).
It has been shown that'?
P(12)=exp[B(12)+S(12)]—1—S(12)—B(12) (14)

and

(13)

G(12)=T(12)+7 f GA)T(B2drs.  (15)

Finally, we will need the well known virial expansion
for the pressure!

Pr=p8/i=1+Y By(T)aGD, (16)
i=2
where
i1
B].:_Z__/.../(z IO fidri---dr;. (17)
yil% (87%) 85

These integrals of the sums of products of f functions
correspond to all stars S;* with 7 labeled points. The
expansion through 72 is listed in Fig. 4.

The virial expansion for the pressure is usually
obtained without the use of the radial distribution

1 This notation follows that of Klein and Green, Ref. 4.
12 See, for example, Van Leeuwen et al., Ref. 2.
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function. However, it can be shown that Eqs. (16) and
(17) can be obtained using the density expansion for
g, Eq. (11) with either the pressure equation, Eq. (7),
or the compressibility equation, Eq. (8).®* For an
approximate equation for g which sums only certain
diagrams from the density expansion, corresponding
virial expansions for the pressure can be obtained
using either the pressure or compressibility equation,
but the virial coefficients thus obtained will in general
not be the same.

III. THE INTEGRAL EQUATIONS

Integral equations such as PY and CHNC are
equivalent to partial summations of diagrams from the
density expansion for g exp(8¢). The diagrams summed
by these equations are shown in Fig. 5 for diagrams
through two field points and may be compared with the
exact expansion in Fig. 3. The virial expansion for the
pressure can be obtained from the compressibility
equation for the PY and CHNC equations. This
result is shown in Fig. 6.

It is seen that the PY and CHNC density expansion
for gexp(Bp) are exact only through one field point.
As the number of field points increases, the number of
diagrams neglected by these approximations increases
rapidly. From these considerations alone, it is clear
only that the equations should be valid for low density
where contributions from the individual neglected
diagrams are small; however, numerical solutions
indicate that these equations are good representations

for densities much greater than this. Thus there must be

cancellation among the neglected diagrams.

Since the cancellation is so important to the integral
equation of the PY or CHNC type, and since these
equations neglect a large number of diagrams, the
possibility of obtaining better equations through better
cancellation becomes quite appealing. Once the notion
of summing more graphs is abandoned for the idea of
selecting graphs, the number of interesting integral

06 | + 1 [ @-0—8 | + 72| o000
24 Ay +1 c@- ]+ o

0™ =1 + [ e-0—e | +17 o000
v2 o ]+

oo o e e o

F1c. 5. The density expansions for g exp(8¢) according to the
PY and CHNC approximations. The last two equations are the
approximations of diagrams through two field points.

(PY)

13 7. DeBoer, Rept. Progr. Phys. 12, 305 (1949).
14 E. Helfand and R. L. Kornegay, Physica (to be published).

FLUIDS

Tlree ] -V+ A ]
3[% m +%g]—--- (CHNC)'

e ]8R A)
—53[%@:2+—'5§]—--- PY)

F16. 6. The virial expansion for the pressure according to the
PY and CHNC approximations as obtained from the compres-
sibility equation.
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equations for g becomes quite large. Here we limit
ourselves to the study of two of these possibilities. Both
of the equations displayed below contain a parameter
which is determined by the particular temperature and
type of potential of the system being studied. This
parameter, which appears in diagrams of two or more
field points, thus has the effect of allowing the conditions
of the problem to adjust the approximation made,
rather than fixing it beforehand, as in the PY and
CHNC equations.

Equation (A)

From Egs. (12), (13), (14), and (15), the following
equations can be easily obtained :

g(12)e84® —1= P(12)4+B(12)+7 / G(13)[B(32)

+P(32)+ £(32)g(32)ebs @) Idrs,
P(12)=g(12)ef+()—1—In[g(12)eb+( 7.

