CROSS SECTION OF 32S—-3:P TRANSITION OF Na

behavior of the elements U;;(r) near the origin. As an
illustration, a plot of U12() used in this work along with
its approximate asymptotic form which was used for the
resonance-distortion and B'II calculations, is shown in
Fig. 1. It is interesting to note that the total cross sec-
tions calculated by the Born approximation are always
smaller than those from the Bethe method B’I, and are
even smaller than the B’II cross sections at energies
above 20 eV. Here again replacing the interaction
potential matrix elements by their asymptotic inverse-
square form results in an increase of the cross sections.

Since the B'I approximation is valid for large values
of J, this may be used in conjunction with the partial
cross sections in Table I to calculate total inelastic
cross sections. In Table IT are given total cross sections
calculated by means of our numerical method,
resonance-distortion, B’I, and B’II approximations.
Comparison of the theoretical excitation functions with
the experimental data® is shown in Fig. 2. The results

8 G. Haft, Z. Physik 82, 73 (1933); W. Christoph, Ann. Physik
23, 51 (1935); D. R. Bates, A. Fundaminsky, and H. S. W.
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F16. 2. Total cross sections for the 3s — 3p transition in Na
calculated by the methods BI, B/II, RD, and Num, and absolute
measurements of Christoph, designated by the circled points, and
relative measurements of Haft, represented by the curve EXPT.
The Born cross section (BI) was given by Bates ef al. (Ref. 8).

of the numerical method show better agreement with
experiment than do those of the previous calculations.

Massey, Phil. Trans. Roy. Soc. London A243, 93 (1950); I. P.
Zapesochnyi and L. L. Shimon, Opt. Spectry. 13, 355 (1962).
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The ground state and low excited states of liquid He? (and other fermion systems) can be constructed

from a set of basis functions

¥ (|n)=y¢o"®(|n)

in which 8 is the ground-state boson-type solution of the Schrédinger equation and the model functions
& (|n) are Slater determinants suitable for describing states of the noninteracting Fermion system. Diagonal
and nondiagonal matrix elements of the identity and the Hamiltonian operator are evaluated by a cluster-
expansion technique. An orthonormal basis system is constructed from ¥ (|n) and used to express the Hamil-
tonian operator in quasiparticle form: a large diagonal component containing constant, linear, quadratic,
and cubic terms in free-quasiparticle occupation-number operators and a nondiagonal component represent-
ing the residual interactions involved in collisions of two and three free quasiparticles.

I. INTRODUCTION

IMPLE correlated trial functions have proved useful
in the study of nuclear matter and the He?® and He*
liquids.’=8 The theory begins with a model function &

* Supported in part by the Office of Scientific Research, USAF,
under Grant No. 62-412 and by the Washington University
%Oélzl[z)lgléing Facilities through National Science Foundation Grant
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17, 543; 18, 345 (1957).

(1; §38.) D. Hartogh and H. A. Tolhoek, Physica 24, 721, 875, 896

3 J. B. Aviles, Ann. Phys. (N. Y.) 5, 251 (1958).

4J. W. Clark, Can. J. Phys. 39, 385 (1961) ; Ann. Phys. (N. Y.)
11, 483 (1960).

8 R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 57, 407 (1958).

8 F. Y. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961).
(1;61_{5 W. Jackson and E. Feenberg, Ann. Phys. (N. Y.) 15, 266

8K. Kumar, Perturbation Theory and Nuclear Many Body
Problem (Interscience Publishers, Inc., New York, 1962), Chap. V.

describing a state of the NV-particle system in the absence
of interactions. The model is adapted to the presence
of strong short-range repulsive interactions by intro-
ducing a symmetrical positive valued correlation factor
exp3S(1,2,- - +,N) which vanishes when any two parti-
cles approach closely. The resulting trial function is

\p=eS(1v2v""N)/2¢(1,2," .,N), (1)

A linear combination of such correlated trial functions
provides the possibility of a close approach to exact
solutions of the many-particle problem. Construction of
a suitable trial (or basis) system may start from a set
of normalized orthogonal model functions ®,, generated
by properly symmetrized products of single-particle
orbitals. In the applications the functions ¥, are used
to construct matrix elements of the identity and the
Hamiltonian operator. One recognizes that the functions
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¥, do not in general form a normalized, orthogonal
basis.
Possible forms for the correlation factor include

e%S:H eu(rij) /2 (2)
<J
and
e%S=¢OB(1727 et ’N) . (3)

Line (2) defines the Bijl-Dingle-Jastrow (BD]J) sym-
metrical product of two-particle correlation factors.
Line (3) introduces ¢, (the completely symmetrical
ground-state solution of a suitable Schrédinger equa-
tion) as an appropriate correlation factor. The use of
¥oF as the correlation factor in theories of liquid helium
gives immediate access to useful results on the excitation
spectrum of the boson system®~12 and on the properties
of the ground state and of low excited states of the
fermion systems.!?

Both forms have been used to evaluate a large class of
nondiagonal matrix elements occurring in the theory of
the multiple excitation spectrum of the boson liquid.”
Currently Clark and his students are evaluating non-
diagonal matrix elements in nuclear problems employing
the BDJ form. Clark!* has described a procedure for
computing nondiagonal matrix elements in fermion
problems by an adaptation of the cluster-expansion
technique.

The object of the present study is to derive matrix
elements needed to extend the analysis of Wu and
Feenberg!® on liquid He?. The problem of reducing the
explicit Hamiltonian matrix to diagonal form is reserved
for a later paper. In Sec. II diagonal matrix elements are
constructed to serve as generating functions for non-
diagonal elements. Two distinct cluster-expansion pro-
cedures for evaluating Fermion matrix elements are de-
scribed in Sec. III and one (that of Iwamoto and
Yamada) is shown, by critical tests, to be superior for
numerical evaluation. In Sec. IV general formulas are
derived for diagonal and nondiagonal matrix elements of
a fermion system. A normalized orthogonal basis is
introduced in Sec. V. The resulting matrix elements of
the Hamiltonian operator are evaluated in Sec. VI using
B as the correlation factor. A quasiparticle formulation
of the theory is stated in Sec. VII.

II. GENERATING FUNCTIONS

Normalized model functions ®(|n)=&(|nn2- - -ny)
in the form of Slater determinants are constructed from

E. FEENBERG AND C. W. WOO

a normalized orthogonal set of single-particle orbitals
u(|n)=u(r,m|n). The discrete variables (spin and iso-
spin) are denoted by m. Where particle / is in state #,
we write wu(tymi|n)=u(l|n). In particular u(n|n)
=u(tn,mns|n). The immediate problem is the trans-
formation of the elements

(n’|1|n)= /3&032@*( |n)®(|n)d71s...x,
4)
(o' | )= / PP ) g0 | m)dr 12

into a form suitable for numerical evaluation. We solve
this problem in two steps:

(1) Construct a suitable diagonal matrix element to
serve as a generating function for the desired non-
diagonal element.

(ii) Apply a standard cluster expansion formalism to
evaluate the diagonal element.

Step (i) begins with the arbitrary model function
®(|n*) constructed from the orbitals

w(|*)=am(|D)+bu(|V), I'5£1,2, -+, N if5,5%0. (5)

A proliferation of multiple indices is avoided by writing
n=1,2 -, Nandn’'=1",2', .- -, N without implying
that either set defines the ground configuration. The use
of linear combinations of single-particle states I and //
in the /th column of the model function gives the
formalism for computing diagonal matrix elements the
ability to generate and evaluate nondiagonal elements
as well.

