
CROSS SECTION OF 3'S~3'P TRANSITION OF Na

behavior of the elements U;;(r) near the origin. As an
illustration, a plot of Uts(r) used in this work along with
its approximate asymptotic form which was used for the
resonance-distortion and 3'II calculations, is shown in
Fig. 1. It is interesting to note that the total cross sec-
tions calculated by the Born approximation are always
smaller than those from the Bethe method B'I, and are
even smaller than the B'II cross sections at energies
above 20 eV. Here again replacing the interaction
potential matrix elements by their asymptotic inverse-
square form results in an increase of the cross sections.

Since the B'I approximation is valid for large values
of l, this may be used in conjunction with the partial
cross sections in Table I to calculate total inelastic
cross sections. In Table II are given total cross sections
calculated by means of our numerical method,
resonance-distortion, B'I, and B'II approximations.
Comparison of the theoretical excitation functions with
the experimental data' is shown in Fig. 2. The results
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FIG. 2. Total cross sections for the 3s ~ 3p transition in Na
calculated by the methods BI, 3'II, RD, and Num, and absolute
measurements of Christoph, designated by the circled points, and
relative measurements of Haft, represented by the curve EXPT.
The Born cross section (BI) was given by Bates et al. (Ref. 8).

of the numerical method show better agreement with
experiment than do those of the previous calculations.
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The ground state and low excited states of liquid He (and other fermion systems) can be constructed
from a set of basis functions

+(In) =No'@(In)

in which $0 is the ground-state boson-type solution of the Schrodinger equation and the model functions
C (I n) are Sister determinants suitable for describing states of the noninteracting Fermion system. Diagonal
and nondiagonal matrix elements of the identity and the Hamiltonian operator are evaluated by a cluster-
expansion technique. An orthonormal basis system is constructed from%'(In) and used to express the Hamil-
tonian operator in quasiparticle form: a large diagonal component containing constant, linear, quadratic,
and cubic terms in free-quasiparticle occupation-number operators and a nondiagonal component represent-
ing the residual interactions involved in collisions of two and three free quasiparticles.

I. INTRODUCTION

S IMPLE correlated trial functions have proved useful
in the study of nuclear matter and the He' and He4

liquids. ' The theory begins with a model function 4
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describing a state of the S-particle system in the absence
of interactions. The model is adapted to the presence
of strong short-range repulsive interactions by intro-
ducing a symmetrical positive valued correlation factor

p-,'eSx(1,2, ,E) which vanishes when any two parti-
cles approach closely. The resulting trial function is

es(1,2, ~ ~ ~,N) /s@(l 2

A linear combination of such correlated trial functions
provides the possibihty of a close approach to exact
solutions of the many-particle problem. Construction of
a suitable trial (or basis) system may start from a set
of normalized orthogonal model functions C „,generated
by properly symmetrized products of single-particle
orbitals. In the applications the functions +„are used
to construct matrix elements of the identity and the
Hamiltonian operator. One recognizes that the functions



A 392 E. FEEN BERG AN D C. W. glop

do not in general form a normalized, orthogonal
basis.

Possible forms for the correlation factor include

and

eis g eu(r;y)/2

i&j'

e&e= i/is~(1, 2, ,X) .

(2)

II. GENERATING FUNCTIONS

Normalized model functions C (l n) = C (l tstes eN)

in the form of Slater determinants are constructed from

Line (2) defines the Bijl-Dingle-Jastrow (BDJ) sym-
metrical product of two-particle correlation factors.
Line (3) introduces fP (the completely symmetrical
ground-state solution of a suitable Schrodinger equa-
tion) as an appropriate correlation factor. The use of

fP as the correlation factor in theories of liquid helium

gives immediate access to useful results on the excitation
spectrum of the boson system' "and on the properties
of the ground state and of low excited states of the
fermion systems. "

Both forms have been used to evaluate a large class of
Rondiagonal matrix elements occurring in the theory of
the multiple excitation spectrum of the boson liquid. ~

Currently Clark and his students are evaluating non-

diagonal matrix elements in nuclear problems employing
the BDJ form. Clark" has described a procedure for

computing nondiagonal matrix elements in fermion

problems by an adaptation of the cluster-expansion

technique.
The object of the present study is to derive matrix

elements needed to extend the analysis of Wu and

Feenberg" on liquid He'. The problem of reducing the

explicit Hamiltonian matrix to diagonal form is reserved

for a later paper. In Sec. II diagonal matrix elements are
constructed to serve as generating functions for non-

diagonal elements. Two distinct cluster-expansion pro-
cedures for evaluating Fermion matrix elements are de-

scribed in Sec. III and one (that of Iwamoto and

Yamada) is shown, by critical tests, to be superior for
numerical evaluation. In Sec. IV general formulas are

derived for diagonal and nondiagonal matrix elements of

a fermion system. A normalized orthogonal basis is

introduced in Sec. V. The resulting matrix elements of

the Hamiltonian operator are evaluated in Sec. VI using

fP as the correlation factor. A quasiparticle formulation

of the theory is stated in Sec. VII.

a normalized orthogonal set of single-particle orbitals
u(l e)=—

u(r, ml rt). The discrete variables (spin and iso-
spin) are denoted by' m. Where particle t is in state rl, ,
we write u(rg, mg

l e)=u(t
l
n). In particular u(tr l m)

—=u(r„,m„ln) T.he immediate problem is the trans-
formation of the elements

(n'
l
1

l n) = lPs 'C *(ln') C ( l
n)dr ts. ..st,

(n'l&ln) = lbo'C'*(ln')IIlbs C(ln)dr12" N,

into a form suitable for numerical evaluation. We solve
this problem in two steps:

(i) Construct a suitable diagonal matrix element to
serve as a generating function for the desired non-
diagonal element.

(ii) Apply a standard cluster expansion formalism to
evaluate the diagonal clem, ent.

Step (i) begins with the arbitrary model function

C(l n*) constructed from the orbitals

u(lt*)=«u(lt)+b~u(lt') t'W1 ' " X ifb, /0. (5)

A proliferation of multiple indices is avoided by writing
n=1, 2, S and n'=1', 2' E' without implying
that either set defines the ground configuration. The use
of linear combinations of single-particle states l and 1'

in the 1th column of the model function gives the
formalism for computing diagonal matrix elements the
ability to generate and evaluate nondiagonal elements
as well.

In the application to a uniform extended system
()V~~, Q~~, p=cVjQ constant) the single particle
orbitals are products of plane waves and spin functions:

~'"'b(-' m. ) and e"'b(—-' m ), (6)

or the appropriate generalization with spin and isospin
functions in the case of nuclear rnatter. A discrete set of
wave vectors k&, ks, is determined by the usual
periodic boundary condition in a cube of volume Q. The
choice of orbitals implies a momentum conservation
theorem (n'l A

l n) =0 unless P k„=P k„(A = 1 or H).
In general u(l t') and u(l l) may differ in both wave

vectors and spin states (as in the theory of static spin
density waves").

The following equations illustrate the way in which
(n*l A

l
n*) serves as a generating function (A = 1 or H):

Ore Orbital DigererIt (a~=1, b~= 0, l/1)
(1*2" &IAI1*2 "&)=latl'(»" &IAI12 "&)+lb l'(1'2" &lAl1'2 "X).

