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Fine Structure Constants of Metastable H, in the c 'II„State~
Lvz-YvNo Cnow Cirrvt

Ryersol Physical Laboratory, Umioersity of Chicago, Chicago, Iiliwois

(Received 31 August 1964)

The expectation values of spin orbit -(A~) spin other-orbit-(As) and spam spi-rt (Be and Bs) interactions have
been evaluated over the electronic wave function for the c'II state of Hs. At=5.737 kMc/sec, As= —9.8
kMc/sec, Bo= —1.33 kMc/sec, and B&———3.84 kMc/sec. These values agree well with those obtained from
Lichten's experimental one-structure splittings. The electronic wave function used is a linear combination
of Heitler-London-type and ionic-type wave functions. By expressing the gradient operators as components
of a spherical tensor, the spin-other-orbit interaction can be expressed as a linear combination of irregular
solid spherical harmonics of the erst order, while the space part of the spin-spin interaction consists of ir-
regular solid spherical harmonics of the second order. The method of expansion and evaluation of these ir-
regular solid spherical harmonics for a two-electron system is discussed in detail. The small second-order
perturbations due to the nearby rotational states are also calculated.

INTRODUCTION

'I' '
YDROGEN, to a good approximation, is a pure

Hund's case b' diatomic molecule. The angular
momentum N, which is a resultant of the angular mo-
mentum of nuclear rotation (0) and the electronic-
orbital-angular momentum along the figure axis (A.),
is a constant of motion. Half of the rotational levels,
namely the levels of even E for para Hs and the levels
of odd E for ortho H2, of the c'II„state are metastable'
having a lifetime of the order of milliseconds. These
levels can only decay to the levels of the dissociative
b'Z + state via "forbidden predissociation'" ' (perturba-
tion due to spirt orbit and -spin spin intera-ctions).
Lichten' has measured the fine-structure splittings and
the gz's of the /V = 2 state of pare Hs to a high accuracy
using a molecular-beam magnetic-resonance method.
The fine- and hyperfine-structure splittings and the
gg's of the S= 1 state of ortho H2 have been measured
recently by Lichten and Brooks. ' It is therefore of great
theoretical interest to study the properties of these
states. Recently, Fontana' has studied the Gne structure
splittings using a united-atom model; Frey and
Mizushima' have calculated the hyperfine structure of
para Hs, Browne' has calculated its electronic wave
function and constructed a potential curve; Chiu' has
studied the spin-orbit and spin-spin interactions be-
tween c'II and O'Z„+ states and consequently the
relative lifetime of the fine-structure levels of c'II„
state. In this paper we calculate the fine-structure
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coupling constants due to spin-orbit, spin-other-orbit,
and spin-spin interactions" by using an electronic wave
function which is a linear combination of Heitler-
London-type and ionic-type wave functions (see
Sec. 2).

1. ELECTRON MAGNETIC INTERACTIONS

The Hamiltonian H' we are considering here is that
due to spin-orbit, spin-other-orbit and spin-spin inter-
actions of two electrons in a hydrogen molecule. For
matrix elements which are diagonal in total electron
spin 5 only, one can write H' (in atomic units) as
follows11 '

n' t1 1 q-
+ /Lt

4 lri ' rib'J

tr1 1 3
+~ + L2+ (ri —r2) X (p2 pl)

l

�~2
a ~2b

3 3 ~123

0! 3(S1'r12) (S2'r12)
+ (Si Ss)—

where n is the fine-structure constant. The subscripts u
and b refer to the two nuclei, and 1 and 2 refer to the
two electrons. L and p are the orbital angular momen-
tum and the linear momentum of the electron. Si, Ss,
and S are the spins of the two electrons and their re-
sultant. The expectation value of H' for the molecular
state" consisting of the electronic state c'II„, rotational
state X, and fine-structure level J, is expressed as
follows (after a proper transformation from a space-
6xed coordinate system into a moving molecular co-

0 Preliminary results were presented in a communication, Lue-
Yung Chow Chiu, J. Chem. Phys. 41, 2197 (1964).
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0. 181. See also Refs. 4 and 7.