(18)
19)

Equations (18) and (19) are still exact but the presence
of the unknown set B prevents the formation of a
closed set of equations for g. Equation (A) is obtained
by making the approximation
B(12)~mP(12) (20)

in Eq. (18).
Equation (A) can now be written as

ga(12)eBo0 1
= (14m)P4(12)+7 / Ga(13)[(14-m)P4(32)

+ £(32)g4(32)eP* 3D drs,
P4(12)=ga(12)ef+(D —1—In[g, (12)efs2)],

(1)
(22)

The parameter  is still to be chosen and later we will
suggest a method for determining it. Note that the

choice of m equal to 0 or —1 gives the CHNC and PY
equations, respectively.
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Equation (B)
The equation

2(12)ef4(D =147 / .G(13)T(32)dr3
+a|:ﬁ / G(13)T(32)dr3:| (23)

contains the one-field-point diagram correctly, provided
that T is given by

r(12)=7(12), (24)
when g satisfies the equation
g(12)efon =1, (25)

Furthermore, the parameter ¢ appears in more complex
diagrams.’® We also require G and T to satisfy the
Ornstein-Zernicke relationship of Eq. (15). By combin-
ing Egs. (15) and (23), we obtain

T(12)=G(12)+ (2a)'+3{a*— 4o
X[1—g(12)efsn 3212, (26)

The sign before the radical is chosen so as to satisfy the
condition of Egs. (24) and (25). Equations (15) and
(26) form Eq. (B). The density expansion for g exp (3¢)
can be obtained by iteration of Eq. (B), and the
results through two field points are given in Fig. 7.
Using this density expansion for gexp(B8¢), the corre-
sponding pressure series may be obtained from the
compressibility equation and this result is given in
Fig. 8.

Determination of the Parameters

Equations (A) and (B) have been constructed so as
to give the correct diagrams in the density expansion
for g exp(B¢) for terms with fewer than two field points
(as is the case with PY and CHNC), thus insuring good
results for low densities. In addition these equations
contain a parameter, as yet unspecified, which appears

90 =1+ @ [o—o——.]+ﬁ2[o—o—o-o
+2 ._A+;‘(m+|)(g)]+n-
1 +# [o—o—o] +ﬁ2[o—o—o—o

+2 o e+ u.@.]+...

Fic. 7. The density expansion for g exp(B¢) for Egs. (A) and
(B). Although the diagrams included through two field points
can be made the same by the proper choice of ¢ and m, the
diagrams of greater complexity are quite different.

gge™ =

15 We note that when ¢ is taken to be %, Eq. (B) is similar in
appearance to Klein’s Eq. (13a) of Ref. 6. However, in terms of
the diagrams summed, these two equations are quite different.
Equation (B) is not a member of the sequence considered by Klein.
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@)ﬂ mQ m=m/i:i(Eq.A)

Fi16. 8. The determination of the constants ¢ and . The first
equation is the virial expansion for the pressure from Eq. (B)
using the compressibility equation. Note that when ¢=0 the
terms are the same as PY (Fig. 6), and when a=% they are the
same as CHNC. This is no longer true when more complex graphs
are included. When ¢ is chosen according to the second equation,
the fourth virial coefficient is given correctly. The third equation
shows the approximation in the expansion for gexp(B¢) for
Eq. 4 in the diagrams of two field points. In the last equation
the method used for determining # is shown.

(Eq. B)

in the terms of two or more field points. The problem
now is to select these parameters so as to obtain good
results at higher densities. In choosing these parameters
we were guided by the studies of the virial coefficients
for the hard-sphere gas, made by Rushbrooke and
Hutchinson.$

In the case of Eq. (B), the parameter ¢ was chosen
so as to obtain the correct fourth virial coefficient (as
obtained from the compressibility equation). The
equation for ¢ in terms of diagrams is shown in Fig. 8.

For Eq. (A), the parameter # was chosen to approx-
imate diagrams with two field points in the g exp(8¢)
expansion. If » were obtained by the third equation in
Fig. 8, Eq. (A) would be correct through two field
points. As an approximation to this, » has been chosen
as in the fourth equation, making use of the virial
diagrams. Thus # is in some sense an average value of
f, and will depend on the pair potential chosen and the
temperature of the system. The determination of m is
somewhat easier than ¢ since the double cross-bond
diagram (see Fig. 8) is not present; this diagram is
usually more difficult to evaluate than the other four-
point stars.