In the application to a uniform extended system
(N >, Q—x, p=N/Q constant) the single particle
orbitals are products of plane waves and spin functions:

emr5(tm,) and  e®to(—3%, m,), (6)

or the appropriate generalization with spin and isospin
functions in the case of nuclear matter. A discrete set of
wave vectors ki, ks, --- is determined by the usual
periodic boundary condition in a cube of volume Q. The
choice of orbitals implies a momentum conservation
theorem (n’|4|n)=0 unless }_ ka=>_ ko (4=1 or H).
In general #(|/') and «(|l) may differ in both wave
vectors and spin states (as in the theory of static spin
density waves'®).

The following equations illustrate the way in which
(n*| 4 |n*) serves as a generating function (4=1 or H):

One Orbital Different (a;=1, bi=0, I7#1)
(1*2---N|A[1*2---N)=|a|2(12- - - N|A[12- - -N)+[6:[3(1"2- - - N |4 [1'2-- - N). )

9 R. P. Feynman, Phys. Rev. 94, 262 (1954).
10 R, P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).
1 C, G. Kuper, Proc. Roy. Soc. (London) A233, 233 (1955).

2F. W. Jackson and E. Feenberg, Rev. Mod. Phys. 34, 686 (1962).

13 F. Y. Wu and E. Feenberg, Phys. Rev. 128, 943 (1962).

4] W. Clark, Ph.D. thesis, Washington University, 1959 (unpublished).

15°A. W. Overhauser, Phys. Rev. 128, 1437 (1962).
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Two Orbitals Different (a1=1, b;=0, 11, 2)
(1%2%3. - - N | A|1*2*3- - - N)= | a1|?| 02| 2(123- - - N | 4123+ - - N) 4 - -
+ (5] 2] B2 | 2(1/2'3- - - N | A| 1723+ - - N)+ar*as*bibs(123- - - N|A|12/3- - -N)+4---. (8)
Three Orbitals Different (ai=1, b;=0, 151, 2, 3)

(1%2*3%4- - - N| A|1%2*3*4. - . )

= | a1|?| 2] 2| @s]2(1234 - - N | A|1234- - - N)+- - -4 | b| 2] bo|2| bs| 2(12'3'4- - - N| A [ 1'2/3'4- - - )
+ | 1| 2ar*as*bobs(1234- - - N| A [12'3'4- - - N) 4 - -+ | as| 2as*as*bibs(1234- - - N| A [1/23/4- - - N) 4 - -
+ | as| 2ar*as*biba(1234- - - N | A|1°2/34- - - N)+ - - - +a:1*as*a5*brbabs(1234- - - N| A [ 1234 - - N) -+~ (9)

Momentum conservation requires that the missing co-
efficients of a;*b; and @,6:* in Eq. (7) vanish; also the
missing coefficients of |a1|%a2*bs and of |a;|%asb.* in
Eq. (8) vanish.

General Formula
(n*[4[n*)

N
= ¥ II@a*+1—x)b*) (et (1—y)b1)
21=0,11=1
¥1=0,1

(. . 'xlnl+(1"“xl)nl" ..
(Al ymt-(1—y)n - ).
III. CLUSTER DEVELOPMENTS

(10)

We turn now to the description and critical discussion
of the cluster-expansion procedures available for the
evaluation of Fermion matrix elements generated by
correlated basis functions. The diagonal matrix element
of H with respect to ¥(|n*) is

(n*| H|n*)
h: N : h? N
e ClER e o
2M p=1 2M »=1
X[_Q*(Ap+kp*2)¢.+vp'(‘I’*Vp(b)]dTl?---N (11)

in which the integration includes summation over spin
variables; also

lepe?=(u(| p*), — Au([ p*))
= |ay|%kp*+ [0y | k2,

¢=1I ¢l "), (12

o=3 (+)P¢

=[1-3 Pyt Jo.
p<q
Next we introduce the function
N
In(B)=*|1|n*)+8 X [ ¢**

p=1

X [—®*(A,+E w2+ Ve (B*V ) Jdrry (13)

with the evident properties

(a

To make a useful computational device out of 7(g) let

(n*]|1[n*)=1x(0),

).

N
H—EB——73% kp?

2M »=1

(Aptkp)u(p| p*)

K(p|p*)=—
21#7) (3] %)
VPM(P[ P*) Vp“(? [ P*)
+| v, + Vo  (15)
[ u(p|p*) } [ u(p|p*) }

K(12---N[n*)= é K(p|p*)

and replace Eq. (13) by
IN(6)=/1P()BZ exp[ﬂK(lZ . 'Nln*)]q)*¢dT12...N. (16)

The new form gives the same constant and linear terms
in B as the old and nothing more is required of it. Equa-
tion (16) defines a generalized normalization integral
which serves as a mnemonic device to generate the
matrix elements of H by a simple operation on the
matrix elements of the identity. In Eq. (14) it is now
understood that the derivative with respect to g is
evaluated at f=0. A prime superscript will denote
generally the derivative with respect to 8 at =0.
Another form of the exponential operator in Eq. (16)
is useful in generating the radial distribution function
gr(r12). For this application Eq. (15) is replaced by

K(12---N|n¥)=K(12- - -N)
=2 K(ry)

i<J

(17)

in which K(r) is an arbitrary function.

Two procedures for evaluating diagonal matrix ele-
ments of 1 and H have been developed in considerable
detail by a number of authors. We refer to papers by
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Iwamoto and Yamada,! Wu and Feenberg,'? and Wul¢
for the first (IY); and to Aviles® and Hartogh and

Tolhoek? for the second (AHT).

Ip*= /¢05265K(1|p*) [u(l lp*) | QdTldl‘z...N

=X p*,

E. FEENBERG AND C. W. WOO

The IY development begins by introducing a sequence
of approximants I ,x...q+ and the corresponding sequence
of cluster integrals Xma...qx:

Lxnx= /l,boBzeﬂK“?'m*"*)u(l | m*)u(2|0*) - [1— Por 2 Ju* (1| m*)u* (2| n*)driadvs...x

= X, x X pxt X uknx ’

Ltnk k= /¢03263K(123|m*n*p*)u(1 | m*)u(2]| n*)u(3] p*)

(18)

. [1 —P2112—P3223— P1331+P312123+P231123]%*(1 J m*)u*(Z l %*)%*(3 | P*)d’rmad‘v,;...]v
= Xm*Xn*Xp*—F Xoe X 2 p*+ Xn*Xm*p*-*—Xp*XnL*fn*_l_ Xm*n*p* ,

Im*n*p*q*= /¢0BZeﬂK(1234]m*n*p*q*)u<1 Im*)u(zin*)u(3 U’*)“(4| q*) . [:1__])2112_ N _P4334+P312123+ e
+P342234+P2112P4334+ e —l'P4114P3223_P41231234_‘P34211234+ e —P23411234]

~w*(1[m*)w* (2| n*)u* (3| p*)u* (4| ¢*)d 7T 1934d05.. 5

=Xk Xk X ph X g Xnd X X pren =+ -+ T+ Xk X o Xt X ond X g gr -+ - X oa Xk ke

and so on. (Integration over r includes summation over
spin, whereas integration over v does not.) Each ap-
proximant I ,x...qx is represented as well as possible by
a cluster approximation formed from all the preceding
cluster integrals. The difference between the approxi-
mant and the cluster approximation defines a new
cluster integral X,s....x. At each stage the cluster
approximation is constructed so that detailed and strong
cancellation occurs between the various exchange terms
in Ip...qx and the corresponding products of distinct
cluster integrals in the cluster approximation leaving
always a remainder to be represented by Xu...ox.
Clearly the approximants and the cluster integrals do
not depend on the order of the indices. Also the first
few approximants are not in any sense approximations
to Iy. ’
At the end of the chain of approximants