9 R. P. Feynman, Phys. Rev. 94, 262 (1954).
' R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).

C. G. Kuper, Proc. Roy. Soc. (London) A233, 233 (1955).
"H. W. Jackson and E. Feenberg, Rev. Mod. Phys. 34, 686 (1962).
"F.Y. Wu and E. Feenberg Phys. Rev. 128, 943 (1962).
'4 J. W. Clark, Ph.D. thesis, Washington University, 1959 (unpublished).
"A. W. Overhauser, Phys. Rev. 128, 1437 (1962).
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Tvoo Orbitals Diferent (ui ——1, bi 0——, lQ1, 2)

(1*2+3" NIA I1*2+3 "N) = [oil'lo2['(»3 "NIA l»3".N)+"
+ lbil'lb2['(1'2'3" NIA[1'2'3" N)+oi*"*bib2(»3 "NIA

I

1'2'3 N)+" . (8)

Three Orbi tais Diferent (az ——1, bi 0——, l/1, 2, 3)

(1*2*3+4.. NIA [1*2+3+4 .N)
=

I ail'[ am['[aal'(1234' ' 'NI A[1234' ' 'N)+' ' '+ lbil'Ib~l'Ib~l'(1'2'3'4' ' NI A[1'2'3'4' ' 'N)

+lail'a, *g,*b2ba(1234. NIA [12'3'4 . .N)+ + la2['ai*a8*bib, (1234 . N[A [1'23'4 .N)+
+ I a~ ['ai*gm*bib2(1234 N

I
A

I
1'2'34 .N)+ +ai*am*a8*bib2ba(1234 N[ A.

I
1'2'3'4 .N)+ . (9)

Momentum conservation requires that the missing co-
efficients of a&*b& and u&bi* in Eq. (7) vanish; also the
missing coeKcients of [ail'a2 bm and of [ui['a2bm in

Eq. (8) vanish.
Genera/ Formula

(n [A[n )

with the evident properties

(n+
I 1[n+) =I~(O),

h' ~ h2
t dI(P) ~ (14)

I
n+ H EP — g—h—*' n*

2M n=i 235k dP I

II(~i+i*+(1—&i)bi*)(y«i+(1—yi)bi) To make a useful computational device out of I(P) let
~l=0, S l=&
y& =0,1

( xini+(1 xi)n—i' (a +h *')N(pl p+)
I:(pl p') =

I
A

I yini+(1 yi)ni'— ) (1O) u(p I
p*)

III. CLUSTER DEVELOPMENTS

We turn now to the description and critical discussion

of the cluster-expansion procedures available for the
evaluation of Ferrnion matrix elements generated by
correlated basis functions. The diagonal matrix element
of H with respect to +(I n*) is

(n+IH[n+)

~.N(p I
p*) rI.n(p I

p*)

N(pl p*) — — N(pl p*)—

«12" Nln*)= P Z(pip*)

and replace Eq. (13) by

(15)

=
I &.I'&„'+ Ib, l'&„.',

@=II N(p[ p*), (12)

+=K(~)I',~

2 N h2
= EP+—P h,*' (n+[1[n+)+ g PP'2' s=& 2M u=~

&& I
—C*(h~+h„+')p+ V (O'*V'„p)]dri2. ..~ (11)

in which the integration includes summation over spin
variables; also

Iw(P)= fo 'expLPK(12 Nln )]C' Pdr12. ..ii, (16)

The new form gives the same constant and linear terms
in P as the old and nothing more is required of it. Equa-
tion (16) defines a generalized normalization integral
which serves as a mnemonic device to generate the
matrix elements of H by a simple operation on the
matrix elements of the identity. In Eq. (14) it is now
understood that the derivative with respect to P is
evaluated at P=O. A prime superscript will denote
generally the derivative with respect to P at P= 0.

Another form of the exponential operator in Eq. (16)
is useful in generating the radial distribution function
gz(r»). For this application Eq. (15) is replaced by

Next we introduce the function

«12 Nln+)=«12 N)

=Q «ri) (17)

1&(P)= (n+I1ln+)+P +

XP C*(~„+h.*')y+~—, (~*~,~)jd. -. (.13)

in which «r) is an arbitrary function.
Two procedures for evaluating diagonal matrix ele-

ments of 1 and H have been developed in considerable
detail by a number of authors. We refer to papers by



E. FEEN8 ERt" AN D C. %. %00

Iwamoto and Yamada, ' |Aj"u and Feenberg, "and Wu" The IY development begins by introducing a sequence
for the first (IY); and to Aviles' and. Hartogh and ofapproximantsI *...,*andthecorrespondingsequence
Tolhoekq for the second (AHT). of cluster integrals X * q*'.

P &qe8P (11P*)
~
u(1

~

P*)
~

qdq- dp

I„,*„*= pq qe~x&'2' *n*&u(1
]
m*)u(2

[
42*) [1—P21' ]u*(1

[
m*)u*(2

]
42*)dq12d2'2

=X *X„*+X* *,

Imnn*p* Pq'eex —&—"" *n*P*&u(1
~

m*)u(2
~

n+)u(3
~

P*)

(1g)
[1—P21"—P222' —P122'+P212'22+ P221"']u*(1

~
m*)u*(2

~

n*)u*(3
~

p*)dr»2dv4. ..&

= Xm*Xn*+ pn+ Xm*Xn*p*+Xn*Xm*p*+Xp*Xm*n*+Xm*n*p* )

I„*.*„*,*—— tP2"'ee K & 124'~ "*"*P*'*u(1
I
m*)u(2

(
42*)u(3

I
P*)n(4

I
q+) [1—P2112 — —P42"+P212"'+

+P242 +P21 P43 + ' ' +P41 P32 P4123 P8421 + ' ' ' P2841 ]
u*(1

t
m*)u*(2

~

42*)u*(3
~

p*)u" (4
~

q+) dT1234dv4. ..1q

= X„*X„*XpnXq*+X*X„*Xp*„*+ +X„*Xq*X* *X *X *„*q*+ +Xq*X,*„*„*

+Xm* *Xpnnqn+ ' ' '+Xm*q+X *p*+nX * *mp*qnn q

and so on. (Integration over r includes summation over
spin, whereas integration over v does not. ) Each ap-
proximant I *...,* is represented as well as possible by
a cluster approximation formed from all the preceding
cluster integrals. The difference between the approxi-
mant and the cluster approximation defines a new

cluster integral X *...,*. At each stage the cluster
approximation is constructed so that detailed and strong
cancellation occurs between the various exchange terms
in I *...~* and the corresponding products of distinct
cluster integrals in the cluster approximation leaving
always a remainder to be represented by X *...,*.
Clearly the approximants and the cluster integrals do
not depend on the order of the indices. Also the first
few approximants are not in any sense approximations
Io I~.

At the end of the chain of approximants

X„*=1+O(P2),
X * *=O(1/X),

X * *„*=0(1/cV2),

and so on. The normalized cluster integrals

Xm*...q*= Xm*. ..q*/Xm*' ' ' Xq*

(20)

(21)

are used to express I1q in the useful asymptotic (X—&~,
p constant) exponential form

I1q Q{. X *—--}{ X **.. }
X{ X *** } (19)

in which the indices on each product in the sum range
over 1, 2, , Ã with no duplications and no omissions.
Order of magnitude estimates of the products in Eq.
(19) are based on the relations

I .=(g X *) exp4d, „(n*~P),
m=1

(22)

b 4p(n ) P) = ~ &m*n*+ ~ [rm*n*p* rm*n*q4n*p* &m*p*rp*n* &n*m*&m*p*]*I
m&n m&n-& p

+ P [x *„*„**— ]+ . (23)
m&n(@(q

16 F. Y. Wu, J. Math. Phys. 4, 1438 (1963).



MATRIX ELEMENTS OF FERM ION SYSTEM

The exponential form is useful because the exponent is
proportional to N Las a consequence of the order of
magnitude relations stated in Eq. (20)].A particularly
transparent justification for the exponential form and
derivation of &);„(n*~P) appears in Refs. 13 and 16.