It is not clear that the better representation of the
fourth virial coefficient [in Eq. (B)] or the two-field-
point diagram [in Eq. (A)] will necessarily result in
improved results at high densities. The justification of
these approximations ultimately must come from the
ability of these equations to produce answers in good
agreement with standard theoretical calculations (such
as MC) or with experiment. We have, therefore,
obtained solutions to these integral equations for certain
potentials where standard results are available for
comparison.

IV. NUMERICAL RESULTS

We have obtained numerical solutions to Egs. (A)
and (B) under selected conditions for the Lennard-
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Jones, the hard-sphere, and the Gaussian models.
These solutions are compared with Monte Carlo, PY,
and CHNC results. The form of Egs. (A) and (B) is
similar to that of the PY and CHNC equations, so
that the methods of solving the latter equations (see the
references listed under Ref. 4) apply here also.

Gaussian Model

For the Gaussian model the Mayer f function is a
negative Gaussian

J(r)=—exp[—(r/a)"]. @7

We take 1.10 @ as our unit of length!® and define a
reduced length x and density #* according to the
equations

x=r/(1.10c) (28)
and
#*=7(1.10a)3. (29)
Also, we define
C=1(m)3%s3. (30)

The values of the integrals needed to determine ¢ and

LENNARD-
DIAGRAM GAUSSIAN HARD SPHERE  JONES
(1% 2.74)
-",- m 1.00000¢>  2.5905D°  9.32 ¢°
v m - 0.35355 C> —1.8890D> —-6.82 ¢°
¥ % 0.12500 ¢3 1.267 0> 4.70¢°

Fi1G. 9. Values of the virial diagrams needed in the
determination of @ and .

m can be analytically evaluated'” for the Gaussian
model and are listed in Fig. 9. Thus we get

2=0.3232 (31)

m=—0.3535. (32)

Using these values the integral equations were solved
for densities of 7*=0.35 and 7= 1.00 and compared with
previous calculations for g(x) using the PY, CHNC,
and MC methods.!® The results are shown in Figs. 10
and 11. At 7*=0.35 thereis excellent agreement between
the MC, PY, CHNC, E5,'® (A), and (B) results. For
7*=1.00 there is close agreement between MC, CHNC,
(A), and (B) with PY somewhat below the other curves.

16 More precisely the unit of length is (371/2/4)13, as in Ref. 14.

17 See Ref. 9.

18 The PY, CHNC, and MC solutions are from D. D. Carley,
Phys. Rev. 136, A127 (1964).

B ES represents the radial distribution function as determined
from an evaluation of all diagrams in the density expansion for
gexp(Bp) through the fifth power in density. At #*=0.35 this
should give an excellent representation of g. This data is taken
from Ref. 14.

and

A 47

T L 1
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E5,PY,CHNC, A,B.
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F16. 10. Radial distribution functions for the Gaussian
model for 7*=0.35

Hard Sphere

For the hard-sphere model the Mayer function is
given by
fn=—1, r<d (33)

f(n=0, r>d (34)

where d is the diameter of the hard sphere. Taking d as
our unit of length we define

x=r/d, (35)
A*=nd?, (36)

and
D=27d3/3. 37

The values of the integrals necessary to determine a
and 7 have been computed® and are listed in Fig. 9.
From this table the constants are found to be

a=0.0567 (38)
and

m=—0.7292. (39)

Using these values the integral equations were solved
for several densities and P* was calculated using Eq.

T T T

g(x) i —_

MC
EQUATIONS AaB
PY

CHNC

0. 1.0 1.5 20
5 X

F16. 11. Radial distribution functions for the Gaussian
model for #*=1.00.

2 See Ref. 9 and also references listed there.
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(7). Figure 12 compares the P*(%*) reference isotherm
used by Klein,? the PY, CHNC, (A), and (B) isotherms.
We have also plotted g(x) for #*=0.789 in Fig. 13.
Both Egs. (A) and (B) give results in much closer
agreement with the reference isotherm than does the
CHNC equation. The comparison of Egs. (A) and (B)
with PY is favorable, but the differences are quite small
and a definite conclusion as to which is best is rather
difficult. The problem is further complicated by the
sensitivity of the hard-sphere solutions to the interval
chosen for the numerical integrations.