N
In= (11 Xux) expGay(n*|3),
m=1

T+ Xornx X pregr =+ + A= Xk e Xt pr - Xk e g

In=3{Xpr 3 Xt}

X{' c o X ghpkakt * } .. (19)

in which the indices on each product in the sum range
over 1,2, - - -, N with no duplications and no omissions.
Order of magnitude estimates of the products in Eq.
(19) are based on the relations

Xpmr=1+0(8%),

Xprnx=0(1/N), (20)
Xmrnrpr=0(1/N?)
and so on. The normalized cluster integrals
onkeee =X e qh/ Xmn- = - X g (21)

are used to express [y in the useful asymptotic (V—=,
p constant) exponential form

(22)

Ciy(0*|B)= 2. Xmrnrt 2 [Emknkpk— Vmknk¥nk pk— Lok pk X pk ok — Lk mkLnk |

m<n m<n<p

16 F. Y. Wu, J. Math. Phys. 4, 1438 (1963).

+ X

m<np<q

[xm*"*p*q*— c :H'- . (23)
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The exponential form is useful because the exponent is
proportional to N [as a consequence of the order of
magnitude relations stated in Eq. (20)]. A particularly
transparent justification for the exponential form and
derivation of G;,(n*|B) appears in Refs. 13 and 16.

The AHT formalism is based on the theorem that the
product of two determinants can be written as a single
determinant:

P*Pp= det(p;j) s
N (24)
pi= 2 w*(E|m*)u(j|m*).

m=1

A cluster expansion for the radial distribution function
gr(r12) is then generated in terms of successively larger
minors of det(ps;). At every stage of approximation the
formula for gr(r12) possesses the property of invariance
under a unitary transformation of the single-particle
orbitals contained in n* [denoted by U(n*)]. Notice
that the IY development for G lacks this property of
evident invariance. At =0 invariance fails in the 3
index addend because the product term %, xn*®n*p* con-
tains a repeated index. Repeated indices occur system-
atically for all #-index addends (#>3) with the con-
sequence that any truncated form for G, [produced by
dropping all addends with #-1 or more indices (> 3)]
is not invariant under U(n*). The significance of a lack
of evident invariance under U(n*) must be discussed.
However, let us turn first to the task of generating an
invariant cluster expansion for Iy.

Invariant approximants 7 and cluster integrals X ®
are generated by averaging Imx...qx over all possible
choices of m*- - - ¢* within n*. Thus

IO=1/N)3 I
»
=X,
I(z)=(1/N(N—1))Z T pwgx
?.q

=XWIL X,
(25)
I®=U/N(N—1)(N—2)) 3 Iuapxe*
7,0, 9
=XWFIXOXOFX®
IO=1/N(N—1)(N—=2)(N—3)) X Inkntprox
m,n,p,q
=X X DX @4 AX DX @ F3X @24 X @)
and so on. The last step in this sequence is
NIXOIX @)%, .. XNy
Iy=% (26)

D) mirw,!
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the sum extending over all integral solutions of the
equation »_;,¥ lyy=N. Order of magnitude estimates
of I'y are based on the general relation

X®O~0(1/NFY), (27)

Equation (26) can be converted immediately into the
useful asymptotic exponential form

In(B)=2expGans(n*|B) (28)
with
Gune= INEX @O ENI(X 03X )
+(1/28)NH(X D — 12X OXOF20X ) 4. (29)

Equations (28) and (29) exhibit a cluster expansion of
the type developed by Aviles® and Hartogh and
Tolhoek.? The circumstance that our two forms for K
[Egs. (15) and (17)] imply Xp=X®=14+0(8?) is
used to simplify the statement of Eqs. (28) and (29).
The same simplification can be introduced into Egs.
(21)-(23).

The averaging process exhibited in the definition of
I® serves the double function of giving equal weight
to all possible configurations containing I orbitals be-
longing to n* and, as a corollary, maintaining invariance
under U(n*). Since Iy(B8) possesses the invariance
property it is not unreasonable to require that a pro-
cedure for computing Iy in terms of successive approxi-
mants should also possess it at each stage of approxi-
mation. This is not however a necessary condition for a
satisfactory computational method. Just the fact that
a truncated form of G;, is not invariant under U(n*)
means that the series for G;, converges most rapidly for
some particular choice of orthogonal basis functions in
the n* function space. In this connection simple plane
waves appear well suited to utilize effectively the
opportunities for detailed internal cancellation implicit
in the formulas for X*...qx and X’ 4...q%.

From the defining relations, Egs. (18) and (25), we
see that

X®O=1/NN—1))" Xpn*,
m,n (30)
XO=(1/NN=1)N—=2)) T’ Xnsntps,

m,n,p

the prime on the summation denoting absence of terms
with two or more identical indices. However, X @ is not
connected with the average value of X, xn#pxgx in the
same simple manner. The presence of X®? in the de-
fining equation means that

1
N(N—1)(N—2)(N—3)
X [Xm*n*p*q*—l- 3X it X gk |«

MNP q

X@43X@2=

(31
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Consequently

1
—NiX®O— 3 Xknkpr =3 N3X®?
4!

m<n<p<q

— Y [ Xoana Xkt Xk X ke it Xm*p*Xp*n*] .

m<n<lp

(32)

The derivation of Eq. (32) requires careful treatment of
the X knxX prex terms in Eq. (31). These terms occur
multiplied by the factor

3 3 / 4
— 1+~> .
N(N—1)(N—2)(N—3) NN—1)\ N

F(r) = 14+FO(r)+FO(r),
FO(r)=—(1/5)E(k ),

E. FEENBERG AND C. W, WOO

Equations (30) and (32) are sufficient to verify the
identity of G; and G up to and including terms in
X nsprgr and X @, Here the significant point is that
corresponding orders in the two developments are not
identical. The superiority of the IY development is
demonstrated in Sec. IV where a truncated form of G,
meets a consistency test while Gqns to the same order
fails.

A second test is provided by two formulas for the
radial distribution function generated by truncated
forms of Gi, and Gu using Eq. (17). The first two
addends in Egs. (23) and (29) yield the radial functions

gi(r)=gp(r)Far),

gaht(r) = gB(r)Faht(r) ’ (33)

with

2 2
Fy®(r)= -"sf / gs(r)(gs(|r—1'|)— l)lz(kﬂ’)dv’-l-s—jl(kﬂ) / gs(r)(gs(| t—t' )= Dk pr )k p|r—1'|)dv’,

2
Fane®(r)= 2 / ga(r)(gs(| r—1'|) = DP(kpr')dv’

N

(34)

2p
+;l(kﬂ) / g5()kpr)-[ga(|x—1'|lkp| t—2' | )= Uk pr)I(pr') Jdv .

Here s denotes the number of spin (and isospin) orienta-
tions represented equally in n (s=1, ferromagnetic
state of He?; s=2, paramagnetic state of He?; s=4,
ground state of nuclear matter) and also

kp=(6m%/s)'"3,
I(x)=(3/4%)(sinx—x cosx).

The functions giy and gane for the paramagnetic state

(35)

1 1 1 1

b ° 6

Fic. 1. The radial distribution functions gz(r) and gi (7). On
this plot gea: and gy are indistinguishable.

(s=2) are plotted in Fig. 1 for a particularly simple
choice of gz(r). The detailed specification of gz(r) is
given in Appendix C. Values of F®(r), F,® (@),
Fane®(r), Fyy(r), and F.1,.(r) appear in Table I.

TaBLE 1. Values of F®(r), Fyy® (r), Fane™® (), Fiy(r),
and Fope(r) for s=2.

