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The first-order perturbation theory used by R. C. Stabler to compute the cross section for rotational ex-
citation of homonuclear diatomic molecular ions by electrons is shown to be equivalent to an approximation
to the method of distorted waves for which quite precise validity criteria can be given and easily applied. It
appears to be valid to express the interaction energy by the form V(r) = Vo(r)+ Vs(r)Ps(r, s); however, use
of the long range forms for V0(r) and Vs(r) for all r is not a valid approximation. Moreover, for r &ra, where ro
is the approximate radius of the molecular charge cloud, V~(r) should include the r ' induced-dipole or
polarization interaction, which, it is shown, likely gives a contribution only a little less significant than that
due to the quadrupole interaction treated by Stabler. Depending on the sign and magnitude of the quad-
rupole moment and the magnitude and degree of asymmetry of the polarizability, and also depending on the
size of the uncertain contribution from the region r Cr0, the electron-energy loss rate through rotational
excitation can be anywhere between 100 jq and a negligible percentage of that due to elastic Coulomb
collisions with molecular ions. However, if it is & 10%, use of the method of distorted waves, or equiva-
lently the perturbation theory with Vo(r) included in Ho used by Stabler, is shown. to be invalid.

INTRODUCTION

ECENTI Y, an interesting calculation of the cross
section for rotational excitation of molecular ions

by slow electrons has been reported by Stabler. ' The
principal reason for interest in this process is that
it might conceivably be an important energy-loss
mechanism for low-energy (below 1 eV) electrons in a
partially ionized gas under conditions wherein most of
the ions are molecular ions. ln I it is concluded that the
electron-energy loss rate by this process ranges from
about 1 to 20% of that due to elastic Coulomb collisions
and hence is of relatively minor importance. However,
the basis for arriving at this conclusion is not completely
valid for the two following reasons: (1) Essentially, no
criteria are given for the validity of the first-order
perturbation theory used except to say that it must be
valid in the limit of very small angular-dependent
electron —molecular-ion interaction, and that it must be
invalid in the limit that the computed cross section
exceeds the upper theoretical limit 37r/k, -'for p-wave
scattering imposed by Qux conservation. This upper
limit can be applied because, as noted by Stabler, the
inelastic scattering is almost entirely due to p-wave
scattering. (2) A long-range form for the electron-
molecular-ion interaction energy is used for all r, while
(as shown in Sec. IV of this paper) within the framework.
of Stabler's theory and using his interaction energy most
of the contribution ( 72.5%) to the transition matrix
element comes from r inside the molecular charge cloud
where use of the long-range form for the interaction is
invalid. Moreover, the long-range form for the inter-
action which he has used. (Coulomb plus quadrupole
interactions) is incomplete in that the induced dipole,
or polarization interaction, which gives a comparable
contribution to that of the quadrupole interaction, has
been omitted.

*Work done under the auspices of the U. S. Office of Naval Re-
search Contract Nonr 4188(00).

'R. C. Stabler, Phys. Rev. 131, 679 (1963).Hereafter we refer
to this paper as I.

A

In the present paper it is shown (Sec. I) that the
first-order perturbation theory used by Stabler is exactly
equivalent to an approximation to the method of
distorted waves for which fairly precise validity criteria
(given in Sec. II and applied in Sec. III) can be readily
given and applied. The form of the additional induced-
dipole long-range interaction is given, and, assuming
that the long-range form for the angular-dependent part
of the interaction applies for all r and using the approxi-
mate low-energy form for the electron radial wave
functions used by Stabler, the approximate radial
transition matrix element is computed (Sec. III). The
result leads to an inelastic cross section slightly in excess
of the theoretical upper limit 3s/krs for reasonable
magnitudes of the quadrupole moment Q and polariza-
bility parameter mrs when Q is positive. However, it is
then shown (Sec. IV) that the short-range region, r
inside the molecular charge cloud, is actually very
important. Finally, the conclusion is reached that the
electron —molecular-ion energy-exchange rate due to
rotational excitation can be anywhere between a com-
pletely negligible amount and 100% of that due to
elastic Coulomb collisions, although it is expected to be
more likely under 10% in most cases. This large varia-
tion is due to the variation in the long-range contribu-
tion from element to element resulting from differences
in the magnitudes of Q and o.s and the sign of Q (for
negative Q there is cancellation between the quadrupole
and induced dipole contributions), and also is due to the
large uncertainty in the short-range interaction energy.
The upper limit results when the cross section is set
equal to 3s-/k;s (which is expected to apply approxi-
mately since p-wave scattering still likely dominates for
the correct interaction energy). However, applying our
criteria for the validity of the method of calculation, we
find (Sec. III and. . Sec. V) that the first-order perturba-
tion-theory approach used by Stabler, or equivalently,
the approximate method of distorted waves used here,
becomes invalid whenever the cross section exceeds
about 10% of the upper limiting value 3s./k, s.
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I. APPROXIMATE EQUIVALENCE OF THE THEORY
USED BY STABLER TO THE METHOD OF

