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Electron Excitation Cross Section of the 3'8 ~ 3'P Transition of Sodium*
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The cross section of the 3'S ~ 3 P transition of sodium produced by electron impact has been calculated
by performing a numerical integration of the set of three-channel differential equations. By means of this
numerical procedure, it is no longer necessary to replace the nondiagonal matrix elements of the interaction
potential by their asymptotic forms and to neglect the diagonal part of the interaction-potential matrix,
as was done in the previous calculations, The cross sections calculated by this numerical scheme are smaller
than those of the previous work, and the difference can be ascribed to the use of the true interaction po-
tentials rather than their asymptotic forms. An outline of the general formulation of the numerical method
for an n-channel case is given.

INTRODUCTION
' 'N a previous paper we have reported calculation of
~ - the cross section for the 3'S —+ 3'P transition of Na
by electron impact. ' Owing to the complexity of the
coupled differential equations, several simplifying
approximations were made. '—' The diagonal parts of
the interaction potential were set to zero while the
nondiagonal term which connects the initial and the
final state was replaced by its asymptotic form at large
distances Lsee Eqs. (12) and (66) of Ref. 1j. Also, an
iteration procedure in which the limiting case of exact
resonance is taken as the zeroth-order approximatioo,
was used to solve the coupled differential equations.
Because of the use of an approximate non-diagonal
interaction potential with r ' dependence over the
entire range, it was not possible to calculate the partial
cross sections for / =0 and l= 1 by solving the differential
equations in the usual way. ' Instead, these two partial
cross sections were simply taken as equal to one-half of
the upper limit values as imposed by the conservation
law. To improve this calculation we have used a numeri-
cal procedure to solve the coupled differential equations.
In this way we can avoid making the various assump-
tions described before. A brief outline of the numerical
procedure and the results of the calculation will be
given in this paper.

METHOD OF SOLUTION OF THE
COUPLED EQUATIONS

system (coupled representation) in the form'

e(v'~ r„x)=r-' P.F„(v'~r)P, (rt,r),

where v stands for the group of quantum numbers
e~l1KM and where the basis functions are the Clebsch-
Gordan combinations of P„,~, , and the partial waves
(spherical harmonics) of the incident electron,

Pv(rlyr) =Pmlm &mlm1lf Vnyllml(rl) &lm(r) ~ (2)

F„~(v'~ r)-k—'I'{sin(kr —-,'hr)5„„

+cos (kr ——,'hr) R„„.), (4)

where the S and R matrices are diagonal in I. and 3f
and are related by

S= (1+iR)(1—iR)—'.
The cross section can be expressed in terms of the
collision strength and the T matrix as

Q(nt'lt' —& mrlr) =sk' 'II(ssrlr, nr'lt')/(2lt'+1),

The index v serves to identify the initial state
e~'l1'l'I. M. In the S-matrix notation, the amplitude
function F„(v'

~
r) behaves asymptotically as

F„(v'~ r)-k—'I'iexpL —i(kr ——',hr)]8„„
—expli(kr —-,'hr) j5., }, (3)

or alternatively

Q(mrlr, est'lt') = P (2L+1)
~
T(sstltlL, sst'lr'i'L) ~', (6)We shall adopt the usual notation for an electron-

atom collision, i.e., r and r1 for the radius vectors of the
colliding electron and the atomic electron, respectively,
and P~, ~, ,(rt) for the wave function of the atomic
electron. If the exchange effect is neglected, the total
wave function may be expanded in terms of eigen-
functions of the total angular momentum I.M of the

ll'L

T—=1—S= —2iR/(1 —iR) .

The set of coupled differential equations for Il is
obtained by substituting Eq. (1) into the Schrodinger
equation resulting in

* Supported by the U. S. Air Force Once of Scienti6c Research,
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A

d' l„(l„+1)
+k„s F„(v'~r)=P U„„(r)F„(v'~r), (7)

dr' r'

5 L C. Percival and M. J. Seaton, Proc. Cambridge Phil. Soc.
53, 654 (1957).

388



CROSS SECTION OF 3'S —+3'P TRANSITION OF

where

U„„(r)= P„*(ri,r)[~ ri —r
~

' r—']f„(ri,r)dr, dr", (8)

subject to the asymptotic boundary condition given in
Eqs. (3) or (4). For the numerical treatment of this
problem, it is preferable to use Eq. (4) in order to avoid
manipulating with complex numbers. The S matrix
and the cross section contain all of the R matrix
elements; thus, it is necessary to effectively go through
the solution e different times where e is the number of
channels considered, permuting the initial status
successively from channel to channel.