7(4) F®(r) Foy®() Fam® @)  Fiy(r)  Famelr)
1.8 —0.303 0.014 0.013 0.711  0.710
2.2 —0.233 0.027 0.025 0.794  0.793
2.6 —0.167 0.037 0.035 0.870  0.868
3.0 —0.111 0.044 0.043 0934 0.932
3.4 —0.066 0.049 0.048 0.983  0.982
3.8 —0.035 0.051 0.049 1.016  1.015
4.2 —0.015 0.047 0.046 1.032  1.032
4.6 —0.004 0.038 0.038 1.034 1.034
5.0 0.000 0.024 0.024 1.024 1.024
5.4 0.000 0.008 0.008 1.007  1.007
5.8 —0.002 —0.004 —0.004 0994  0.994
6.2 —0.003 —0.007 —0.006 0.990  0.990
6.6 —0.004 —0.003  —0.003 0993  0.994
7.0 —0.003 0.002 0.002 0999  0.999
74 —0.003 0.005 0.005 1.003  1.003
7.8 —0.002 0.006 0.006 1.005  1.004
8.2 —0.001 0.005 0.005 1.004 1.004
8.6 0.000 0.004 0.004 1.004 1.004
9.0 0.000 0.002 0.002 1.002  1.002
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TasLE II. Sr(0) by Eq. (34) and Appendix C.

IY formalism AHT formalism
1-Index  2-Index 3-Index 1-Index  2-Index 3-Index
contribu- contribu-  contribu- contribu- contribu-  contribu-
s tion tion tion Sr(0) tion tion tion Sr(0)
1 1 —1.332 0.376 0.044 1 —1.332 0.373 0.041
2 1 —1.542 0.697 0.155 1 —1.542 0.692 0.150
4 1 —1.689 1.094 0.405 1 —1.689 1.093 0.404
The normalization conditions Xorntpr= | @m|?| @n|?| 05| 2 X mnpt- - -
+[0m|*|8n |0y 2Ximnr e
P/(gB— 1)d‘0=p/ (gr—1dv=—1 (36) + | an|2a0*ap*budpX mnpimn prt - - -
+dm*dn*dp*bmbnbpxmnp;m’n’p’+ R (40)
and the equivalent statements and corresponding equations for the derivatives with
respect to 3 evaluated at 3=0 [place a prime denoting
_ the derivative on all X’s in Egs. (39) and (40)7]. The
SF(O)_ 1+P/(gF(r) 1)d'l) elements an;m’n’, anp;mn’p’, and anp;m’n'p' are de-
fined by Egs. (39) and (40). The element X'mn;m ns
is defined as the coefficient of @,*@n*bmbn In X' prnx
= F(r)— = . T e mn
/ gs(NLF(r)—11dv=0 G7 = ((d/dB) X rn*) p=o. Similar definitions yield X’ ynp;mn’p

provide a criterion for testing the truncated forms.
Results are shown in Table II for s=1, 2, 4.

These results may be evaluated as good at s=1,
acceptable at s=2, and dubious at s=4. Consistency
can be enforced on the truncated theories by incorpo-
rating an adjustable amplitude parameter into the
3-index addend in gp. The procedure is developed in
Appendix D. No conclusion can be drawn from these
results on the accuracy of the formalism for nuclear
matter under realistic assumptions on kr and the hard
core radius.

IV. GENERATING FUNCTIONS AND
CLUSTER EXPANSIONS

To make connection between generating functions
and cluster expansions the exponent G(n*|0) in Eq. (22)
and the derivative function §'(n*|0) must both be
expressed as sums of addends associated with distinct
matrix elements. In the initial phase the analysis based
on Eq. (5) can be simplified by requiring | m|2= |0m|2=}%
for some values of m and |an|=1, b,=0 for all others.
Results are in fact independent of this specialization of
the formalism. The arbitrary phases of a» and b, are
still available to identify components of nondiagonal
elements. We consider examples in which first one, then
two, and finally three orbitals involve linear combina-
tions of simple plane-wave states. At 3=0

Xpx= laplsz‘*‘lbp'sz':l

38
X '=0, (3%)
Xomnr= ldml 2| anl 2Xmntc e
+Ibm|2lbn|2Xm’n'
-l—dm*an*bmanmn;m’n"'*" ) (39)

and X' pnpiminrp from X' panspx. The general rule is
dictated by the occurrence of the linear combination
orbitals in the exponential operators [Egs. (15) and
(16)7: First compute the derivative with respect to 8 at
B=0, then expand in terms of the a, a*, b, b* amplitudes.

One Orbital Different (|a1|2=|b:|2=3%)

§(1'2---N[0)=G(12- - - N|0)+5Gr(0)—8G:(0),  (41)
G(n*|0)=3G(12- - -N|0)+3G(12- - - N |0)

+3[Ag(l, D), (42)

Ag(1',1) =”§1(X vm(0) = X1m(0))+- - - (43)

As in Ref. 13, Appendix A, the functions §G.(0) are
defined by the statement

0Gm(0)=g(12---m—1 m m+1---N|0)
—g(12---m—1m+1---N|0). (44)

Equations (7) and (22) now reduce to
cosh3(8Gy(0)—6G:(0))=exps[AG(1,1) ]2, (45)

in agreement with the leading term for AG given in
Eq. (43) but providing the possibility of a more precise
evaluation of AG when it is not small.

Observe that the leading term for AG(1’,1) given by
Eq. (43) is generated by the terms with repeated indices
in the second addend of G;;, [Eq. (23)]. The truncated
Gy gives consistent results in Eq. (45) without invoking
contributions from the third and higher addends. With
Gant, an equal degree of consistency can be attained only
by introducing terms from the third addend [Eq. (29)].
Thus the truncated 1Y development (two and three
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index terms in G) meets a test of internal consistency in
a satisfactory manner while the corresponding truncated
form of the AHT development fails.

Normalized basis functions are convenient in the
following sections. Let

[nime: - ny}=Vy/(n|1|n)2,
E®(m)={n|H|n}.

The simple bracket ) is reserved for an orthonormal
basis system.

(46)

Two Orbitals Different (|a1|?=az|2=b1|2=|bs|2=3%)
g(1'2'3-- - N |0)
=G(123- - - N |0)+6G1(0)—5G1(0)

+6G2(0)—6G2(0)+0(1/N), (47)
G(1*2*3---N|0)
=%G(123---N[0)+3G5(1'23- - - N |0)
+3[Ag(,1) P+3[AG(2',2) +0(1/N)
+ar*a2*b102G12,102/(0) - -+, (48)
Gz v2(0)
=X12;1'2'+7§2 [(Xionvon—3X1 1
X (X in+Xynt+-XontXon) 40+ (49)

Now Eq. (8) with A=1 and Eq. (22) with 8=0 require

cosh3(3G1(0)—8G1-(0)) cosh7(3G2(0)— G(0))
exp§(AG(1,1))+3(AG(2,2))*  (50)

in agreement with Eq. (45). This result verifies the con-
sistency of the truncated IY form for G when the model
function is constructed from the particular linear com-
bination of determinantal functions generated by %(| 1*)
and #(]2%).

The fact that Gia;1-o is of order 1/ means that only
linear terms in a1*a2*b1b2 need be retained when Egs.
(47)-(49) are combined with Egs. (8) and (22). The
result is

(123---N|1]123---N}
= Giz;1-2(0) cosh3(6G:(0)—6Gr(0))
-cosh2(8G2(0)—8G2(0)). (51)

Equation (51) is not altogether satisfactory. Observe
first that Giz; 1/ is antisymmetricin 1, 2and alsoin 1/, 2’.
The exact matrix element {123---N|1|1'2’3---N} also
has this property. So fas Eq. (51) is in order. However,
the remaining factor in the right hand member of Eq.
(51) should be a symmetrical function of 1, 2 (and also
of 1/, 2), but it is not.