DISTORTED WAVES

Here F(k, ,r) and F(k„r) are the solutions of the
equations

The treatment used in I was equivalent to making
the assumptions that the molecular ion could be repre-
sented by a rigid rotator and the interaction between
electron and molecule had the form

and

P', '+k,'—(2m/h') V...(r))F(k, ,r) =0

[V'„'+k '—(2m/h') V..(r)]F(k.,r) =0, (7)

V(r) = Vp(r)+ Vs(r)Ps(r, s), (1)

where r is the position of the electron relative to the
center of mass of the molecule and s is the internuclear
separation distance. As is usual in perturbation theory,
the total Hamiltonian was split into a zeroth order, or
unperturbed, part Ho and a perturbation II,ff The
Vp(r) part of the interaction was included in Hp,

which have the form of plane waves plus outgoing waves
at infinity. V, ,(r) is the matrix element of the electron-
molecule interaction taken between initial and final
molecular states. Equations (6) and (7) are seen to be
identical with the well-known equations of first-order
perturbation theory when the approximation

V""(r)—=V-(r)=—Vp(r)

H p H,+Vp(r)——(h'/2m) V'„—',
H, ri' ——Vs(r)Ps(r, s) .

is made. In the present problem, where V(r) is given
by Eq. (1),

(3)

Here H, is the Hamiltonian for the isolated
It was assumed that

molecule. V, ,( )= F, ";'(Q, ) V( ) V;";(Q,)dQ,

Vs(r) = —gesaps/ys ap ——g /me (4)

where Q is the quadrupole moment of the molecule in
units of euo', and that

Vp(r) = —e'/r .

With this value for Vp(r) the unperturbed wave func-
tions separate into a product of a Coulomb wave func-
tion fo.„i(k,r) and a spherical harmonic function
F'; i(Q, ) representing the molecular wave function.

As mentioned in I, from the point of view of perturba-
tion theory it is dificult to assess the reliability of the
first-order perturbation theory result for the inelastic
cross section. However, this is not the case in the present
problem when this first-order perturbation theory is
regarded as an approximation to the "method of dis-
torted waves. " This is the approach followed by
Mjolsness and the author in the treatment of the
analogous problem of rotational excitation of neutral
Inolecules. ' We recall that the expression for the differ-
ential scattering cross section obtained by the method
of distorted waves is' '

k, f m
I(a, k. -+ a', k, )=—I—

e. k2 a

X F(—k... r) V. .(r)F(k.,r)d'r . (6)

' To be published. This work will hereafter be referred to as II.
The theory and preliminary numerical results were reported at the
16th Gaseous Electronics Conference; R. C. Mjolsness and D. H.
Sampson, Bull. Am. Phys. Soc. 9, 187 (1964). Although 1=1 dis-
tortion turns out to be most important, only numerical results for
l =0 distortion were available at the time of this conference.

3N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1933), 2nd ed. ,
p. 146.

4M. J. Seaton, in Atomic and 3IIolecular Processes, edited by
D. R. Bates (Academic Press Inc., New York, 1962), p. 386.

= Vp(r) 3,,'8.„, ,.

+Vs(r) V; "g '(Q, )Ps(r, s) V, "g(Q.)dQ, . (9)

Thus, Eq. (8) is valid in the present problem provided

Vs(r) V "*(Q.)Ps(r, s) ~~ "i(Q.)dQ. &&
I Vp(r) I (10)

The advantage in making approximation (8) is that
then Eqs. (7) do not depend on the rotator states, in
contrast to the case when the method of distorted waves
is followed exactly. However, when approximation (8)
is made and condition (10) is satisfied, we can use the
validity criteria for the method of distorted waves to
check on the reliability of the result obtained for the
cross section. This is much easier to do in the present
problem than it is to estimate the second-order perturba-
tion-theory result, as is ordinarily required for testing
the validity of erst-order perturbation theory.