To facilitate the numerical work we shall rewrite
F„(v'~r) in a matrix notation as F;; with the second
index designating the initial channel. The differential
equations are now

d' l;(l;+1)—+k,'—
k=1

(9)

F=O for r=0,
F-H(') K-'+H(s) K 'R

(10)

where K, H(s), and H&'& are diagonal nXe matrices
defined as

Z,;=A,i~~S;;,

Pg(') = sin(kg ——,'l;7r)8;;,
H;;(s) =cos (k,~——,'l,~)()g.

(12)

A method suitable to the solution of linear, second-
order differential equations is that due to Numerov. '
The standard formula relating the second difference of
a function and of its second derivative to the second
derivative itself is given to the second order by

~'F;;= (~ )'[F;;"+—,',&'(F';")l, (13)

PF„=F„+i—2F„+F„ i.
Rewriting Eq. (9) as

F"=GF,

G,,= [t,(l,+ 1)/rs —kP jS,,+U...
and substituting Eqs. (16) and (17) in (13),we get

(16)

(17)

(18)

F.+.——[I——;,(&r)'G-+ij-'
X ([21+s (br)'G ]F —[I rs (~r)'G—n r7F~ ij.—(19)—

'D. R. Hartree, The Calculatioe of Atomic Structures (John
Wiley 8z Sons, Inc. , New York, 1957), p. 71.

where br is the tabular interval. To make use of this
equation we note that

5 F;;(r„)=F;;(r„+i) 2F,; (r„)+F;;(r„ i)—, (14)

br = r„+g—r„.
To simplify the notation, Eq. (14) will be written as

Once solutions are known at two points, Eq. (19) may
be used as a recurrence relation to find the solution for
all values of r. If the solution is started close enough to
the origin, the first term of a Frobenius expansion will
suKce. It is easily shown that for problems in which the
matrix elements U,; have no singularities of order two
or greater at the origin, the solutions for small r which
satisfy Eq. (1) are given by

'+1~ ~

~jj i2 (20)

F= PC. (21)

The remaining ta,sk is to find the matrix C. Using a
given n matrix (arbitrarily chosen) we can determine g.
At large r, we write

g-H(s) 5+H(3) 8 (22)

where H(" and H&') have been defined in Fqs. (1.2).
The matrices 5 and 8 are found by matching the
numerical solution to Eq. (22) for two values of r, say
r, and r s, large enough so that Eqs. (9) may be replaced
by

(d'/dr'+kg)F;; =0 (23)

The various matrices for r=r and r=r~ are designated
as g., @s, H, "', H&, (s), etc. It is easily shown that

&)I= (H (s)H (2) H (s)H (2))—i

X (H. (s)@,—H, (s) @.),
8= (H &"Hs(') —H&, (')H. (3))-i

X (H. (s)
g&,—H, (') g ). (24)

With the two matrices 5 and 8 available, we can
determine C and therefore R by comparing Eqs. (21),
(22) with (11),

C= (Kg)-i

R= K8C.
(25)

(26)

THE 3'S —+3~P TRANSITION OP Ng

The numerical method of solution of the Schrodinger
equation is now applied to the 3 S—+ 3 I' transition in
Na induced by electron impact. In the approximation
where the coupling with all other states is ignored, a
three-channel problem results. For a given total angular

In performing the numerical computation, we chose the
constants n,; in an entirely arbitrary way. The solutions
thus obtained will not in general satisfy Eq. (11) and
these solutions are denoted by 5',;. The symbol F;; is
reserved for solutions with the appropriate asymptotic
behavior. Since the first index in Ii refers to a particular
differential equation in Eq. (7), it is possible to obtain
the F's from a suitable linear combination of the g's, i.e.,

Fij Zk Ck jail q

oi
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TABLE I. Partial cross sections for the 3'S —+ 3'P transition in sodium. '

E=4.210 eV
Num RD B'II

E=7.364
Num RD

eV
B'II

Q) in units of map'