The AHT formalism is based on the theorem that the
product of two determinants can be written as a single
determinant:

the sum extending over all integral solutions of the
equation P& Plv)=N Order of magnitude estimates
of I~ are based on the general relation

X&'& O(1/N) —') .

Equation (26) can be converted immediately into the
useful asymptotic exponential form

C*C =det(p;;), with
I~(p)=-expg. „(n*~p)

p;;= g N*(ife~)N(joe*).

A cluster expansion for the radial distribution function

g) (r») is then generated in terms of successively larger
minors of det(p@). At every stage of approximation the
formula for g);(r») possesses the property of invariance
under a unitary transformation of the single-particle
orbitals contained in n* Ldenoted by U(n+)$. Notice
that the IY development for g lacks this property of
evident invariance. At P=O invariance fails in the 3
index addend because the product term x *„+x„*„*con-
tains a repeated index. Repeated indices occur system-
atically for all e-index addends (N&3) with the con-
sequence that any truncated form for b;„Lproduced by
dropping all addends with m+1 or more indices (rs) 3)j
is not invariant under U(n+). The significance of a lack
of evident invariance under U(n~) must be discussed.
However, let us turn 6rst to the task of generating an
invariant cluster expansion for /~.

Invariant approximants I(') and cluster integrals X(')
are generated by averaging I *...,+ over all possible
choices of nz* q* within n*. Thus

I&'& = (1/N)P I~~

=X(')

I"&= (1/N(N —1))Q Iy*,*

&).&„=g'N'X(')+i6N'(X(') —3X&'&')

+(1/24)N (X&'&—12X&'&X&'&+20X&'&')+ ~ ~ ~ (29)

Equations (28) and (29) exhibit a cluster expansion of
the type developed by Aviles' and Hartogh and
Tolhoek. 2 The circumstance that our two forms for E
LEqs. (15) and (17)j imply X„*=X&'&=1+0(P') is
used to simplify the statement of Eqs. (28) and (29).
The same simplification can be introduced into Eqs.
(21)-(23).

The averaging process exhibited in the definition of
I(') serves the double function of giving equal weight
to all possible configurations containing l orbitals be-
longing to n~ and, as a corollary, maintaining invariance
under U(n ). Since I~(P) possesses the invariance
property it is not unreasonable to require that a pro-
cedure for computing J~ in terms of successive approxi-
mants should also possess it at each stage of approxi-
mation. This is not however a necessary condition for a
satisfactory computational method. Just the fact that
a truncated form of b;„ is not invariant under U(n*)
means that the series for &);„converges most rapidly for
some particular choice of orthogonal basis functions in
the n* function space. In this connection simple plane
waves appear well suited to utilize effectively the
opportunities for detailed internal cancellation implicit
in the formulas for X *...,*and X' *...,*.

From the defining relations, Eqs. (18) and (25), we
see that

=X(i)&+.X&2)

I"'=(1/N(N —1)(N—2)) Q I„*„*,*
(25)

X&'&=(1/N(N —1))P'X *„*,

X&"=(1/N(N —1)(N—2)) P' X *„*„*,
(30)

=X (i)8+3X (i)X (&)+X (3)

I('& = (1/N(N 1)(N—2) (N —3))—Q I * *r*,~
Nsy Stye, Q

=X&'&'+ 6X&'&'X &'&+4X&'&X&'&+3X&'&'+ X «)

the prime on the summation denoting absence of terms
with two or more identical indices. However, X(4) is not
connected with the average value of X *„*~*,* in the
same simple manner. The presence of X(')' in the de-
fining equation means that

and so on. The last step in this sequence is X&4&+3X&"'=
N(N —1)(N—2) (N —3)

+)X(') 'X(2) ' ~ X(&) N

~gr I„t
(26) X P $X~*&*&++++3X~*~*X„*~+). (31)

M ~ tC ~ g) g Q
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Consequently

, .=-'r3X(»'—j&T'X&4& — Q X *„+„+,*=-',
A 't m(n(y(q

X * * X *~+X„**7.LX„*„*X'„*„*+X„*„**„+ ~ *
tn(n( p

(32)

of E . 32) requires careful treatment of
E . (31). Th tthe X * +X„*,* terms in Eq.

n1ultiplied by the factor

(1+—
i
.

iV(X—1)(A'—2)P —3) &Vs(X—1)s

(33)

with

are sufhcient t»
identity of 8&» ~'"'

~

f, nt oint is that* and X'" Here the signi can PoX * *~**.
~

h t developments are notcorrespond»g o .
h yy developn1ent is

orders in t e wo
identical. e p

h truncated form of Q'&&

e su eriority of t e
. Iv where a runeemonstrated» e .

th same ordermeets a consistency test whhlle gag to e
fails.

rovided by two formulas for the
d b dfunction generate y ru

29 ield the radial functions

~ and, g~ using Eq.
addends in Eqs. (23) and 29 yie

g'.(«) =g~(«)F'.(«)

ga, &(«) =gs(«)F.a&(«),

F(«) = 1+F&"(«)+F"'(«),

F"'( ) = —(1/ )1'(» )

2p

ii r—r'I) —1)~(k««')~(k«l r—r'I) ~s',F, « = —— ' r—r'I )—1)P(k~«')dt&'+ —l(kF«) g»(«')(g» r—rF' "'(«)= gi&(«')(g»(l r
s

F" "'(«)=—gn(«)(g~(l r—r'—F.» « = —— ' r r'I) —1)P(k—~«')dt&'
s

(34)

(I r—r'l)~(k
I
r—r'I) —~(k «)~(k ")7«"+ l(k p«—) gs(«')l(k&;«') I gn r—r

$2

number of spin (and isospin) orienta-

f He', s=2, paramagnetic s a e ostate o e;
r, and alsoround state of nuclear matterg

kg= (&»rsp/s)'",
(»)

l(x) = (3/x')(sinx —x cosx) .
n ~~ for the paramagnetic stateThe functions g;„and g,~~ or e

in Fi . 1 for a particularly simples=2) are plotted in ig.
f r . The detailed specification o g~

F s&&s&(«), F;„(«), and F, (s&)«appear in a e

is I. Values of F&'&(«), F;„&'&(«),F,»&&'&(«), F;„(«),

«(A) F&'&(«) F~w
"&(«) F.»c "&(«) F;„(r) F.s~ («)

Qc

G7

QC

02

O.C'2

d . r. Qni l distribution functions g&&(r an g,„. are indistinguishable.[his plot g~gg and gs1I are i
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TAnz, E II. Sp(0) by Eq. (34) and Appendix C.

IY formalism
1-Index 2-Index 3-Index

contribu- contribu- contribu-
tion tion tion Sp(0)

AHT formalism
1-Index 2-Index 3-Index

contribu- co ntribu- contribu-
tion tion tion SE(0)

—1.332—1.542—1.689

0.376
0.697
1.094

0.044
0.155
0.405

—1.332—1.542—1.689

0.373
0.692
1.093

0.041
0.150
0.404

The normalization conditions

p (gn —1)dv= p (gp —1)dv= —1 (36)

X-*-*.*=
I
a- I'I a-I 'I a.l'X-.+".