The immediate cause of the descrepancy is surely the
association of states 1 and 1’ in #(]1*) and of states 2
and 2’ in %(|2*) so that 1 and 2 and also 1’ and 2 enter
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the theory in an unsymmetrical manner. This associa-
tion causes no difficulty in the expansion of Eq. (8)
because the linear combination of orbitals leads directly
to a linear combination of Slater determinants each with
unimpaired fermion symmetry properties. On the other
hand, the cluster expansion is not sufficiently flexible
to reproduce in every detail the properties implied by a
linear combination of determinants. We have not suc-
ceeded in resolving this difficulty. However, symmetry
can be achieved in working formulas by symmetrizing
the coefficient of Gio1rer in Eq. (51) with respect to
interchange of the indices 1’ and 2’. We introduce the
geometric mean coefficient and write

{123---N|1|12'3---N}

612, 12(O)[ I T coshi(6G0)— 3G, O], (52)

i=1 j=1

Actually the factor in square brackets in Eq. (52) is
replaced by 1 in the explicit working version of the
theory [Egs. (73)-(75), (86)-(96)]. The theory is most
useful when the difference between Egs. (51) and (52)
is inconsequential. Numerical estimates in Appendix A
verify that this is indeed the actual situation.

Three Orbitals Different
(las|?= | az| 2= as| ?= | ba| 2= | ba| *= | b5]*=3)
G(1'2'3'4- - - N |0)
=g(1234- - - N|0)+8G1(0)—6G1(0)

+0G2(0)—8G2(0)+6G5(0)—8G5(0)++ -+, (53)
G(1*2*3%4. .. N'|0)
~1G(1234- - -N|0)+3G(1'2/34- - - N'| 0)
+i[AG(V, 1) +§[Ag(2,2) P +3[AG(3,3) I
+ar*a*ag*bibobsGros e (0) 4+ -+, (54)
Gras: 123 (0) = X1o3; 1723 (0) 4+ - - (55)

Equations (47)—(49) in Egs. (9) and (22) require
3 3
IT cosh3(8G:(0)— G (0)) = IMI1 expi[AG(,i") ]2 (56)

i=1

in agreement with Eq. (45). The nondiagonal matrix
element is

{1234---N|1|1'2'3’4- - - N}
3
= Gag vy (0) ]I cosh3(6G:(0)—6G(0)). (57)

i=1

The discrepancy already noted recurs again; the matrix
element is completely antisymmetric in the indices 1, 2,
3and also in 1, 2/, 3'; so also is Gies,1r2r3(0). However,
the coefficient of Gyag;1/2:3(0) should be invariant under
permutations of 1, 2, 3 and also of 1/, 2/, 3’ and it is not.
To secure correct behavior we replace the coefficient of
Gios, vy by the geometric mean of the six different
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coefficients generated by the permutations of 1, 2, 3:

{1234---N|1]|1'234-- - N}

= Gios; 1'2'3'(0)[I31 fI cosh3(8G:(0)—8G;(0))]'2. (58)

i=1 j=1

Again the factor in square brackets is replaced by 1 in
the working version of the theory [Eqgs. (73)-(75),

(86)-(96) 1.
Next we develop the consequences of Egs. (7)-(9) and
(14) giving {n*|H|n*} in terms of I»'(0).

One Orbital Different (|a1|2=|b:1|2=%)

The appropriate substitutions in Eq. (14) produce a
near identity:

exp3(8G1(0)— G- (0) JE®(12- - - N)
+exp—3(8G1(0)—6G(0))E@(12- - - N)
222 cosh(6G1(0)—8G1-(0))
[BE®(12- - - N)+1EO(1/2- - - N)+8E(1’,1)]. (59)

Terms proportional to V balance exactly. There are left
on either side small terms independent of V. These latter
may not balance exactly for the reason that terms of
order O(NV°) are neglected in the derivation of Eq. (22).
Consequently Eqgs. (14) and (22) are not exact identities
with the given forms for I5(0) and I5'(0). The small
cross term 8E(1’,1) [also of order O(N®)] is computed
in Appendix B.

Two Different Orbitals (|a1|?=|az|?=|b:1]2=|b2|2=1)

Again employing Eq. (14) linear terms in N balance
exactly. For the coefficient of a:*as*b;b, to vanish
requires
{123.---N|H|1'2'3---N}

= (h2/2M) cosh3(8G:1(0)— G (0))

X cosh3(8G2(0) — 8G2(0)) G1z;12”
+{123---N|1|1'2'3- - - N}[ZE©(123- - - N)
+IEO(1'2'3- - N)+0E1,1)+8E(2',2)].  (60)
As in Eq. (51) the right-hand member of Eq. (60) is not
exactly antisymmetrical in the indices 1, 2 or in 1/, 2'.
For lack of a more logical procedure we follow the

precedent set in writing Eq. (52) and replace Eq. (60)
by the simplest possible antisymmetric modification:

(123---N|H[1'2'3--- N}
(/20T 11 coshd(3G:(0)— 3G (012G

i=1 j=1
+{123---N|[1|1'2/3- - - N}[ZE®©(123- - - N)
+IEO(12'3 - - N)+23E(1',1)+38E(2',1)

+30E(1',2)+30E(2',2)].  (61)
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The actual numerical differences introduced by the
change are quite small and consequently cannot modify
the physical consequences of the formalism in any
serious respect (see Appendix B).

Three Orbitals Different
(lar|?=1az|?= | as| *= | b1| 2= | ba|*= | 5] 2=1)

The actual form for (1234.--N|H|1'2'3'4---N)
given by Eq. (14) fails to meet the test of complete anti-
symmetry in the indices 1, 2, 3 or in 1/, 2/, 3. We write
a properly symmetrized form

{1234---N|H|1'2'34- - - N}
3 3
= (7%/2M)[ 11 II cosh3(8Gi(0)—6G(0))]/*Guagara”

i=1 j=1
+{1234---N[111'2'3'4. . - N}[1E®(1234- - - N)
3 3
+IEO®1'2'34---N)+3 X 2 8E(,5)] (62)

i=1 j=1
representing the simplest possible modification of the
formula computed from Eq. (14). Again the changes are

small in magnitude and have little effect on the con-
sequences of the formalism.

V. NORMALIZED-ORTHOGONAL BASIS

The matrix 97 constructed from the elements {n|1|n’}
can be used to generate a normalized-orthogonal basis.
Write

N=I+J (63)

in which 7 is the unit matrix and J has only nondiagonal
matrix elements. The matrices 9U"1/2 and 9N!/2 are
defined by the binomial series

N12= LT3,
2= 4L] 124,

With coefficients taken from Eq. (64) the Lowdin
transformation'”

|0) =3 [} (nf |12 m}

(64)

(65)

generates a normalized-orthogonal basis system and
moreover, in this problem, produces a partial diago-
nalization of the Hamiltonian matrix. First

(0'[1[n)
— Z {n”]fﬂ_l/zln'}*{n"l1ln”’}{n”’19’6‘”2]n}

n’’,n’’’

Z {nr | qr—1/2 l nu}{nu I 1 ln///} {n/// l E)“L—l/?| n}

n’’,n’’’

=¢(n’—n). (66)

17 P, O. Lowdin, J. Chem. Phys. 18, 365 (1950).



A 400

Next write the matrix of H in | } representation in
the form

e =1(EON+NE®) 4w, (67)
in which W has only nondiagonal matrix elements and
E@©=(E©®(n)s(n—n’)), (68)

a diagonal matrix with elements defined by Eq. (46).
The transformed Hamiltonian is