E=10.520 eV
Num RD B'II

E=16.832 eV
Num RD B'II

E=23.144 eV
Num RD B'II

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 01 s ~ o

0.87
15.96 11.79
12.31 11.44
7.94 7.84
4.58 4.52
2.48 2.45
1.30 1,29

3.18
6.19

16.14
16.43
10.83
5.98
3.08
1.55

0 72 e ~ s

1.66
6.02 6.54

I0.06 10.17
9.52 10.03
7.90 8.18
6.13 6.26
4.59 4.65
3.37 3.40
2.45 2.46

1.50
3.64
9.17

11.67
11.08
9.13
7.01
5.18
3.76
2.70

094
49 ~ ~ ~

2.62 4.31
6.22 7.58
7.16 8.25
6.82 7.44
5.98 6.29
5.01 5.18
4.11 4.21
3.33 3.39
2.68 2.72
2.15 2.18
1.73 1.74

0.93
2.62
6.41
8.37
8.52
7.73
6.61
5.47
4.46
3.59
2.88
2.30
1,83

0.54
0.65
0.99
2.44
3.72
4.23
4.21
3.92
3.53
3.12
2.73
2.39
2.08
1.81
1.57

~ ~ 0 0
1.68

2.69 4.02
4.80 5.26
5.50 5.52
5.29 5.27
4.80 4.81
4.25 4.29
3.72 3.78
3.24 3.30
2.82 2.88
2.45 2.50
2.12 2.17
1.84 1.89
1.60 1.64

0 33 o ~ ~

0.31
0.52 2.04
1.16 3.49
2.03 4.02
2.63 3.93
2.88 3.65
2.88 3.32
2.74 2.98
2.53 2.68
2.30 2.40
2.08 2.15
1.88 1.92
1.69 1.72
1.52 1.55
1.37 1.39

0.35
1.24
2.93
3.81
4.02
3.89
3.62
3.30
2.98
2.69
2.41
2.16
1.94
1.74
1.57
1.41

a Num, RD, and B'll stand for the numerical method used 1n this work, the resonance-distortion approximation, and the B II approximation,
respectively.

momentum I., the three coupled states are

(i) it=0(3s), /=L,
(ii) lt ——1(3P), l= L—1,

(iii) /, = 1(3p), f,=L+1,
where L is the partial wave angular momentum of the
colliding electron. To determine the U matrix, the usual
hydrogenic wave function with an effective charge of
2.92 was used. This value was chosen so that at large
distances the U matrix elements reduce to the same
form as those used in the previous works. In order to
increase the accuracy of the solutions, the 6rst four
terms in a Frobenius expansion were used to start the
numerical solution instead of the first term given in

Eq. (20). In carrying out the solution it was found
satisfactory to use an integration step size of br =0.1 and
to match the asymptotic expression at r& ——250 and
rg= 250.j..

.lg
? .IO
4J

~ .Od
III

.06
EV

Pa,rtial cross sections have been calculated for five
incident energies and the results obtained by this
numerical procedure, by the resonance-distortion
method, and by Seaton's modi6ed version of the Bethe
approximation (8'II) are listed in Table I for com-
parison. The values~ of QP" are smaller than QPn
of QP'rr and agree better with QPn. For low energies,
QPn and QP" agree quite well with each other; in
fact, QP is closer to QP™than it is to Q

' '. At
higher energies, Qp" deviates considerably from Qpn
and QP". This is understandable since in both the
resonance-distortion and O'II calculations, the matrix
elements U» and U» were replaced by their asymptotic
form while the other elements of U which are of shorter
range were neglected. For a particular value of /, the
classical distance of closest approach is given by

TABLE II. Total inelastic cross sections for the 3'S ~ 3'P
transition in Na.

E (ev)
Q in units of ma0'

Num RD B'II

«P =&(k+1)/k',

which increases with decreasing energy, thereby causing
the region close to the atom to be less important to the
scattering of the partial wave, and hence for such en-
ergies the cross section is quite insensitive to the detailed

,og

.02

I I I I I I I p tg j
I 2 5 0 S 6 7 d 9 IO

4.210
7.364

10.520
16.832
23.144

46.8
58.7
57.2
48.9
42.1

47.1
61.7
62.9
57.7
51.6

64.9
71.6
68.9
60.5
53.3

288.63
231.87
189.12
139.19
111.26

Frc. 1. Comparison of the matrix element Urq(r) for /=2 as
calculated using hydrogenic functions with Z=2.92 (solid curve)
and the asymptotic form used in 3'I, 3'II, and RD (dashed
curve). Both are in Slater atomic units.