+ Ib-I'Ib-I'Ib. l'X- - '
+ ~am~ an ap bnbpXmnp;mn'p'+

+am an ap bmbnbpXmnp;m'n'p'+ ' ' '
g (40)

and the equivalent statements

Sp(0) = 1+p (gp(r) —1)dv

gg(r) [F(r)—1]dv=0 (37)

provide a criterion for testing the truncated forms.
Results are shown in Table II for s= 1, 2, 4.

These results may be evaluated as good at s=1,
acceptable at s=2, and dubious at s=4. Consistency
can be enforced on the truncated theories by incorpo-
rating an adjustable amplitude parameter into the
3-index addend in gJ;. The procedure is developed in

Appendix D. No conclusion can be drawn from these
results on the accuracy of the formalism for nuclear
matter under realistic assumptions on kg and the hard
core radius.

Xp*= /apf'X„+fbp/'Xp =1
X„*'=0, (38)

X *.*= /a f'[a„/'X„„+.
+ Ib-I'Ib-I'X--

+a ~a„*b„b„X„,„„+ ~ ~ , (39)

IV. GENERATING FUNCTIONS AND
CLUSTER EXPANSIONS

To make connection between generating functions
and cluster expansions the exponent g(n+

~
0) in Eq. (22)

and the derivative function g'(n*~0) must both be
expressed as sums of addends associated with distinct
matrix elements. In the initial phase the analysis based
onEq. (5) canbesimplifiedbyrequiring ~a ('= ~b„|'=-',
for some values of m and

~

a
~
=1, b =0 for aH others.

Results are in fact independent of this specialization of
the formalism. The arbitrary phases of a and b are
still available to identify components of nondiagonal
elements. %e consider examples in which first one, then
two, and finally three orbitals involve linear combina-
tions of simple plane-wave states. At P= 0

and corresponding equations for the derivatives with
respect to P evaluated at P=O [place a prime denoting
the derivative on all X's in Eqs. (39) and (40)]. The
elements Xmn;m'n'y Xmny mn'y'& and Xmny m'n'y' are de-
fined by Eqs. (39) and (40). The element X' „,
is defined as the coefFicient of a *a *b b„ in X' *„*
=—((il/dP)X *„n)e e. Similardefinitions yield X' „p,
and X' „„., „„from X' * *„*.The general rule is
dictated by the occurrence of the linear combination
orbitals in the exponential operators [Eqs. (15) and
(16)]:First compute the derivative with respect to P at
P = 0, then expand in terms of the a, a*, b, b* amplitudes.

Ore Orbital Digerertt ([ai['= [bi('= —')

g(1'2 1V
i 0) = g(12 S

i 0)+bgi (0)—bgi(0), (41)

g(n+ j 0) =-',g(12 &
~

0)+-', h(1'2 &~ 0)

+-:[AS(1',1)]', (42)

AB(1'») = 2 (Xi (o)—Xi-(o))+ (43)

As in Ref. 13, Appendix A, the functions bg (0) are
dehned by the statement

bg (0)= g(12 .rw —1 m m+1 $~0)
—8(12 rN —1 m+1. .$~0). (44)

Equations (l) and (22) now reduce to

cosh-,'(bgi (0)—bgi(0)) = exp-', [hg(1', 1)]', (45)

in agreement with the leading term for Ab given in
Eq. (43) but providing the possibility of a more precise
evaluation of Ag when it is not small.

Observe that the leading term for hg(1', 1) given by
Eq. (43) is generated by the terms with repeated indices
in the second addend of g;„[Eq. (23)].The truncated
g;„gives consistent results in Eq. (45) without invoking
contributions from the third and higher addends. With

g,&&, an equal degree of consistency can be attained only

by introducing terms from the third addend [Eq. (29)].
Thus the truncated lY development (two and three
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index terms in g) meets a test of internal consistency in
a satisfactory manner while the corresponding truncated
form of the AHT development fails.

Normalized basis functions are convenient in the
following sections. Let

I
131332. r3~}=e,/(nl 11n)'~2

(46)
E&'&(n) = {n I

H
I
n}.

The simple bracket ) is reserved for an orthonormal
basis system.

Two Orbitats Diferent (lail'= la2I'= lbll'= lb2I'=-,')

g(1'2'3 . .Slo)
= g(123" xlo)+~g, ,(0)—t;g, (0)

gag-(0) —bg2(0)+o(1/tv), (47)

the theory in an unsymmetrical manner. This associa-
tion causes no difficulty in the expansion of Eq. (8)
because the linear combination of orbitals leads directly
to a linear combination of Slater determinants each with
unimpaired fermion symmetry properties. On the other
hand, the cluster expansion is not suKciently Qexible
to reproduce in every detail the properties implied by a
linear combination of determinants. We have not suc-
ceeded in resolving this difficulty. However, symmetry
can be achieved in working formulas by symmetrizing
the coefficient of B12., 12 in Eq. (51) with respect to
interchange of the indices 1' and 2'. We introduce the
geometric mean coefficient and write

{»3"&I1I1'2'3 "&}
2 2

=g ., (0)L II II o h-', (bg;(0) —sg, (0))j'". (52)
i=1 j=1

g(1*2*3 N
I
0)

= 2 g(123 g
I
0)+21g(1'2'3 S

I 0)

+:L~g(")~'+-:L~g(")j'+O('/~')

+al a2 blb2B12;1'2'(0)+ ' ' '

B12;1'2'(0)

Actually the factor in square brackets in Eq. (52) is
replaced by 1 in the explicit working version of the
theory LEqs. (73)—(75), (86)—(96)). The theory is most
useful when the difference between Eqs. (51) and (52)

(48) is inconsequential. Numerical estimates in Appendix A

verify that this is indeed the actual situation.

1 ~X12;1'2'+ p [X12n;1'2'n 2X12;1'2'
n&2

&&(X,n+Xl.n+X2n+X2 )]+ . . (49)

Now Eq. (8) with A =1 and Eq. (22) with P=o require

cosh2(8gl(0) —bgl (0)) cosh21(bg2(0) —bg2 (0))
=«p3(~g(1, 1'))2+-'(~g(2, 2'))2 (5o)

in agreement with Eq. (45). This result verifies the con-
sistency of the truncated IY form for g when the model
function is constructed from the particular linear com-
bination of determinantal functions generated by I(

I
1*)

and N(l 2*).
The fact that g»., 1 2 is of order 1/tV means that only

linear terms in a1*a2*b1b2 need be retained when Eqs.
(47)—(49) are combined with Eqs. (8) and (22). The
result is

= g12; lli2 (0) cosh2(bgl(0) —bgl (0))
~ cosh-,'(8 g2(0) —8 B2.(0)) . (51)

Equation (51) is not altogether satisfactory. Observe
first that B12,1 2 is antisyrnmetric in 1, 2 and also in 1', 2'.
The exact matrix element {123 JV

I
1

I
1'2'3 1V} also

has this property. So fas Eq. (51) is in order. However,
the remaining factor in the right hand member of Eq.
(51) should be a symmetrical function of 1, 2 (and also
of 1', 2'), but it is not.