H= m——l/z&cm—l/z
— %Em_l 2g (0)9‘(,1/2—’—3"61/21’:(0)91—1 /2]+ gr1/2g 91—1/2

=EOLWWOLW®, (69)
WO = —L(JW+WJ)
w@=1J[J,EO]]+---
+iJWI W+ §WI ]+ - - (70)

These results are particularly interesting and useful if
W® is unimportant. Keeping only W®), the matrix
elements of H reduce to'72

(n ] H|n)=E®(n)
= EO(m)—} X [(n] 7 |n"} (" | n)

+{n[W[n"}{n"[J|n}], (71)

([ H|n)={n'|W[n} =3 > [{n'|/[n"}{n"|W[n}

+{n'|W[n"}{n"[J|n}]. (72)

We are interested primarily in configurations which
contain only a small fraction of excited orbitals. This
restriction makes possible a useful simplification in the
evaluation of sums over intermediate states as in Eqgs.
(71) and (72). Introducing the results of Sec. IT, Eq. (71)
becomes
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(n|H|n)
h
=E®(n)— 2 XogreXpaipd+--, (73)
»<q
pl<ql

with p, ¢ ranging over all orbitals in n and p’, ¢’ over all
orbitals outside of n. However, p’, ¢ may be taken over
all orbitals outside of the ground-stateconfiguration with
negligible error. The presence or absence of a few in-
correct terms in the sum over ', ¢’ makes little difference
in the value of the sum (a few might possibly mean a
few percent).
The corresponding treatment of Eq. (72) yields

(123---N|H|1'2'3---N)
=(/2M) Grzvo'—3(W?/2M) 22 [ X2, 50X pg 12’

»<q

+X12;pqupq;1’2’]+ Tt (74)
Again p, g range over all orbitalsnotin 1, 2, ---, N, 1/,
2'. As before, negligible error is introduced by allowing
$, q to range over all orbitals outside the ground-state
configuration. Consequently the matrix element depends
only on the orbitals in which initial and final-state func-
tions differ. We may therefore omit all the superfluous
common orbitals in labeling nondiagonal matrix ele-
ments and write

(nmans: - -y | H|ni'ng'ng- - -nyy=(nyms| H| ni'ny’)
(nmonsng: - -ny | H|n'ndng'ng- - -ny)
= (nnans| H|ni'ng'ng')
52
ZEX’nlnzns;nynz'na'—l—- <. (75)
VI. EXPLICIT FORMULAS FOR MATRIX ELEMENTS

The evaluation of the cluster integrals and their
derivatives with respect to 8 is facilitated by writing the
formulas for X,xgx(8) and X,pxex(8) as defined by
Egs. (15) and (18) in a more compact form:

1
Xp*q*(ﬁ)=/[ll/o ][szl RPN [4(1]p%) | 2—Xpw(ﬁ)][§2 ePECM | 9(2[g*) | 2— X 2(8) Jdvss...v

B2__
Qy

_../30032 Z EeﬁK(llp*)u(l IP*)M*(l l q*>][eBK(2|q*)u(2 l q*)u*(zlP*)]dvm---N ,

81,82

(76)

178 Note added in proof. The resolution of H into E@+W® and W® requires care in the recognition and segregation of unlinked
terms with incorrect dependence on N which occur separately in W® and W®, but cancel in the sum. Such terms are not present in

the approximation of Egs. (73)-(98).
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Xutpeoe(8) = / [W”—-—][Z KA (1] 1%) |2 X u(8) ]
L R [1(2] p%) |2 X e (6) L 8510 [1(3] %) | = X ox(8) Thorz.o

— [ WL R (14— Xon BT 2] (2] )]
- [X PR3] )t (3] ) Jdvre..n—

+ [ Y T [ePRAmu(l | n¥)uk(1] g*) JEePR Clmmon(2] p k(2] %) ]
o LK Glamu(3] g*)ar* (3| %) dvsa..

+ / Yo 2 [ePEAmu(1|n*)u* (1] p*) JLePXEPu(2| p*)u*(2]¢*) ]
e [ePE G103 | *)u* (3| n*) Jdvszeow . (T7)

Here the summation over spin (spin and isospin) variables is exhibited explicitly. Note that y(? is normalized.
Calculations closely paralleling the corresponding development in Ref. 13, Sec. II, yield

X px= lap12Xp+lbpl2Xp" X,=1+0(6%, Xp=1+4+0(8%). (78)

NX pxqx(0)=—[ap|?| aq| Xpq,qp)(S (kpg) — D+ | a5|2| 0| 2pq’,q' p)(S (kpyr) — 1)
+ l bP! 2[ G’Ql 2<PIQ:QPI>(S(kP’ q) - 1)+ | bpl ? l bQI 2<P/q,7qlpl>(s(kp’q’)" 1)]
+o(kpt+ky—ky—keay*ag*d,b [ (pg,p'q WS kpp) — 1) —(pg,g' 0" WSk ) — 1)+ -+ . (79)
Here S(k) is the liquid-structure function defined by the ground-state boson-type solution. The convolution form
for the three-particle distribution function!? is used in evaluating three index-cluster integrals. The spin matrix
element (pg,qp) has the value 1 for parallel spins and vanishes for antiparallel spins. The general formula is

(m---g,m’---¢"y={(mm’)---{g,4").
NX pror' =[] | 2| aq| Xpg,gp)(S(kpe) — 1)( 2ky ko tkpr®+h o)+ -
+ 1051 2104| 2" 14" 0" ) S (b ) —1)(— 2k - k¢ +k?*2+kq*2):| 30(kyt+ky—k,—koay*a*b,b,
[P0’ ¢ NSk p) — D) (Rppr*+gar®) — (99,9 #' NSk ) — V(kpy*+hgp?) 4+ - . (80)
N2 X wxprqx(0) =L an|?| a5|2| ag| Xnpq,qnp)(ng,pr,gp)+ - - -+ |ba| 2| 05| 2| ba| X' p'q '/ p") (' "1 ,0'p") ]
L] anl?| ap|?| ag| Xnpg,pgn)(np,pg,qn)+ - - -+ 0412 05| 2| ba| X' p'q',p"q'n Y0t ¢ sg'n')]
+o(kntky+ky—kn—kp—ko)an*a,*a*bub b [ (npg,n’p'q Ynn' ,pp’,qq")
—(npgn'q p") (' ,pq',qp") — (npg,q o0’ Y(ng ,pp’ sqn') — (npg,p'n’ ¢ Ynp' o1’ ,qq")
+(npg,g'n'p"Y(ng ,pn’ ,qp" )+ {npg,p'g'n" Ynp',pg’ sqn') 1— 8(kp+ko —kp—koay*a*byb,
“Llan|*{(npa,q'p'n)(ng ,pp",qm)+(npg,p'ng ) (np’ ,pn,qq") — (npg,q np’)ng ,pn,qp")
—(”PQ:P'Q'"X"P',PQ',Q”)}+ ! b"l 2{ e }:]_ Ut (81)
Here we use the convenient notation
(np,09,97) = (knpk pask an) 5
(kR ') =(S(R)—1)(S(K")— D) +(S(&") — 1)(S(X"")—1)
+(SE")—1)(S k) —1D+(S*k)— 1)(5 E)—=1)(SE")—1). (82)
N2X" ywprgre=[| @] 2| 5| 2| ag| 2{{npg,qnp)(ng,pn,qp) (kn-kotkp-kntlo-kp—3kur®— 3k pw* — 3k ox?)
+npg,pgn)(np,pg,qm) (Knkpt-Kp kot Koo kn—Fhus®— 3l pu— 3k o5 )}+
(04 [2[0]2[bo| *{(n'p'q ,g'n'p' ) (W' ,P'%',Q'P') (kn-kg+kp ko t+kg ky —fkn* o+ —3kex?)
Hn'p'q ' Yo't ' g ) Kkt Ky kgt kg ke — Sk — 5l pn®— kq*2)}:|
—(ky+ky—ky—ko)a,*a,*b,b,
Llan|2({npg,d p'n)(ng ,pp’ sqn) (kn+ kg +kp byt Kn—3kus® — 3k pu®— 3k ?)
+{npg,p'ng Ynp',p1,9q0" ) kn+ K+ kpe knt-kg kg — kux®— 3k pe® — 3k x?)
—(”PQ,Q'"P'>("4',P%QP'>(kn'kq'+kp'kn+kq°k 1 — 3k _”kp* —3kox?)
—npg,p' ¢ n)(np’,pq ,qn) (kn* kp+kp ko +ko-kn—3kax?— — 3k} 10412} ]+ -
_%5(kn'+kp'+kq’—kn'—kp'_kq)an*ap*aq*bnbprI:(”PQ:”’P’ql>(””,’1’P,79q,) (knn*+kpp*+keg?)
—(npgn'q'p" Ynw' ,pg yqp") nn®+kpy®+kap®) — (npg,q' p'n' Y(ng' ,pp’" g0’ ) (kna*+kpp*+kon?)
—(npq,p'n' ¢ Ynp',pr’ qq") Fenp*+kpn*+ ko) +(npg,q'n’p" ) (ng o1’ qp") (kng >+ pnr®+ kg ?)
+npg,p'qgn" Y np' ,pg ,q1n" ) knp* tpo* +hen?) ]+ (83)
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Equations (79)-(83) should be compared with Egs. (39) and (40) to determine explicit forms for X,q ¢
Xopgnp o and their derivatives with respect to 8.