II. CRITERIA FOR THE VALIDITY OF THE
METHOD OF CALCULATION

Use of the method of distorted waves is expected to
be a good approximation when the diagonal molecular
matrix elements of the interaction potential are large
compared with all nondiagonal matrix elements,
V, ,))V. .. a"Wa'. This results because Eqs. (6) and

(7) are obtained from an infinite set of exact coupled
differential equations by neglecting all terms propor-
tional to off-diagonal w.atrix elements except one con-
necting the final state to the initial state, while terms
proportional to the diagonal matrix elements are re-
tained. Thus, a criterion for the validity of the method
of distorted waves in the present problem, where Eq. (9)
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is applicable, is given by the inequality the values of fs of interest arer

Vs(r) Y; ")'*Ps(r,s) Y; "&dQ,
'

fs(1, J—1, J+1;J)=fs(1, J+1, 1, J—1;J)
= —3I:J(J+1)ji"/5(2J+1)-—'o (14)

« Vs(r)+ Vs(r) Y &*Ps(r,s) Y &dQ„

m, , ,j'Wnz;, j. (11)

For the values of m;, j, m, , and j' for which the left-hand
sides of the inequalities (10) and (11)are nonvanishing,
the left-hand sides of these inequalities have about the
same magnitudes. Thus, if we call Ps(r, s),« the part of
these terms proportional to Vs(r), then conditions (10)
and (11) become

I Vs(r)Ps(r») «I«I V()(r) I.
The appropriate value for Ps(r, s),« to be used in this

inequality can be given with precision by using partial-
wave theory. Also with the use of this theory another
more precise validity criterion, Eq. (17) below, can be
given. We will not repeat the partial-wave theory, which
is given in detail for the case of scattering by a rigid
rotator in the Arthurs-D algarno paper, ' but will give
here only the equations of direct interest for our pur-
poses. The notation used will be for the most part
identical with that of Ref. 5. The result turns out to be'
that the appropriate effective value of Ps(r, s) is really
the matrix element of Ps(r, s) taken between total
angular-momentum states of the system

f ()/&~I& ()&~/. J)
=f (i"~",i' )t'; J)= (i"~-;JIP.(r s) I

i')('; »

'Jjzp&)» *(Qr&Qq)Ps(r&s)

X 'JJ~; ).sr(Q„Q, )dQ„dQ, . (12)

'JJg,; )
~ is an eigenfunction of the angular-momentum

operator for the system, electron plus rotator (molecular
ion), corresponding to angular momentum Jh with pro-
jection Mh resulting from electron orbital momentum
1'h and rotator momentum j'A. Thus, conditions (10)
and (11) both reduce to the condition

for using condition (13) to test the validity of the
method of distorted waves, and

f,(1,J—1, 1, J—1;J)=(J—1)/5(2J+1) —,'() (15)

and

fs(1, J+1, 1, J+1;J)= (J+2)/5(2J+1)~ —,'() (16)

I
sJ(~i; iV) I

'&&1
j Z &jl

(17)

must be satisfied if the method of distorted waves is to
be valid. In the distorted-wave approximation

for using condition (13) to test the validity of the addi-
tional approximation, Eq. (8), required for the validity
of the 6rst-order perturbation theory used in I. The
last form of the right-hand side of these equations corre-
sponds to J—+~, which closely approximates the usual
situation of interest except for H2 where small J are
of interest.

Satisfaction of condition (13) for the important range
of r when Eqs. (15) or (16) are used for fs should be
sufficient for the validity of Eq. (8) required for the
validity of the perturbation theory used in I and for the
equivalence of this theory to the method of distorted
waves. However, there is ambiguity as to how well
condition (11), or condition (13) with fs given by
Eq. (14), must be satisfied for the validity of neglecting
off-diagonal matrix elements. This is due to the fact
that the off-diagonal matrix elements multiply different
radial functions from those multiplied by the diagonal
matrix elements. The average over r effect of this is ap-
proximately taken into account by a less vague criterion
Lcondition (17) below] which becomes our principal
test for the validity of the method of calculation.