The immediate cause of the descrepancy is surely the
association of states 1 and 1' in u(l 1*) and of states 2
and 2' in N(l 2+) so that 1 and 2 and also 1' and 2' enter

Three Orbitals Digererlt

(I al I
'=

I a2I
'=

I a3 I
'=

I » I

'=
I b2I '=

I b3
I'=-')

g(1'2'3'4 1V
I
0)

= g(1234 .Xl0)+angl (0)—bgl(0)

+bg2 (0)—bg2(0)+8B3 (0)—bg3(0)+ ~, (53)

g(1*2*3~4.. .g
I
0)

=-,'g(1234 XIO)+2B(1 2 3'4'"'&Io)
+-'I ~g(1' 1)1'+!I ~g(2 2') j'+-'L&g(3'3) 1'

+al a2 a3 blb2b3B123;1'2'3'(0)+ ' ' '
y (54)

gl23;1'2'3'(0) X123;1'2'3'(0)+ ' ( 5)

Equations (47)—(49) in Eqs. (9) and (22) require
3 3

II cosh-', (bg;(0) —bg; (0))= II exp-', hLg(i,i')$' (56)

in agreement with Eq. (45). The nondiagonal matrix
element is

{1234 1VI1I1'2'3'4 S}
= g„...,,,, (o)II cosh-, (bg, (0)—bg,'(0)). (57)

The discrepancy already noted recurs again; the matrix
element is completely antisymmetric in the indices 1, 2,
3 and also in 1', 2', 3', so also is g123., 1 2 3 (0). However,

the coefficient of g123, 1 2 3 (0) should be invariant under

permutations of 1, 2, 3 and also of 1', 2', 3' and it is not.
To secure correct behavior we replace the coefficient of

g»3, 123 by the geometric mean of the six different
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coefficients generated by the permutations of 1, 2, 3:

3 3

=-B-..".(0)[rr rr - h-:(bB;(0)-bB;(0))&".(»)
i=1 j=1

Again the factor in square brackets is replaced by 1 in
the working version of the theory [Eqs. (73)-(75),
(86)-(96)j.

Next we develop the consequences of Eqs. (7)—(9) and
(14) giving {n+

I
II

I
n+} in terms of I~'(0) .

Ore Orbita/ Digereet (I a~I'=
I
b~l'= s~)

The appropriate substitutions in Eq. (14) produce a
near identity:

exP~s(bB&(0) —bB& (0) )E "(12 Ar)

+exp —s(bB~(0) —bB~ (0))E&'&(1'2 S)—2 cosh-,'(bB&(0)—bB, (0))
[-,'E&'&(12 cV)+-', E&'i(1'2 Ã)+bE(1', 1)].(59)

Terms proportional to E balance exactly. There are left
on either side small terms independent of Ã. These latter
may not balance exactly for the reason that terms of
order O(N') are neglected in the derivation of Eq. (22).
Consequently Eqs. (14) and (22) are not exact identities
with the given forms for I~(0) and I~'(0). The small
cross term bE(1',1) [also of order O(1V )] is computed
in Appendix B.

Two Diferent Orbitals (Ia, l'= lasl'= lb, l'= lbsl'=-;)

Again employing Eq. (14) linear terms in X balance
exactly. For the coef5cient of a1*a2*b1b2 to vanish
requires

{123 SIHI1'2'3 S}
= (h'/2M) cosh-,'(bB (0)—bB (0))

&«»hs(bBs(0) —bBs (0))B»;~ s
'

+{123 XI1I1'2'3 .S}PE&'&(123. ~)
+sE "(1'2'3.. .S)+bE(1',1)+bE(2', 2)j. (60)

As in Eq. (51) the right-hand member of Eq. (60) is not
exactly antisymmetrical in the indices 1, 2 or in 1', 2'.
For lack of a more logical procedure we follow the
precedent set in writing Eq. (52) and replace Eq. (60)
by the simplest possible antisymmetric modification:

The actual numerical differences introduced by the
change are quite small and consequently cannot modify
the physical consequences of the formalism in any
serious respect (see Appendix 8).

Three Orbitats Diferent

(I a I'=
I
asl'=

I
asl'= Ib I'= lbsl'= Ib I'=-')

The actual form for (1234 1V
I
II

I
1'2'3'4 S)

given by Eq. (14) fails to meet the test of complete anti-
symmetry in the indices 1, 2, 3 or in 1', 2', 3'. We write
a properly symmetrized form

{1234"X
I
II I1'2'3'4" X}

3 3

=(h i2~)[n rr - h-:(bB,(0)-bB, (0))j "B-'."'
i=1 j'=1

+{1234 X
I
1

I

1'2'3'4 X}P~E &s'(1234 Ã)

+-',F"'(1'2'3'4 Ã)+-'s P g bE(i j')] (62)
i=1 j=1

representing the simplest possible modification of the
formula computed from Eq. (14).Again the changes are
small in magnitude and have little effect on the con-
sequences of the formalism.

V. NORMALIZED-ORTHOGONAL BASIS

The matrix K constructed from the elements {nI
1

I
n'}

can be used to generate a normalized-orthogonal basis.
Write

(63)

in which I is the unit matrix and J has only nondiagonal
matrix elements. The matrices X—'" and K'" are
defined by the binomial series

X '"=I 'J+ 'J'+---
K'i'= I+ iJ 'J'+—-(64)

I n) =P I
n'} {n'

I
x—'"

I n}
n'

(65)

generates a normalized-orthogonal basis system and
moreover, in this problem, produces a partial diago-
nalization of the Hamiltonian matrix. First

(n'I 1In)

With coeKcients taken from Eq. (64) the Lowdin
transformation'~

2 2

=-(h»~)[rr n - h-:&bB;(0)-bB;(0)n B„„
i=1 j=l

+{123 Sl 1I 1'2'3 1V}[-',E&'&(123. 1V)

+-', E&"(1'2'3 X)+-,'bE(1', 1)+-,'bE(2', 1)

+-', bE(1',2)+-', bE(2', 2)j. (61)

{n"IX 'l'In'}*{n"I1ln"'}{n"'I&x/'ln}
/I I /I I I

{n'IX 'nln"}{n"Illn"'}{n"'IK
/r r nrrr

I

= b(n' —n) .

'7 P. Q. Lowdin, J. Chem. Phys. 18, 365 (1950).

(66)
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k
E (n) P Xos'y X 'os +2' p (q

P'&a'
BC=-'(E &"X+XE"))+V/ (67)

Next write the matrix of H in
I } representation in &nl&ln)

the form
(73)

in which W has only nondiagonal matrix elements and

E(')= (E(')(n) &&(n
—n')), (68)

Q —~—I/2~~ —1/2

a diagonal matrix with elements defined by Eq. (46).
The transformed Hamiltonian is

with p, g ranging over all orbitals in n and p', q' over all
orbitals outside of n. However, p', q' may be taken over
all orbitals outside of the ground-state configuration with
negligible error. The presence or absence of a few in-
correct terms in the sum over p', g' makes little difference
in the value of the sum (a fete might possibly mean a
few percent).