T T T T T T
*
P
9.0~
7.0
5.0 —
3.0
— PY
—---—  EQUATION A
Lo~ ————  EQUATION B -
———  REFERENCE
1 1 | I { 1
02 04 _% 0.6 08

''n
Fic. 12. Equations of state for hard spheres.

Lennard-Jones

The Lennard-Jones potential is given by

¢ (r)=4e[(a/r)*— (a/7)°]. (40)
With ¢ as our unit of length, we obtain
x=r/c (41)
and
¥ =1g®. (42)
We introduce also the reduced temperature
T*=FkT/e. (43)

The integral corresponding to the four-point double
cross star was estimated by interpolating the results of
Barker and Monaghan? and the other four-point stars
were evaluated numerically for 7%=2.74. These results

2 M. Klein, Phys. Fluids 7, 391 (1963). The PY and CHNC
isotherms are also taken from this paper.

22 J. A. Barker and J. J. Monaghan, J. Chem. Phys. 36, 2564
(1962).
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T T T T T
g(x)

B m—— EQUATIONS A& B

30 I

20 -1

1 1 1 ! 1

1o L5 20 25 X 3.0

F16. 13. Radial distribution functions for hard
spheres for 71*=0.789.

are listed in Fig. 9. Because solutions (MC, PY, and
CHNC) have already been obtained for the T%=2.74
isotherm for densities of 7*=0.40, 0.833, 1.00, and 1.111,
we chose to solve Egs. (A) and (B) for these conditions.
From Fig. 9 we obtain, for 7%=2.74,

m=—0.732 (44)
and

a=0.0758. (45)

Table I lists the values of m and @ as a function of 7*

TasLE I. Values of the parameters 7 and a for the Lennard-Jones
potential as a function of 7*.

T* m a
20.0 —0.768 —0.025
8.0 —0.813 —0.128
4.0 —0.797 —0.053
2.0 —0.679 0.001
1.333 —0.634 —0.234
1.300 —0.626 —0.231
1.200 —0.589 —0.190

as determined from the Barker and Monaghan calcula-
tions. The radial distribution functions for %*=0.40,

T T T T

g(x)

MC
® e & EQUATIONS ABB -

1 1 1 1

[KeJ 15 20 25
X

F1c. 14. Radial distribution functions for the Lennard-Jones
potential for 7%=2.74 and #*=0.40.
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g

mc -
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Fic. 15. Radial distribution functions for the Lennard-Jones
potential for 7%=2.74 and 7*=0.833.
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TasLE II. Pressures and energies for the Lennard-Jones
model for 7#=2.74.

wk =0.40 n* =0.833 7* =1.00 w¥=1.111

P* E P* E P* E P* E
MC . 1.2-1.5 -—0.86 4.08 -—1.57 697 -—1.60 7.81 -—1.86
(A) 1.24 —0.863 4.09 —1.56 6.99 —1.61 9.39 -—1.54
(B) 1.24 —0.863 4.10 -—1.58 6.99 —1.61 9.57 —1.51
CHNC 1.28 —0.859 5.11 —1.40 9.1 —1.19 13.2 —0.78
PY 1.24 —0.865 4.01 —1.61 6.8 —1.67 9.2 —1.59

0.833, and 1.00 are given in Figs. 14, 15, and 16 for
MC, (A), and (B). Figure 17 shows the PY and CHNC
results in addition to those listed above for 7*=1.111.
Table IT lists the pressures (as determined by the
pressure equation) and the energies.?

Once again the results from Egs. (A) and (B) show

T 1 T T T T
g(x)
2.5 |~ — MC —
« o EQUATION A
o oo EQUATION B
2.0 |- -
FiG. 16. Radial distri-
bution functions for the
Lennard-Jones potential
for T#=2.74 and =*
=1.00. ke .
[.o— .O.D.O 000 4o q.o.o —]
! ! 1
25 « 39 35
g T T ! much better agreement with MC than do the CHNC
ol i results, and the comparison with PY is very favorable.
V. CONCLUSION
Two integral equations have been proposed whose
20 .