VII. QUASIPARTICLE FORMALISM

Equation (48) of Ref. 13 is a general formula for E®(n) including three-index terms. An equivalent operator
form, employing the discrete number operator formalism, is

1 1
Eoperator @ =3, e(k)axs'aws+— 2, Ka(k—Dawstasarsiast+—— > Ka(kl; m)ar, 00157 0100msTams,  (84)
k,s 2N x,1,s 2N?2 k,1#m;s

with
e(k)=72k2/2M , Ko(k)=e(k)(S(k)—1), Ksk]; m)=—ek—DSk—D(S(k—m)—1)(SA—m)—1). (85)

The creation and destruction operators ax,', ax, obey the standard Fermion anticommutator relations.
To find the corresponding operator for E® (n), consider first the explicit statement of Eq. (73):

EOm)=E®m)+#/2MN?) 2. o(ky+ky—kp—ko)-[($9:0'¢' NSk ppr)— 1)k ppr*
3
+(p0,q ' W Skw ) — 1kgw®— (p0,0'0 Y09,9' 0" )(S (kppr) — (S (kpr ) — 1) (Rpp®+hgp®) 14+ . (86)
In Eq. (86), p and ¢ are confined to n while " and ¢’ range over the quantum number space outside of the Fermi
spheres. An equivalent statement is

1
E®(n)=E® @)+ o kZl L) Lp(k, D+ (1 —{s,6)) La(k,D ]+ - - - (87)

in which ks, It range over n and

LAD=(1/20) % [Tk =Gk 200+ (1K)~ DG K 280,
|k -+ —K'| >kp
LkD=(/20) T[Sk GOk )/ 200+ )~ DX~ 230) (38)
i — (St—K)— 1)(SA—K)— D)2/ 2M)((k— )+ (1= k).
Equation (87) yields immediately the desired operator form
E = By (/2 E. Lol D aontnt (1/20) £ LD awanfor k. (89)

Here k, 1, s are not restricted.
The nondiagonal component of the Hamiltonian matrix can also be expressed in an equivalent operator form:

WO=Wt+Ws,
We=3% 3 (k1w |K V)st,s'tYartarstavpaw s, (90)

ks, 1t
K's’, It
Wi=% X (kLm|ws|K,V,m')stu,s't'u) axstart amit @ waveacs .
ks, Iz, mn
s U
Here s, t, # denote the single-particle spin states with numerical values 4% and —3%. The interaction operator
w, includes contributions from four sources: two index terms in G, three index terms in G, the orthogonality trans-
formation and the 8F terms from Egs. (61) and (62) and Appendix B. To exhibit these contributions separately

we write
Wo=W @+ W @y lorth) | 7, (1) (91)

and obtain
S(k'+1'—k—1) #2(k—k')?
(k1|2 | K1) = ( ) ) (1—Sk—Kk)). (92)
N 2M
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d(kK'+V—-k—1)

h2(k— q)2
1|2 ® K1) = > [ (
2N2 ¢<kF

oM

n(k'—q)*

+______
2M

n('—q)?
—(S(1-) - DT - ) Sk—k) -1+
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———(S(K'— )~ )(S(k— ) S(k—k')—1)

#2(1—q)?

(S(k—q)—1)(S(k'—q)S(k— k') — 1)+—~2—M—(S(1’—q)— DEA-)Sk—k)—1)

*(k—K')?

—S(k—K
o Skl

Z

-{(S(k—q)—1><s<k'—q>—1>+<s<1—q)—l)(S(l’—q)—1>}]

s(K+1—k—1)

2 [(w(k2—k2)/2M)(S(k—K")—

D(S(k—q)—Sk'—q))

4N?2 a<kp
< R — ) 2 XS —K)—1)(S(— @) — ST —))]. (93)
(1 atoren0 | K1)
hZ
=GT kDAY S (k) DR K~ (kK (k7))
">kr /
R H(SA=K) = ST —K)—1)(A=K"YH k")) (94)
(k1w B | K Iy = ((K'+-V —k—1)/2N)(S(k—K')— 1){SEF k) +SE(E 1)+ EW k) +SEW 1)} . (95)

Note that cosh factors [ Egs. (52) and (58)] are neglected in Egs. (92) and (93), and only the leading term is given

in Egs. (94) and (95). To the same order of accuracy
o(k'+1'+m’'—k—1—m)

<k71;mlw3! kl,l,7m’>= -
2N?

The summations in Eq. (90) are restricted to non-
overlapping initial and final states. This means that a
given wave vector and spin orientation can occur only
once in a particular product of creation and destruction
operators. Otherwise no constraint (beyond those ex-
expressing conservation of momentum and z component
of spin) is placed on the wave vectors and spins.

These results may be described in the language of
quasiparticles.!®!® Part of the Hamiltonian E® is
diagonal in the primary set of occupation number
operators ax,'ax;. We may say that E® is the Hamil-
tonian for a system of noninteracting (or free) quasi-
particles. These are the carriers of momentum, spin, and
statistics. The appropriate development of the Landau
quasiparticle formalism has already been given in Ref.
13, but only for E®,

The nondiagonal component of the Hamiltonian W ®
represents interactions (or collisions) involving groups
of two and three quasiparticles. These collisions modify
and limit the quasiparticle concept in ways that have
not been investigated. Some tools, perhaps adequate
ones, for evaluating the physical consequences of
EW4-W® already exist in modern diagrammatic per-

18 L. D. Landau, Zh. Eksperim. i Teor. Fiz. 30, 1058 (1956); 32,
59 (1957) [English transls.: Soviet Phys.—JETP 3, 920 (1957);
5, 101 (1957)].

9 A. A. Abrikosov and I. M. Khalatimkov, Rept. Progr. Phys.
22, 329 (1959); Usp. Fiz. Nauk 56, 177 (1958) [English transl.:
Soviet Phys.—Usp. 1, 68 (1958)].