The corresponding treatment of Eq. (72) yields
1 [o&1

—1/2E (0)o)I 1/2+ ~1/2E (0)o&I
—1/2]+ ~—1/2' ~—1/2

=E(0)y P/ (1)y P'(2)
&125" Xlel123".X)

(69)
(&2 /2~)f12;1'2' 2(~ /M) p [X12,osXoo

w(» =w —-'(zw+wz)

W"=-'[J [JE"']]+
+-'[J&J+-0J2 N+-2"&)(2J2]+ . . (70)

These results are particularly interesting and useful if
5'(" is unimportant. Keeping only 8'"', the matrix

elements of H reduce to"

(n I
H

I n) —=E&'& (n)

=E(')(n) —
2 g [{lllJln"}{n"I'$7ln}

n"

+X, ,„'X„,, ]+ ". (74)

Again p, &t range over all orbitals not in 1, 2,
O'. As before, negligible error is introduced by allowing

p, && to range over all orbitals outside the ground-state
configuration. Consequently the matrix element depends
only on the orbitals in which initial and final-state func-
tions dier. We may therefore omit all the superQuous
common orbitals in labeling nondiagonal matrix ele-
ments and write

&»1»sns . ' n&
I
+

I
»1'»2'n, . n//) = (»1»2

I
II

I
n, 'n, '),

+{ I I }{ I ~l }7~ (71) (»1»2»2»4 'n»/I + l»1'ns'ns'n4 n~).
&n'IHIn)={n'Iv7ln} —-,'P [{n'IJ ln"}{n"lmln} = &»1»2»2 I

&
I n, 'n, 'n, ')

7 (7

We are interested primarily in configurations which

contain only a small fraction of excited orbitals. This
restriction makes possible a useful simplification in the

evaluation of sums over intermediate states as in Eqs.
(71) and (72). Introducing the results of Sec. II, Eq. (71)
becomes

X n&n2ns;n&'n2'n2'+ ' '
~ (75)

2M

VI. EXPLICIT FORMULAS FOR MATRIX ELEMENTS

The evaluation of the cluster integrals and their
derivatives with respect to P is facilitated by writing the
formulas for X„*,*(P) and X„*„*,*(P) as de6ned by
Eqs. (15) and (18) in a more compact form:

p02&2 [p e«(1(o*)
I
2e(1

I
p*)

I

'—X. *(p)7[Q eex('(0*)
I u(2

I
&7~)

I

'—X,*(p)]d»2...s/
N S2

40
' 2 Le' """n(1Ip*)n*(Ill*)7[ee""~'*'n(2IV")N*(2Ip+)]d»2 -~, (76)

81,g2

»n l&fofe added Z» proof. The resolution of H into Z&'&+W&'& and W&" requires care in the recognition and segregation of unlinked
terms with incorrect dependence on X which occur separately in 8'(') and H/'&", but cancel in the sum. Such terms are not present in
the approximation of Eqs. (73)-(9g).
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[E e'~" ~
"*'

I u(1I n+)
I

'—X-*(J3)5
Q sl

K ee ""*'lu(2IP*)I' X—*(&)5[&ee ""*'lu(3lq*)I' —X *(I-'t)5d»2-~

tpo"[p eel~ i.*flu(1ln*) I

—X„*(p)5[+ee~& ii'*&u(2I p*)u*(2I q*)5
~l 8A

[P eel~'~ *&u(3
I
q*)u*(3

I
P*)5dv„...p.—.

+ $0
' p [ee~"'"*'u(1In+)u*(1 Iq+)5[ee~&'~ "*'u(2I p*)u*(2ln*)5

&li~9~ 83

[ee~&'~'*'u(3I q+)u*(3I p+)5d

ip
' g [eel&'~ "* u(1I n+) u*(1I p*) 5[e e &'~"*&u(2lp+)u*(2lq+)5

~1~~2~~3

[ee &'~'* u(3lq )u*(3ln )5d5$2 ~. (77)

Here the summation over spin (spin and isospin) variables is exhibited explicitly. Note that PP is normalized.
Calculations c.osely paralleling the corresponding development in Ref. 13, Sec. II, yield

X„*=Ia„l'X„+lb I'X, X =1+0(P'), X„=1+0(P'). (78)

xX„*,*(o)= —
I I a„l2I a, 2&pq, qp&(S(k„,)—1)+

I
a.l'lb. I'(pq', q'p&(s(k

+ b.l'I a. l'&p'q qp')(S(k") —1)+
I
b. l'lb. l'&P'q' q'P')(S(k") —1H

+b(k~.+k, —k„—k,)a~*a,*b„b,[(pq,p'q')(S(k» )—1)—(pq, q'p')(S(k „,)—1)5+ . (79)
Here S(k) is the liquid-structure function defined by the ground-state boson-type solution. The convolution form
for the three-particle distribution function" is used in evaluating three index-cluster integrals. The spin matrix
element (pq, qp) has the value 1 for parallel spins and vanishes for antiparallel spins. The general formula is

&e q, m' q') = (m, m'& (q,q') .
&X.*.*'=L I a.l'I a.l'(pqqp)(S(k„, )—1)(—2k„k,+k,*'+k,*')+".

+

lb~�I�

'I b. I
'&P'q' q'P'&(S(k„, )—1)(—2k,"k, +k„*'+k,*')5—-,'B(k„+k,.—k„—k,)a„*a,*b„b,

[&Pq,p'q'&(S(k. .)—1)(k.,'+k, ')—
&pq, q'p')(S(k, ,)—1)(k„'+k„')5+ . . (80)

+'X.*~*~*(o)= [Ia.I'I ai I
'I

a&I�

'(npq qnp)(nq Pn qp)+ + I b. I

'I@I�

'I b&l
'(n'p'q', q'n'p')(n'q', p'n', q'p')5

+Lla-I'Ia. l'Ia. l'&npqpqn)(nppqqn)+" +lb. I'lb. l'lb. I'&n'P'q'P'q'n'&(n'P'P'q', q'n')5

+b(k„+k„+k, —k —k„—k,)a *a„*a,*b b~b, [&npq, n'p'q')(nn', pp', qq')
—(npq, n'q'p')(nn', pq', qp') (npq, q'p'n'&(n—q', pp', qn') (n pq, p'n'q')—(np', pn', qq')

+(npq, q'n'p')(nq', pn', qp')+ (npq, p'q'n')(np', pq', qn') 5—b(k~ +k, —k„—k,)a„*a,*b~b,

[Ia. I
'(~ &npq, q'p'n)(nq', pp', qn)+ (npq, p'nq')(np', pn, qq') &npq, q—'np')(nq', pn, qp')

—
&npq, p'q'n&(np', Pq', qn) }+I

b- I'&" }5—" (»)
Here we use the convenient notation

(nP Pq qn) = (k-.,k.~,k.-), —
(k,k',k")= (S(k)—1)(S(k')—1)+(S(k')—1)(S(k")—1)

+(S(k")—1)(S(k)—1)+(S(k)—1)(S(k')—1)(S(k")—1). (82)
E'X' *,*,*=[Ia

I
'I a, l'I a, I'(&npqqnp)(nq, pn, qp)(k. k,+k„k„+k, k„—-', k„*'—2k„+'—-', k,*')

.+(npq, pqn)(np, pq, qn)(k. .k,+k„k,+k, k„—-,'k.*'—-', k„*'—-', k,*-')}+
+ lb 'IbI„ 'Ilb, 'I(&n'p'q', q'n' p'

&(

n' q'p' n', qp')(k„. k, +k„k„+k,"k„——,'k„*'—i~k~*' ——'k *')
+(n'p'q', p'q'n')(n'p', p'q', q'n')(k„"k, +k, k, +k,"k„—-,'k„*'——',k„*'——',k,*')}5
—b(k„.yk, .—k,—k,)a,*a,*b„b,
~ [Ia„l'(&npq, q'p'n)(nq', pp', qn)(k„k, +k~ k„+k, k —2k *'——',k~*'——,k,*')
+(npq, p'nq'&(np', pn, qq')(k„k~. +k„k„+k, k, ——',k„*'—-', k„*'—-,'k,*')
—(npq, q'np'&(nq', pn, qp')(k„k, .+k„.k„+k, ky. —-,'k„*'—-,'k„*'—-', k,*')
—(npq, p'q'n&(np', pq', qn)(k„k, .+k„.k, +k, k ——',k„*'—-', k„*'——',k,+')}+I

b
I
'(. . .}I+

2b(k +k„+k, —k— k~ k,)a„*a—„*a,*—b„b„—b, [&npq, n'p'q'&(nn', pp', qq')(k„„'+k» '+k«')
(npq, n'q'p')(nn', pq—',qp')(k„'+k„'yk, ,') &npq, q'p'n')(nq', pp—',qn')(k„, '+k„„'+kg„')
&npq, p'n'q'&(np', pn',—qq')(k„„'+k, '+kq, ')+& pq,nq' 'p')n( q', pn'qpn')(k„+k„. '+k,„')

+(npq, p'q'n')(np', pq', qn')(k „'+k„'+k,.')5+ . (83)
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Equations (79)—(83) should be compared with Eqs. (39) and (40) to determine explicit forms for X„,, „,,
X„p,.„„,and their derivatives with respect to P.