Fic. 17. Radial distribution functions for the Lennard-Jones
potential for 7%=2.74 and #*=1.111.

solutions yield approximations to the radial distribution
functions of systems interacting with classical pairwise
forces. The general form of these equations is such that
good results are guaranteed for low densities. In addition

2 The MC results are from Wood and Parker (Ref. 7) while
the PY and CHNC results are from Broyles, Chung, and Sahlin
(Ref. 4). Where there are several values of the thermodynamic
quantities available in the MC method (because of different
chain lengths and number of particles) we have chosen the value
corresponding to the largest number of points in the chain per
particle.
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these equations each contain a parameter which may be
chosen in an effort to improve the higher density
solutions. For this paper we have chosen these param-
eters by examination of the early terms of the density
series for g exp (B¢) and the pressure. We have compared
these new equations, with the MC method as the
standard, against the PY and CHNC equations. These
comparisons were made for the Gaussian, Lennard-
Jones, and hard-sphere models. If we assume that MC
is reasonably accurate, then we may conclude that the
new equations show definite improvement over the
CHNC equation in the hard-sphere and Lennard-Jones
models, and improvement over PY for the Gaussian
model, for the cases studied here. Because of small
differences in the results and the uncertainty in the
accuracy of all the solutions, it is not clear whether the
new equations are any improvement over the PY
equation in the hard-sphere and Lennard-Jones cases
or the CHNC equation for the Gaussian cases.

At worst, we feel that the equations presented here
will have the property of showing close agreement with
either the PY or CHNC equations when one of them
provides a good answer. We hope to be able to show
definite improvement over both of these equations by
selecting a case where neither the PY nor the CHNC
equation provides an accurate answer. We feel that,
relatively, in the case of the Lennard-Jones potential,

D. D. CARLEY AND F. LADO

the PY approximation should worsen and the CHNC
approximation should improve as 7* is lowered.? If this
is the situation there should exist a range in 7* where
the new equations show definite improvement over
both PY and CHNC. Also, a calculation at lower 7*
should begin to show up the differences in Egs. (A) and
(B) and the differences in methods of choosing the
parameters ¢ and m. Unfortunately, it is unlikely that
MC results are available in these regions and so a
detailed study must await such a calculation.

The methods of choosing the parameters ¢ and
used for this paper have the advantage of simplicity
but are not necessarily the optimum. Further studies
concerning the selection of ¢ and m might lead to even
better representations of the radial distribution func-
tions over a wide range of temperatures, densities, and
types of potentials.
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% See also Khan (Ref. 4) concerning this point.
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The electromagnetic signal from a nuclear explosion is computed using the same method as presented by
Kompaneets. It is shown that some of Kompaneets’ approximations are incorrect and lead to the wrong shape
for the radiated signal. His work neglects the important first half-cycle of the signal and hence predicts an
initial deflection in the wrong direction. A more accurate solution is presented.

I. INTRODUCTION

N a 1958 article in the Soviet literature, Kompaneets!
described the basic mechanism for radio emission
from a nuclear explosion. This description, however, is
incorrect at several points. The purpose of this paper is
to show that a correct solution for the same model
differs substantially from the solution presented by
Kompaneets. In particular, he leaves out the important
first half-cycle of the signal so that the initial deflection
is in the wrong direction.
We shall use essentially the same method of calcu-
lation: We numerically integrate Maxwell’s equations

1 A. S. Kompaneets, Zh. Eksperim. i Teor. Fiz 35, 1538 (1958).
[English transl.: Soviet Phys.—JETP 8, 1076 (1959)].

in dipole approximation, but with different conduc-
tivities and currents. We retain the electronic conduc-
tivity and neglect the ionic conductivity (he does the
opposite) and we retain the Compton current in the
field equations where he chooses to drop it (and there-
fore loses the first half-cycle).

II. RADIATION MECHANISM

The radiation mechanism used by Kompaneets is
essentially the following: A nuclear explosion emits a
small fraction (say 0.19) of its energy in the form of
prompt gammas with a mean energy of one, or perhaps
several, MeV. Kompaneets takes the time dependence

AN /dt= N et (2.1)