"Here we neglect to average over the vibrational states. The
averaging over the electronic state is to be taken at the equi-
librium internuclear distance only.
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ordinate system)»

+{(1P+N 3)Bp—+(-')'/'N (N+1)Bs)
2N(N+1)

antisymmetric with respect to the inversion" of the
electronic coordinates (urigerade). For a given set of
values of orbital exponents, pi, .and l s„, the values of
C~ and Cg are obtained by a variational principle so
as to minimize the total energy E of H2 in a c'II„state.
Their values are as follows:

f,« 1.——24108, ls„ ——0.50282, Crr
——0.5612, Cr=0.2808,

where

3C (C+1)—8N(N+ 1)
X (1.2)

4N(N+1) (2N —1)(2N+3)
and 8= —0.71879 atomic units (a.u.) at equilibrium
internuclear distance R,= 1.96080 a.u.

C=J(J+1)—N(N+1) —2 2 =Hi+As.
A 1= ( c/r4)((1/ri '+ 1/ra')Li.-+ (1/rs '+1/rsb )L2 )

is the spin-orbit coupling constant and As ——(3cr'/4)
X(P(ri —rs) X (p, —pi) j,/r»') is the spin-other-orbit
coupling constant; and Bp=rr'(4'/5)' '(I' s'(rip)/rip')

B,=cr'(4ir/5)'/'(Jr, '(r, s)/rip') are the spin-spin
coupling constants. These coupling constants are the
expectation values" over the electronic wave function
of the c'II„state. The subscript s here refers to the
component along the molecular figure axis. If one neg-
lects other higher order eRects which have been dis-
cussed by Lichten, ' these coe%cients can be determined
from measured energy separations by using Eq. (1.2),
and they are shown in Table I. Fontana~ has estimated
these coefficients by using a hydrogenic (united-atom)
model. With this simple estimate plus an error" of a
factor of 2 too small in the spin-spin interaction part
of the Eq. (1.2), he has obtained good agreement with
the experimental energy separations.

2. ELECTRONIC WAVE FUNCTION

The electronic wave function of the c'II„state used
here to evaluate the coupling constants is a linear com-
bination of a Heitler-London-type wave function with
coefficient C~ and an ionic type with coefficient C~,
and is expressed as follows:

C = —,'CI/(1 —P)L1so, (1)2pir p(2)+ 1so p(1)2pir, (2)$
+-,'Cr (1—P)L1so, (1)2pir, (2)+1so p(1)2pir p(2)),

3. TWO-ELECTRON OPERATORS AND
THEIR EXPANSIONS

F'„(rip) rll
p (—)'i/i(l, is, k, rn)—

l=n m=—l Z+1
2

and for r~)r~ we have

(rip) r2l "
( )i+~F(l n k, r/—i)—

l=n m=l r1+l+I12n+1

Spin-spin and spin-other-orbit interactions are the
operators involving the relative coordinates of two
electrons. To evaluate their expectation values over the
product of single-electron orbital wave functions, one
has in general" to expand the operators into a series
of products of one-electron operators. The two-electron
operators 1's'(rip)/rip' and Ys'(rip)/rip' which appear
in the spin-spin interaction are irregular solid spherical
harmonics of the second order. The space part of spin-
other-orbit interaction can be expressed as a linear com-
bination of the irregular solid spherical harmonics of the
first order, F'i'(rip)/rip' and F'i '(rip)/rip' (see below).
We therefore use Chiu's" general formula to expand the
irregular solid spherical harmonics of any order e for
the two-electron system as follows: For r2& r& we
have

where 1so, (1) and 2pirp(2) are the normalized Slater-
type atomic orbitals, e.g.,

(2|.)n+i/2(2ii t) i/2m 1o rrr// m(/l g)——

of electrons 1 and 2 centered on nuclei a and b, re-
spectively. 0. and ~ refer to the projection of the orbital-
angular momentum (0 and 1) along the molecular-
figure axis. The operator P permutes electrons 1 and 2.
The wave function C is therefore antisymmetric with
respect to interchange of the two electrons. It is also

"This error has been pointed out in Ref. 4, footnote 20.

Xl'--k ™()J""( ), (32)
'4 The inversion is achieved by a rotation of 180' around the z

axis (which gives —1 for the s- state) followed by a reflection in the
x-y plane (which is equivalent to interchanging nuclei u and 5)."A convolution theorem for Fourier transforms has recently
been introduced by F. P. Prosser and C. H. Blanchard fJ. Chem.
Phys. 36, 1112 (1962)j to evaluate two-center integrals. M. Geller
fJ. Chem. Phys. 39, 853 (1963); 40, 2309 (1964)jhas applied it
to the integrals where two-electron operators (e.g. , irregular
spherical harmonics) are involved. In this case one uses the
proper Fourier. transform of the operator (instead of expanding it).
The region r1 =r2 is included in the transform and no extra delta-
function term is needed. Although this method is very elegant,
it can treat Coulombic-type two-center integrals only, and further-
more, it is rather dificult to treat all cases with generality.