As indicated in Refs. 5 and 8, in the method of dis-
torted waves the diagonal elements S~(j lj l) of the S
matrix have the absolute value of unity. Thus, since the
correct S is unitary and symmetric, the condition

I Vs(r)fsl« I
Vs&') I

. (13)
IS~(j'1',jl) I'=4(ky/)), ;) IP&., ) &'I' jlw j'I'. (18)

In the present problem' with V given by Eq. (1)
Values for fs have been tabulated by Percival and

Seaton. ' Since in the present problem almost all the IA')' "I = (2/e'(re@) I
fs(~'2'i V& J)Ps(~&t&4t') I i

inelastic scattering turns out to be p-wave scattering, (19)
in which

e A. M. Arthnrs and A. Dalgarno, Proc. Roy. Soc. (London)
A256, 540 {1960).' D. H. Sampson, General Electric Co. TIS Report R64SD3 1,
1964 {unpublished) . Hereafter we refer to this paper as III. It
covers the same subject as the present paper, but in spots gives
more detail.' I. C. Percival and M. J.Seaton, Proc. Cambridge Phil. Soc. SB,
654 {1951).

F(k&k&r)=f wi(4r)v(r)wi(&;, r)dr. (20).

' C. S. Roberts, Phys. Rev. 131, 209 {1963).' As noted in Ref. 8, the expression for P; &
J&' given by Eq. (37)

of Ref. 5 is in error by a factor 2p/A'ky. For scattering of electrons
this can be written 2/(e'a()k f).
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wi(k;, r) is a solution of the equation

is' ( 4P l(l+1))
+k;s—

~

—Vo(r) wi(k;, r) =0, (21)
2m (Zr'

' r'

with an asymptotic form

wi(k;, r) ) „„=sin(k,r—-', br+ iii) . (22)

In contrast to the situation when the method of dis-
torted waves is followed exactly, the radial wave func-
tions wi(k;, r) and wi (kf,r), and hence Iis, are functions
of no other quantum numbers than the orbital quantum
numbers l' and l because we have made approximation

(g)
Also the expression for the inelastic cross section is

needed. For the purpose of determining the electron-

energy loss rate by rotational excitation, only the total
cross section for the transition j—& j' is necessary. With
the present formalism, this takes the rather simple form
in the distorted-wave approximation. 5

4x ~+j
(~,~')= —E(»+1) E Z (~;4")'

(2j+1)k;s J=o l=[Z—j.
f l-)J—j )

(23)

In testing whether or not conditions (13) and (17)
required for the validitv of the method are satisfied,
one should use the correct form for the interaction
energy. The next two sections are devoted largely to a
discussion of what this is. However, at this point, we

can make a preliminary test to see whether or not con-
dition (13) is satisfied when Stabler s form for the inter-
action energy is used. Using Eqs. (4) and (5) and fs
given by Eqs. (15) and (16) in condition (13), we get

Qao'/10r'«1. (24)

Since Q 1 and the radius ro of the molecular charge
cloud is rp 2ap in most cases, this condition is well

satis6ed, and Eq. (8) should be valid when r&ro, the
only region for which Eqs. (4) and (5) are expected to
be valid. Actually, it turns out, as shown in Sec. IV,
that the region r&rp cannot be ignored. Also, as we now

show, even for r&ro, Eqs. (4) and (5), particularly
Eq. (4), should. be modified.

III. CONCENTRATION TO THE LONG-RANGE
INDUCED-DIPOLE INTERACTION

In addition to the static Coulomb and quadrupole
interactions given by Eqs. (1), (4), and (5) there is a
fairly long-ranged (r 4) interaction energy of a different

type due to the reaction of the bound electrons to the
electric field of the free electron. Since the energy of the
free electron is low (under 1 eV), the much faster moving
bound electrons are able to make several cycles of their
motion before the position of the free electron (particu-
larly when r is large) changes significantly. Thus, it is a
good approximation to assume that the bound electrons

~o=o(~ii+2~), ~s=s(~i, —~.) (27)