~ Here we have replaced the index L by l in order to facilitate
comparison with other works as was done in Ref. 1.
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behavior of the elements U;;(r) near the origin. As an
illustration, a plot of Uts(r) used in this work along with
its approximate asymptotic form which was used for the
resonance-distortion and 3'II calculations, is shown in
Fig. 1. It is interesting to note that the total cross sec-
tions calculated by the Born approximation are always
smaller than those from the Bethe method B'I, and are
even smaller than the B'II cross sections at energies
above 20 eV. Here again replacing the interaction
potential matrix elements by their asymptotic inverse-
square form results in an increase of the cross sections.

Since the B'I approximation is valid for large values
of l, this may be used in conjunction with the partial
cross sections in Table I to calculate total inelastic
cross sections. In Table II are given total cross sections
calculated by means of our numerical method,
resonance-distortion, B'I, and B'II approximations.
Comparison of the theoretical excitation functions with
the experimental data' is shown in Fig. 2. The results

s G. Haft, Z. Physik 82, 73 (1933);W. Christoph, Ann. Physik
23, 51 (1935); D. R. Bates, A. Fundaminsky, and H. S. W.
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FIG. 2. Total cross sections for the 3s ~ 3p transition in Na
calculated by the methods BI, 3'II, RD, and Num, and absolute
measurements of Christoph, designated by the circled points, and
relative measurements of Haft, represented by the curve EXPT.
The Born cross section (BI) was given by Bates et al. (Ref. 8).

of the numerical method show better agreement with
experiment than do those of the previous calculations.

Massey, Phil. Trans. Roy. Soc. London A243, 93 (195P); I. P.
Zapesochnyi and L. L. Shimon, Opt. Spectry 13, 35.5 (1962).
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The ground state and low excited states of liquid He (and other fermion systems) can be constructed
from a set of basis functions

+(In) =No'@(In)

in which $0 is the ground-state boson-type solution of the Schrodinger equation and the model functions
C (I n) are Sister determinants suitable for describing states of the noninteracting Fermion system. Diagonal
and nondiagonal matrix elements of the identity and the Hamiltonian operator are evaluated by a cluster-
expansion technique. An orthonormal basis system is constructed from%'(In) and used to express the Hamil-
tonian operator in quasiparticle form: a large diagonal component containing constant, linear, quadratic,
and cubic terms in free-quasiparticle occupation-number operators and a nondiagonal component represent-
ing the residual interactions involved in collisions of two and three free quasiparticles.

I. INTRODUCTION

S IMPLE correlated trial functions have proved useful
in the study of nuclear matter and the He' and He4

liquids. ' The theory begins with a model function 4
~ Supported in part by the OKce of Scientific Research, USAF,

under Grant No. 62-412 and by the Washington University
Computing Facilities through National Science Foundation Grant
3-22296.' F. Iwamoto and M. Yamada, Progr. Theoret. Phys. (Kyoto)
17, 543; 18, 345 (1957).' C. D. Hartogh and H. A. Tolhoek, Physica 24, 721, 875, 896
(1958).

s J. B.Aviles, Ann. Phys. (N. Y.) 5, 251 (1958).
4 J. W. Clark, Can. J. Phys. 39, 385 (1961);Ann. Phys. (N. Y.)ll, 483 (1960).' R. Abe, Progr. Theoret. Phys. (Kyoto) 19, 57, 407 (1958).' F. Y. Wu and E. Feenberg, Phys. Rev. 122, 739 (1961).
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(1961).
K. Kumar, Perturbation Theory and Nuclear Many Body
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describing a state of the S-particle system in the absence
of interactions. The model is adapted to the presence
of strong short-range repulsive interactions by intro-
ducing a symmetrical positive valued correlation factor

p-,'eSx(1,2, ,E) which vanishes when any two parti-
cles approach closely. The resulting trial function is

es(1,2, ~ ~ ~,N) /s@(l 2

A linear combination of such correlated trial functions
provides the possibihty of a close approach to exact
solutions of the many-particle problem. Construction of
a suitable trial (or basis) system may start from a set
of normalized orthogonal model functions C „,generated
by properly symmetrized products of single-particle
orbitals. In the applications the functions +„are used
to construct matrix elements of the identity and the
Hamiltonian operator. One recognizes that the functions