VII. QUASIPARTICLE FORMALISM

Equation (48) of Ref. 13 is a general formula for E"&(n) including three-index terms. An equivalent operator
form, employing the discrete number operator formalism. , is

with

Eoperator =Q e(k)ak~ ak0+—P E2(k—1)aq, a~,a~, a~,+ — Q E8(k, ll; m)a/8 aggai8 aLa~, "a~, ) (84)
k, s 2+~ k, lgm s

e(k) = h'k'/2M, E',(k) = e(k)(5(k) —1), Eg(k, l; m) = —c(k—l)5(k —l)(S(k—m) —1)(S(1—m) —1). (85)

The creation and destruction operators uk, , ak, obey the standard Fermion anticommutator relations.
To find the corresponding operator for Et'&(n), consider first the explicit statement of Eq. (73):

E"'(n)=E"'(n)+(h'/2M&V') P 8(k +k, —k„—k,) [(pq,p'q')(5(k„„)—1)'k„„'
P&a

P'&a'

+(Pal P )(5(& ' ) 1)'& '—(PSPY)(pq~v P')(5(& )—1)(5(& )—1)(& '+&. ')]+ . (86)

In Eq. (86), p and q are confined to n while p' and q' range over the quantum number space outside of the Fermi
spheres. An equivalent statement is

1Ei"(n) =E(')(n)+ — Q [(s,t)L„(k,l)+(1—(s,t))I.,(k, l)]+
Qg" It ks, It

(87)

in which ks, It range over n and

L.(k, l) = (1/2iV) g [(5(k—k') —1)'(0'(k—k')'/2M)+(5(I —k') —1)'(0'(I—k')'/2M)],
A' &A'F

)k+1-k'( )kF

L„(k,I) = (1/21V) Q [(5(k—k') —1)'(t't'(k —k')'/2M)+(5(1 —k') —1)'(tt'(I —k')'/2M) (88)

—(S(k—k') —1)(5(l—k') —1)(t't'/2M)((k —k')'+ (I—k') 2)].

Equation. (87) yields immediately the desired operator form

Ei'i„„„.,=E&'&„„.&„+(1/2V) g .,„(k,I)a~, ak, ai,tai, +(1/2Ã) Q L.(k, l)a~,,tak„,ai, ,ra~, + . (89,)
k, l, s k, l, s

Here k, I, s are not restricted.
The nondiagonal component of the Hamiltonian matrix can also be expressed in an equivalent operator form:

w&" = W2+W3,

W2 ———', P (k, l~ wg~ k', I')(st, s't')a)„tai, 'ai, ag, ,
ks, 1t

(90)

(k, l,meit 3~k', I',m')(stu, s't u') ag, ta ta~i„ta~ ~ a( i a);;.
ks, 1t, mu

k's', 1't', m'u'

Here s, t, I denote the single-particle spin states with numerical values +—,
' and —i2. The interaction operator

w~ includes contributions from four sources: two index terms in g, three index terms in g, the orthogonality trans-
formation and the pE terms from Eqs. (61) and (62) and Appendix B. To exhibit these contributions separately
we write

w = wg"'/w i'&+w i'"" &+w i'~&

and obtain
b(l '+ I' —k —I) h'(k —k')'

(k, liw &'&ik', I')= (1—S(k—k')).
g 2M

(92)
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5(k'+I'-k-I) -M(k-q)'
{k,I( w. &» )k', I') = (S(k' —q) —1)(S(k—q)S(k—k') —1)

2Ã' q&&s 2M

f '(I'- «)' i's '(k —k') '
+ (S(1—q) —1)(S(1'—q)S(k —k') —1)+ —S(k—k')

2M 2M

.((S(k—q) —1)(S(k'—q) —1)+(S(1—q) —1)(S(1'—q) —1)}
5(I '+ I' —I —I)

Hg'(P" —P')/2~)(S(k —k') —1)(S(k—q) —S(k' —q))4S' q(k p"

+(A'(I"—P)/2M)(S(k —k') —1)(S(1—q) —S(1'—q))]. (93)
(k, I

~

ws&"&".&
~

k', I')

fi'(k' —q)' h'(I —q)'
(S(k—q) —1)(S(k'—q) S(k—k') —1)+ (S(1'—q) —1)(S(1—q) S(k—k') —1)2' 2M

=(5(k'+ I' —k—I)/4S') $(S(k—k")—1)(S(k'—lr") —1)((k—k")'+ (k' —k")')

+(S(l—k")—1)(S(l'—k")—1)((l—k")'+(I'—k")')]. (94)

(k, l ~j
ws&'s&

~

k', I') = (5(k'+I' —k —I)/2$)(S(k —k') —1)(5F(k',0)+58(k', l)+ 88(l',4)+5E(l', l)}. (95)

Note that cosh factors LEqs. (52) and (58)]are neglected in Eqs. (92) and (93), and only the leading term is given
in Eqs. (94) and (95). To the same order of accuracy

h(k'pl'ym' —k—I—m) is'(k —k')' &s'(I —I')' fi'(m —m')'
(k, l,m~ w, I k', I',m') = —— (k—k', I—I', m —m') + + . (96)

2X' 2M 2M 231

The summations in Eq. (90) are restricted to non-
overlapping initial and 6nal states. This means that a
given wave vector and spin orientation can occur only
once in a particular product of creation and destruction
operators. Otherwise no constraint (beyond those ex-
expressing conservation of momentum and z component
of spin) is placed on the wave vectors and spins.

These results may be described in the language of
quasiparticles"" Part of the Hamiltonian E&') is
diagonal in the primary set of occupation number
operators al„taI„. We may say that E.&'~ is the Harnil-
tonian for a system of noninteracting (or free) quasi-
particles. These are the carriers of momentum, spin, and
statistics. The appropriate development of the Landau
quasiparticle formalism has already been given in Ref.
13, but only for E&'&.

The nondiagonal component of the Hamiltonian t/t/ &')

represents interactions (or collisions) involving groups
of two and three quasiparticles. These collisions modify
and limit the quasiparticle concept in ways that have
not been investigated. Some tools, perhaps adequate
ones, for evaluating the physical consequences of
Z&'&+W&'& already exist in modern diagrammatic per-

"L. D. Landau, Zh. Eksperim. i Teor. Fiz. BO, 1058 (1956);32,
59 (195'I) /English transls. Soviet Phys. —JETP 3, 920 (1957);
5, 101 (1957)g.

'~ A. A. Abrikosov and I. M. Khalatimkov, Rept. Progr. Phys.
22, 329 (1959); Usp. Fiz. Nauk 56, 177 (1958) )English transl. :
Soviet Phys. —U'sp. 1, 68 (1958)j.

turbation and Green's function techniques and (or) the
superconducting type of canonical transformation.
Problems of immediate interest in the light of current
research on liquid He' are (1) the range of usefulness,
detailed properties, and limitations of the dressed quasi-
particle description generated by F."&+W&'& and (2) the
possible existence or nonexistence of an energy gap in
the excitation spectrum and the magnitude of the gap
if it exists.