The second terms in Eqs. (25) and (26) might signifi-
cantly overestimate the magnitude of the induced-dipole
contributions for the highest free-electron energies of
interest because the bound electrons are unable to corn-
pletely adjust to the position of the free electron.
Also, they may give overestimations of the magnitude
near r=rp, partly as a result of exchange effects. Of
course, none of the terms in Eqs. (25) and (26) are valid
for r&rp. We note that since o,p is generally somewhat
greater than n2, inclusion of the terms involving these
quantities does not upset the satisfaction, Eq. (24), of
condition (13) for r&ro

With the induced-dipole interaction included, the
central part of the interaction energy is still quite well
approximated by the Coulomb term —e'/r for the region
outside the molecular-ion charge cloud because the
additional term 4io(ao/r)' drops off rapidly with distance
and is typically less than unity even at r=rp. On the
other hand, the induced-dipole contribution to Vs(r)
must be included because it drops off slowly, as r—'
relative to the quadrupole contribution, and typically
(as/Q) (ao/ro)-1.

We now use the formalism of the latter part of the
previous section" to make an approximate evaluation
of the matrix element Iis, Eq. (20), assuming that only
the range r) ro is important. Then Vo(r)~ e'/r, and, —
Coulomb wave functions approximately apply for the
free electron. Furthermore, since only low electron
energies (&1 eV) are of interest, we will follow StaMer

IThe inclusion of these polarization interaction terms was est
reported in a calculation of rotational excitation of

¹ by electrons
presented by A. Dalgarno and R. J.MoGett, Proc. Nat. Acad. Sci.,
India BBA, 511 (1963).

» We could as easily have used the method and results of I since
it turns out that the angular contribution is the same to good
approximation as for the quadrupole interaction; however, we
want P; 4

~4' explicitly anyway in order to test condition (17).

adjust exactly to the position of the free electron as
though it were stationary. The resulting induced-dipole
moment y of the molecule is

y= —
[ E[as'La[)8]] cos(r, s)+trieJ. Sin(r, s)g,

where E= —er/r' is the Geld producing the dipole; n,i~

and 0.& are the polarizabilities in units of gp of the
molecular ion in the direction of s and a direction per-
pendicular to s, respectively; s~

~

is a unit vector along s;
and e& is a unit vector perpendicular to s in the r, s plane.
When the electron-ion interaction energy —p E/2 due
to this polarization, or induced-dipole interaction, is
expressed in terms of I'o and Ps(r, s) and added to the
static contribution we 6nd that Eq. (1) still applies, but
in place of Eqs. (4) and (5) for the long-range inter-
action" we obtain

Vo(r) = —(e'/r) 51+ao(ao/r)'3, r) ro (25)

Vs(r) = —(Qe'ao'/r')L1+(4rs/Q)(ao/r)g, r) ro (26)

where
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and use the low-energy expansion of the Coulomb wave functions given by Eq. (I, 12). This leads to

~,(k;,r) = (~k~) '~' J2i+, [(8r/a) '"].
Then using Eq. (26), F2(k,l,kryo') given by Eq. (20) becomes

n2ap

&2(V,k~~') =- —~(k;4)'"Q"ao' —1+—J'i+i[(8r/ao)'"3j2i+i[(8~/ao)"-3
p

This integral is evaluated with the use of the equation"

(1/2) "(X—1)![/+ 1'—P.—1)/2 j!

(28)

(29)

(30)

The pertinent values of X are P =3 for the quadrupole
contribution and X=5 for the induced dipole contribu-
tion [the part in Eq. (29) proportional to n2j. In the
former case (X=3) it was found in I that p-wave scatter-

ing contributes 95% of the inelastic scattering cross

section, In III, it is shown that about the same is true
for X=S. Thus, we obtain the approximate value for
the cross section by considering the single term 1=I'= 1.
In this case Eqs. (29) and (30) give

P2(k, 1,ky1) = —~(k k )'"(Qe'ao/6)[1+(6~2/5Q)]. (31)

The inelastic cross section is then readily obtained by
applying this result together with Eq. (14) to Eqs. (19)
and (23), as done in III. When n~ is set equal to zero,

the result agrees exactly with the /= 1 contribution to
Eq. (I, 30), as is to be expected since the methods of
calculation are equivalent. However, when Q is positive,
for reasonable values of Q and n2, say Q= 1 and n& ——1.6,
this result for the cross section exceeds 3'/k;2. This is

an upper theoretical limit imposed by Aux conservation"
on the contribution of p-wave scattering to the inelastic

cross section, which, as noted by Stabler, is of particular
use in the present problem.