(k—K, 1-V, m—m’)(

r—K)? #(—1) #(m—m')
: ; ) (96)
oM oM 2M

turbation and Green’s function techniques and (or) the
superconducting type of canonical transformation.
Problems of immediate interest in the light of current
research on liquid He? are (1) the range of usefulness,
detailed properties, and limitations of the dressed quasi-
particle description generated by E®V+W® and (2) the
possible existence or nonexistence of an energy gap in
the excitation spectrum and the magnitude of the gap
if it exists.

A brief comment is in order on the second problem.
The leading term in (k,1|w.|k’,l) is

(O(k'+V—k—D/N)(#*(k—Xk')*/2M)(1—S(k—k")), (97)

a positive quantity for mass 4 when %’ is not too far from
the Fermi surface [since S(2kr)<1 for the He* boson
system_.

Whether or not the same statement holds at mass 3
can only be conjectured at present. Calculations by
Walter Massey now in progress should soon provide
information on S(&) and gs(7) at mass 3. It is perhaps
safe to conclude that an energy gap at mass 3, if it is
actually a consequence of the theory, can only be re-
vealed by careful detailed calculations, and must be
quite small in agreement with the trend of studies on the
possibility of a superfluid state of liquid He?.20

The interaction matrix element of Eq. (97) defines an
effective two-particle point potential in the model co-

20V, J. Emery and A. M. Sessler, Phys. Rev. 119, 43 (1960).
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ordinate space:
o(r)=(#*/2M)Ags(r) (98)

This potential exhibits a repulsive hill on the rising
slope of gs(r), reverses sign to become attractive in a
region more or less centered about the nearest-neighbor
peak and thereafter oscillates with rapidly decreasing
amplitude and also decreasing spacing between peaks
and valleys.

We are encouraged to expect that the uncertain inter-
action operator W,®®) has no important physical con-
sequences by the fact that its matrix elements are
negligible when the initial- and final-state wave vectors
of the colliding quasiparticles are all close to the Fermi
surface (see also Appendix B).

r=712.
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APPENDIX A: ESTIMATE OF
AG(1,1)22Z [X1m (0) — X1 (0)]
m

Equation (79) and the quadratic approximation for
S(k) [Ref. 6, Eq. (B1)] yield
qu(o)g"‘(1/N){B(kpq/kﬁ')2—1} (Al)

on the range 0< | k| <2kp. For Het, B=0.195. In the
special case ky=Fkp, k1=0:

s Q kr?tk?
L XenlO—— [ E -]k
N (2r)? kr?
(A2)
= —3[BG+D-1]
Z X1 (0)=—3[B:—1].
Consequently
AG(1',1)=~—B=-0.195 (A3)

expi(AG(1,1))22¢1+0.005.

This result justifies the general replacement of ex-
ponential amplitude factors by unity in the explicit
matrix elements of Eqs. (86)—(96).

APPENDIX B: DERIVATION OF $E(ky,ki)) AND NUMERICAL ESTIMATES

|a1]|2=1b1|2=3;

a,=1,0,=0,n>1.

SE(1,1)=¢'(n*)—3[g'(12---N)+g'(1'2---N)] (B1)
=2 [xl*p'—%xlp"%xl'p’]‘*"% > [#1%pd — 5%10d — 32154 ]
»>1 p#q
- E [oixp = 5%15 — 3215 Jpg— 2 [Hpiating —30p1%1s — 5412, | (B2)
pEq p#q
#2(ky2—E1?)
= [ 2 {Stqki—D—Sky—D}Sk— 1)+z{ Z S(kl—l)}z—”{ Z Sky—1)}2
SMN? k,<kFp
— 3 (ki bk )lk)— (Byl kyk, lk)}]-l—“ 2 {SUu—D—Skv—D}
k<kp 2 k,I<kp
72(ky—k)? 72(k;—k)?
Lot -0 (sig-n T gy
2M 2M

The quadratic approximation for S(%) (Appendix A)
gives
SE(1’,1)22—0.024¢r (B4)

at the surface &y =%kr and £1=0. If both %y and k; are
on the Fermi surface 6E vanishes.

The relative importance of terms involving 6E can be
estimated by evaluating the reduced formula generated
by Eq. (61):

{12|W |12y = (B*/2M) Gr2;12”
+{12|1]12"}3 Z Z 8E(1,5").

i=1 j=1

(BS)

In the special case ky=Fk;=0, ky=—k; with opposed
spins in both pairs and ki =ky=Fkr, Eq. (B4) holds for
all 4, 7 on the range 1, 2. Again using the quadratic
approximation for S(%),

(7?/2M) Gr2,19"=((1—B)/N)er,

(12[1]123 g >=: 8E(i, ')
%’((1 —B)/Z\7)6FX0.048

200.048(42/2M) Guay 1o« (B6)
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APPENDIX C: APPROXIMATE ANALYTICAL
FORM FOR g¢z(r)

Theoretical formulas for gg(r) have been computed
by Walter Massey using an adaptation of the Wu-
Feenberg® procedure for computing the ground-state
properties of a boson system. In our illustrative calcula-
tions we use one of Massey’s forms for liquid He* at the
equilibrium density (p=0.0218 A-3):

g5(r)=gs’(r)+og5(r),
g8'(r) =€~ “W"[1+a(d/r)"+b(d/r)*"],
dgn(r)=A exp— (1+2)(d/r)"(d/r)™
X[1—B(d/r)"+C(d/r)**].

The constants occurring in gg® are subject to the
constraint

b

(C1)

— " rl_a ] (C2)
1—3/ul3 n dmpd®T(1—3/n)

imposed by the normalization condition of Eq. (36).
The correction term 8gp is constructed to leave the
normalization of gz unchanged.

The curves plotted in Fig. 1 are based on the numeri-
cal values

n=6, m=06, 2=0,
a=08, b=1.737, d=3.34A, (C3)
A4=0.2, B=100, (=4013.

APPENDIX D: CONSISTENCY CALCULATIONS
ON TRUNCATED FORMS OF G(n*|8)

We truncate the expansions for G; and Ga, at 3-index
terms. Equations (23) and (29) are replaced by

giy(n*lﬁ)= 2 Xomkn*

m<n
Fhiy X [ Xknrpr— X kg x X i px
m<n<p
— Xk X prpre— X ke X x|, (D1)
Gane(* [ B) =3 N2X D\, N3(X @ —3X %), (D2)
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The adjustable parameters A;y and Aqz; permit a partial
compensation for the omission of higher order terms.
Equation (34) is replaced by

Fiy(r)= 1+F(2)(7)+>‘iniu(3)(7) )
Fan(r)=14+FO @)+ NansF ne® (1) .

(D3)
(D4)

To satisfy the normalization condition of Eq. (37), the
amplitude parameters must assume the values listed in
Table III.

The extremum property of {n| H|n} may be lost when
approximate procedures are used to evaluate the ex-
pectation value. Also the degree of failure may depend
on density to a sufficient extent to falsify a theoretical

TasBLE III. A determined by S#(0)=0 (g from Appendix C).

s Ay Aahe

1 0.883 0.889
2 0.778 0.783
3 0.630 0.630

equation of state based on the approximate procedure.
These effects actually occur in a recent unpublished
investigation of the cluster expansion procedure for
evaluating the ground-state energy of liquid He%.2!
Results associated with S(0)=0 appear reasonable; all
others have doubtful significance. In the present context
the use of N to enforce the condition SF(0)=0 may
serve to avoid difficulties similar to those uncovered by
Williams in his study of the He* liquid.

2 Clayton Williams, Ph.D. thesis, Washington University, 1961
(unpublished) ; Proceedings of the Mid-West Conference on
Theoretical Physics, Purdue University, 1960 (unpublished).