A brief comment is in order on the second problem.
The leading term in {k,1 j ws~ k', I') is

(5(k'+ I'—k—I)/$)(h'(k —k')'/2')(1 —S(k—k')), (97)

a positive quantity for mass 4 when k' is not too far from
the Fermi surface Lsince S(2k&)(1 for the He' boson
system].

Whether or not the same statement holds at mass 3
can only be conjectured at present. Calculations by
Walter Massey now in progress should soon provide
information on S(k) and g»(r) at mass 3. It is perhaps
safe to conclude that an energy gap at mass 3, if it is
actually a consequence of the theory, can only be re-
vealed by careful detailed calculations, and must be
quite small in agreement with the trend of studies on the
possibility of a superQuid state of liquid He'."

The interaction matrix element of Eq. (97) defines an
effective two-particle point potential in the model co-

sa V. l. Emery and A. M. Sessler, Phys. Rev. 119,43 (1960).
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ordinate space:

z(r)= (k'/2M)Age(r), r=rzz. (98)

This potential exhibits a repulsive hill on the rising
slope of ge(r), reverses sign to become attractive in a
region more or less centered about the nearest-neighbor
peak and thereafter oscillates with rapidly decreasing
amplitude and also decreasing spacing between peaks
and valleys.

We are encouraged to expect that the uncertain inter-
action operator 8'2(' ' has no important physical con-
sequences by the fact that its matrix elements are
negligible when the initial- and final-sta, te wave vectors
of the colliding quasiparticles are all close to the Fermi
surface (see also Appendix 8).

APPENDIX A: ESTIMATE OF
Xg(1',1)—Z LXz.„(0)—Xz (0)j

Equation (79) and the quadratic approximation for
S(k) LRef. 6, Eq. (81)$ yield

()=—(/ ){ ( / )'—1} (A1)

s
P X, „(0)=——
m 1V (2m)'

k p'+k'
8 —1 dk

= —3L~(l+ l) —l 3

2 &z (0)=—3L&5 —33.

(A2)

on the range 0& lk-I &2k'. For He', 8=0.195. In the
special case k~ =kJ, 0~=0:
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Consequently
&g(1',1)=—8= —0.195

exp-,'(&g(1',1))'—1+0.005.
(A3)

This result justifies the general replacement of ex-
ponential amplitude factors by unity in the explicit
matrix elements of Eqs. (86)—(96).

APPENDIX 8: DERIVATION OF SE(kz, kz) AND NUMERICAL ESTIMATES

[~, f
=[a, [

=-,', ~„=1,k„=O, N&1.

8E(1',1)-=g'(n*)—z2Lb'(12 E)+g'(1'2 1V)j
—2 [&z*z 2xzn 2xz's 3+k 2 I xz*za kxzna kxz'ne 7

@+1 u~e

(81)

—Q Lxz*„'——',xz„'—2xz, 'jx„,—P $x„*xz*,' ,'x~,xz, ' —', —x„zx, ,'j——(82)

k'(kz' —kzz)
{$(kz—l) —S(kz —l)}S(k—1)+-',{P S(kz —l)}'—-'{P S(kz —1)}'

8ME2 i&kg i&kg

{(kzl,kzk, tk) (kz l,kz k, lk—)}j+ Q {S(kz—1)—S(kz —l)}
k, $&ky

k (kl' k)' &'(kz —k)'. (S(k,.-k)-1) —(S(kz—k) —1) . (83)
2M 235

The quadratic approximation for S(k) (Appendix A)
gives

8E(1',1)——0.024e p (84)

at the surface k~ ——k~ and k~ ——0. If both k~ and k~ are
on the Fermi surface bE vanishes.

The relative importance of terms involving 8E can be
estimated by evaluating the reduced formula, generated
by Eq. (61):

In the special case kz ——kz=o, k2 ———k& with opposed
spins in both pairs and kz ——kz ——kr, Eq. (84) holds for
all i, j on the range 1, 2. Again using the quadratic
approximation for S(k),

(k /2M) bzz;z z —((1 8)/Ã)ezp

2 2

{»(1(1'2'}-;Z Z»(z, ~')

{12
~
W

~

1'2'}= (k'/2M) gzz, z z
'

2 2

+{12
~
1

~

1'2'}—' P P eE(zj ') . (85)
i-1 j=l

i=1 j=l

=((1—B)/X)e.XO.O48

—0.048(A /2M) gzz. zrz ~
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m= 6,
a= 0.8,

A =0.2,

m= 6,
b= 1 737

8= 100,

a=6,
d=3.34 A,

C=401.3 .
(c3)

APPENDIX D: CONSISTENCY CALCULATIONS
ON TRUNCATED FORMS OF Q(n*~ g)

~e truncate the expansions for b;.„and g,s~ at 3-index
terms. Equations (23) and (29) are replaced by

g;„(n"~P)= P X *„~
tn(n

+)&gs Q I X,„*„*„*—X *„*X„*„*
tn&ngy

APPENDIX C: APPROXIMATE ANALYTICAL
FORM FOR gs(r)

Theoretical formulas for gB(r) have been computed
by Walter Massey using an adaptation of the Wu-
Feenberg' procedure for computing the ground-state
properties of a boson system. In our illustrative calcula-
tions ere use one of Massey's forms for liquid He' at the
equilibrium density (p=0.0218 A '):
g~(r) =g~'(r)+ ~g~(r)

g&0(y) e &dlr)"—(&1+g(d/y) n+ j5(d/y) sn]
(C1)

bgn(r) =A exp —(1+s)(d/r) "(d/r) ~

XL1 ~(d/r) +C(d/ )r'"3

The constants occurring in g~ are subject to the
constraint I 1 8 1

b— (C2)
1—3/n 3 n 4n.pd'I'(1 —3/e)

imposed by the normalization condition of Eq. (36).
The correction term bg~ is constructed to leave the
normalization of g~ unchanged.

The curves plotted in Fig. 1 are based on the numeri-
cal values

The adjustable parameters ) ~ and 'A, ~& permit a partial
compensation for the omission of higher order terms.

Equation (34) is replaced by

F;„(r)=1+F&'l(r)+)&;„F;„&'&(r),

F,s((r) = 1+F&'&(r)+)&~s(F~sg&"(r) .

(D3)

TABrz III. X determined by Sz(0) =0 (ge from Appendix C).

0.883
0.778
0.630

0.889
0.783
0.630

equation of state based on the approximate procedure.
These effects actually occur in a recent unpublished
investigation of the cluster expansion procedure for
evaluating the ground-state energy of liquid He'."
Results associated with S(0)=0 appear reasonable; all
others have doubtful signi6cance. In the present context
the use of ) to enforce the condition S&(0)=0 may
serve to avoid difficulties similar to those uncovered by
Williams in his study of the He' liquid.

To satisfy the normalization condition of Eq. (37), the
amplitude parameters must assume the values listed in
Table III.

The extremum property of {n
~
H

~
n} may be lost when

approximate procedures are used to evaluate the ex-
pectation value. Also the degree of failure may depend
on density to a sufFicient extent to falsify a theoretical

—X„*~*X&*„*—X„*~*X~*&*j, (D 1) "Clayton Williams, Ph.D. thesis, Washington University& 1961
(unpublished); Proceedings of the Mid-West Conference on

b,s,(n+~P) =-',S'X&'&+sX.s,Ã'(X&'l —3X&"'). (D2) Theoretical Physics, Purdue University, 1960 (unpublished).