Actually, the fact that invalid results for o- are ob-

tained is to be expected when one inspects Eq. (31).The
quantity 6/5 is the average of the quantity ao/r entering

the brackets of Eq. (26). Since ao/r~~~„ this value 6/5
can result only if a considerable contribution, at least to
the induced-dipole part, arises from r(rp, where use of

the long-range form for the interaction is invalid.

In the next section we consider further the region

r&rp. However, at this point we show that regardless of

the form of Vo(r) and Vq(r) for r&ro, some general

statements can be made about the inelastic cross section

as long as Eq. (1) applies. As noted by Stabler, when the

angular-dependent part of the interaction energy is

proportional to P&(r,s), the angular integration yields

the selection rule
~

f—l'~ =0, 2 with I= /'=0 forbidden.

Thus, since the long-range interaction is given quite

accurately by Eqs. (5) and (26), it is highly unlikely that
p-wave scattering will not continue to dominate.

"G. N. Watson, Theory of Besse/ Iiuections (Cambridge Uni-

versity Press, London, 1944), 2nd ed. , p. 403.
"Ref. 3, p. 135.

Also when Eq. (1) applies, only the rotational transi-
tions j~ j+2 occur in first-order theory. For p-wave
scattering only a single p, Eq. (19), contributes to either
transition. Thus, only one term enters Eqs. (17) and
(23). Hence, using Eqs. (18) and (23) we obtain

0.3m (21+1)
a U j~2)&

k;2 (2j+1)
(33)

as the range of validity of the method of distorted waves.
J has the value j+1 for the j—+ j+2 transition and
J=j—1 for the j —+ j—2 transition. For large j, usually
the situation of interest, (2J+1)/(2j+1)=1.

IV. IMPORTANCE OF THE SHORT-RANGE
REGION r&r0

An indication of the importance of the region r&rp is
obtained by evaluating numerically the part of the
integrals given by Eq. (30) with X=5 and X=3 arising
from the range 0&r&rp. As previously done, we assume
l= l'= 1. Taking rp= 2ap as typical of the approximate
radius of the molecular charge cloud, we 6nd that this
contribution is 92% of the total when 'A=5, the case of
the induced-dipole interaction, and 72.5% of the total
when X=3, the case of the quadrupole interaction.

It is interesting to obtain a more realistic approximate
value for the importance of the induced-dipole contribu-
tion to P~ relative to the quadrupole contribution to Ii 2.
This is obtained by evaluation of both contributions
only for the range r&rp where the long-range forms,
Eqs. (5) and (26), for the interaction energy are approxi-
mately valid. Based on the above numbers 92% and
72.5% the result is [1—0.92)/(1 —0.725))(6n2/5Q)
~0.35n&/Q in place of 6n&/5Q obtained previously,
Eq. (31), assuming the long-range form of the interac-
tions apply for all r. The result is only approximate
partly because change in Vo(r) for r & ro will change the

~ (2r+1).b j+2)=— . I&'(j~2, 1; j, l)~2. (32)
k,' (2j+1)

It is a rnatter of judgment how well conclition (17)
should be satisfied, but probably the left-hand side
should not exceed 0.3. With this choice we obtain
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electron wave function and hence, the matrix elements
for r&ro.

Similarly, if the region r&ro should give a negligible
contribution when computed correctly )this would
occur if the Vs(r) were smallt' for r&rs and/or if the
correct radial functions were much less than the
Coulomb values for most of the range r(rs), an estima-
tion for Iis on a similar basis (i.e., by neglecting corn-

pletely the contribution from r(rs) is

Fo(k,1,kr1) i i „,———m (k kg)'"Qe'ap(0. 275/6)
XL1+0.35ns/Q 1 (34)

in place of Eq. (31). Using this and Eq. (14) in Eqs.
(19), (23), and (18) one obtains

a(j&)1, j&2)
~

~ s=es(3a/krs)0 010Q.'$1+0 35o.s/. Qf' (35)

and

P ~S'(jl,jT) ~'. ..„=0.030Q Ll+0.35,/Qj . (36)
j Illxj l

Usually ns is positive and about 1 or 2 times
~ Q ~

in
magnitude. Thus, when Q is negative, as is apparently
the case for neutral nitrogen, "severe cancellation occurs
in the long-range contribution to Ii2, while for positive

Q the inclusion of the induced-dipole interaction leads
to a substantial increase in the long-range contribution
to Iis and a.. Usually Q'(1+0.35ns/Q)s&3. Hence, if
Eqs. (35) and (36) were correct, the cross section would
not even be near the upper limit of (3s./k, ') and condi-
tion (17) required for the validity of the method of
distorted waves would be well satisfied as well.

Equation (35) gives an approximate lower bound for
the rotational cross section. The cross section may be
even less than that given by Eq. (35) if Vs(r) changes
sign for r slightly less than ro."For then there is cancel-
lation between the net short-range contribution and the
long-range contribution to Ii 2. However, the cross
section in this case is expected to be too small to be of
any practical interest.

We consider now the form of the interaction for the
region r&ro. For homonuclear diatomic molecules, or
molecular ions, the symmetry is such that the e= 1 term
in the expansion

still vanishes for r(ro. The terms for e) 2, although

important for a narrow range of r about s/2, probably
give a negligible contribution to the total inelastic cross
section, as indicated by the investigations of Gerjuoy
and Stein for neutral molecules. "For most values of

'4 As indicated in II, the sign of Vs (r) changes within the region
r&r0 in many cases, which could make the contribution of this
region to F2 small or of opposite sign to that of the long-range
region."P.E. Cade, K. D. Sales, and A. C. Wahl, Bull. Am. Phys. Soc.
9, 102 (1964).

's E. Gerjuoy and S. Stein, Phys. Rev. 97, 1671 (1955).

r(rs, it is diAicult to determine the form for Vs(r) and
Vs(r) with accuracy; however, probably V,(r) is of the
same order or less than Vs(r) for r(rs except for a
region about s/2.

V. CONCLUSIONS AND DISCUSSION

Our conclusions are that, although the forms given by
Eqs. (4) and. (5) for Vs(r) and Vs(r) are not valid, Eq.
(1) is still applicable. Also condition (13) likely holds
for most of the important range of r so that Eq. (8) is
valid and first-order perturbation theory with Vo in-
cluded in Ilo remains approximately equivalent to the
method of distorted waves. For r) rs, Eqs. (25) and (26)
shold be used for Vs(r) and Vs(r) [the second term in the
brackets of Eq. (25) is relatively unimportant). For
r(rs both forms of Vs(r) and Vs(r) must be radically
changed and it is difficult to specify with much accuracy
their correct values except that, instead of being singular
at r =0, V(0) = Vs(0)~—2e'Z„qr/(s/2), where Z, rt is the
effective charge of the partially screened core of either
atom.

Assuming p-wave scattering continues to give most
of the contribution to the correctly determined inelastic
cross section (as is likely the case), the condition (17)
required for the validity of the method of distorted
waves is satisfied only if the cross section turns out to
be & 10% of the theoretical upper limit 3s./k, s Lsee the
discussion surrounding Eqs. (32) and (33)7. The inelastic
cross section is approximately bracketed by 3s-/k;s on
the upper side and by Eq. (35) on the lower side. As seen
by inserting Q'= 7.5 in Eq. (I, 40), the rate of electron
energy loss by rotational excitation of molecular ions is
about the same as or a little less than that due to elastic
Coulomb collisions between electrons and molecular ions
when the rotational cross section has the upper limiting
value of 3s./k, s [using Q'=7.5 rather than 2.5, as in I,
is correct because an error by a factor of 3 was made in
obtaining Eq. (I, 41) from Eq. (I, 30)$.Thus, if the true
rotational cross section is large enough to have much
practical significance, i.e., if the electron-energy loss
rate due to rotational excitation is between 10% and
the maximum possible value of 100% of that due to
elastic collisions, an accurate determination of this cross
section would be desirable, but it would be difficult to
accomplish because the method of distorted waves would
not be valid. Also, probably of more importance, for the
inelastic cross section to be this large the short-range
region r&ro would have to give a large contribution
relative to the approximate contribution, Eqs. (34) and
(35), of the region r)rs Thus, a precise k. nowledge of
the interaction energy for the region r&ro would be
required. On the other hand, if the true inelastic cross
section is & (0.1)3s./k;, rotational excitation of molecu-
lar ions is a relatively minor electron-energy loss mecha-
nism. Thus, if the cross section is thought to lie in this
region, the principal interest would be only in estab-
lishing that this is indeed the case. For this purpose only
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an approximately correct value for the cross section
would be required. We note that when the cross section
is in this region, condition (17) required for the validity
of the method of distorted waves is approximately
satisfied. Moreover, the short-range contribution to the
radial matrix element Ii 2 must be about the same or less
than the approximate long-range contribution, the con-
tribution from r) ro given by Eq. (34). Thus, use of the
method of distorted waves, or first-order perturbation
theory with t/"p included in Hp, and only fairly approxi-
mately correct values for Vo(r) and Vs(r) when r&rs
should lead to a su%.ciently accurate determination of

the cross section if ns and Q are known to indicate
whether it is &0.3sr/h;, and hence of practical signifi-
cance, or &0.3z-/k;s, and hence of little practical signifi-
cance. We think that the latter, is more likely the true
situation in most cases. It almost certainly is when Q
is negative. '

' Additional discussion of the short-range region is given in II
and III. In the latter it is also shown that within the framework
of Stabler's theory the interaction of the electron with the perma-
nent dipole of polar molecular ions such as H20+ or NHS+ gives
no contribution to the rotational cross section. This results because
the angular part of the matrix element yields the selection rule
) l—l'

(
= 1, while the radial part yields l l'=
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VVe have considered the production of highly excited states of atomic hydrogen by charge-exchange
reactions, discussing first the reaction H++H(1s) ~ H (excited)+H+; we have then used the results for
this reaction as a basis with which to compare excited-state production in hydrogen atoms by charge exchange
in gases other than atomic hydrogen. We have expressed our results in terms of the equilibrium ratio i„/i„
that is, the ratio of the flux of excited states with principal quantum number I to the (constant) flux of
protons incident on the neutralizer. We fmd that with atomic hydrogen as neutralizer the ratio i /i, has a
maximum of about 0.75/n at 20 keV. For alkali atoms such a lithium and sodium, the maximum value of
i /i, occurs at about 10 keV, being of similar magnitude to, but probably smaller than, the value for atomic
hydrogen. In the case of the inert gases helium, neon, and argon, the maximum value of i /i, occurs in the
vicinity of 50—70 keV and again is of similar magnitude to, but probably'slightly larger than, the maximum
value for atomic hydrogen. The inert gases thus offer a number of advantages over alkali gases as neutrali-
zers: they probably yield as large if not larger values of i /i, at maximum; the maximum occurs at higher
energies, so that the natural decay lengths of the excited atoms are correspondingly longer; they may be
very much more easily handled experimentally.

1. INTRODUCTION

HE formation of highly excited, atomic states
from charge-exchange reactions of the type

H++H(1s) ~H(excited)+H+

is of considerable interest as a source of readily ionizable
neutral particles for injection into plasma devices. '

In previous publications' 4 we have calculated. the
cross section, say 0- ', for formation of highly excited
atoms with principal quantum number n from the
above exchange reaction. This has the form

256
ÃCp ) (1)

5msp'p'

' D. R. Sweetman, Nucl. Fusion Suppl. 279 (1962), Part I.
~ S. T. Butler, R. M. May, and I. D. S. Johnston, Phys.

Letters 10, 281 (1964).
e S. T. Butler and I. D. S. Johnston, Nucl. Fusion 4 (to be

published).
4 R. M. May, Phys. Rev. 136, A669 (1964), and Nucl. Fusion 4,

111 (1964).

where as is the Bohr radius; p= (mv/It)as, where m is
the electron mass and e is the speed of the incident ions,
and

&= (p'+ 1)'/4p'.

Within the framework of first-order perturbation
theory, Eq. (1) is accurate to order 1/I'. The cross
section (1) shows a marked resonance at p=1 (p=1)
which corresponds to an incident proton energy of
25 kev. This resonance point corresponds to the
condition fi /e'u= 1, that is, for an incident proton speed
equal to the average speed of the electron in its initial
1s state.

Moreover, as we have commented previously, ' this
first-order perturbation result should be reasonably
accurate even at p=1; this is indicated by an impact
parameter analysis along the lines of that performed
by May. 5

~ R. M. May, Phys. Letters 11, 26 (1964).