16 Y. Q. Chiu, J. Math. Phys. 5, 283 (1964).
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where

F (l,zz, k,zzz) = $4z&-(2l)!/(2zz)! (2l—2zz+1)!ji~'

XC(l—I, I, zz; k —zzz, zzz) and
i
k i

& zz.

C(l—zz, z, rz; k —
zzz, zrz) is the Clebsch-Gordan coeffi-

cient'~; and r~ and r2 refer to the same origin. The
above expansion can be centered on either nucleus a or
nucleus b. %hen m=2, we have the expansion for the
space part of the spin-spin interaction. In this case a
delta-function term, "—(4zr/3) I'z'(rz) 5(ri —rz), should
be included to take care of the region rj =r2. Although
such a delta-function term will contribute zero value
when evaluated over a triplet-state wave function, it
must be included during the process of calculating each
individual two-center integral, for it is evident that
two-center integral of the delta-function term alone will

give different values depending on whether the delta
function is to be centered on a or b. Consequently, the
integral which excludes the delta-function term will

take on different values depending on whether the
operator is expanded on center a or center b. The series
expansions in (3.1) and (3.2) will be truncated after
the integration over the angular coordinates of one of
the electrons. The remaining two-center" and one-

electron integrals were evaluated numerically on an
IBM—7094 computer using Barnett and Coulson's"
method of expanding the exponential function of center
a into that of center fz (or vice versa). In the case of an

exchange-type integral i.e., (u, (1)vb(2), H'v, (2)uz(1))
(where both electrons are spread out over the orbitals
centered on both &z and b), the angular coordinates of
one of the electrons cannot be integrated to truncate
the series. We use Mulliken's" approximation to con-
vert the above exchange-type integral into a linear
combination of hybrid-type integrals, i.e., (u, (1)vz(2),
H'v, (2)u, (1)),and (uz(1)vz(2), H'v, (2)uz(1)), where one
can integrate analytically coordinates of one of the
electrons (electron 1 in this case). Such an approximation
is estimated to give an uncertainty of less than 10% for
each individual integral, "but over all it will give an
uncertainty of only a little more than 1% (less than 2%)
to the expectation value.

Now we consider the space part of the spin-other-
orbit operator. It can be expressed as follows (using the
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relation p= —iV):

3~'L(ri —rz)X(p —p )3.

r12

where

I'z '(riz)
Pr, «) q, «i]~ (3 3)

r12'

1 a a) 1 a 8)
V, & &=— +z ), V, &- ~=—

"I/2 Bxz Bpii V2 8$i el/&i
and

8
q, (o)—

Bsy

are the gradient operators expressed as the com-
ponents of a first-rank spherical tensor. I'i'(riz)/riz'
and Fz—'(riz)/rzz' are irregular solid spherical har-
monics of the first order and they can be expanded
according to (3.1) and (3.2). The operation of the above
spherical gradients on Slater-type orbitals (Sec. 2) can
be expressed as follows by using Rose's" gradient
formula.

q &i:)&lie rr y' m (r)j-
= —(21/1)'&'{(1+1)'&'C(l+ 1, 1, l; zzz+ k, —k)

X(fr'e t')F& i~+~(r)+!'~zC(I. 1, 1, l;zrz+—0, 0)—
f'r'+(23+1)r' 'j(e r")I'& p+~(r)), (3.4)

where 0=1,0, —1, and C(l&1, 1, l; zzz+k, —k) is the
Clebsch-Gordan coefFicient. "It will be of greater con-
venience to regroup the operators in (3.3) into the
following:

3u' 4')'" -I'i'(rzz)
v, &- &

3i r„'
I'i '(riz)

rl2 2

I'z '(rzz)
q, (~)

r122

Ti'(ri, )
q (—&)

2

r12'
(3.5)

Both brackets in the above expression are therefore
Hermitian. Because of the symmetry between the two
terms in each bracket, cancellation arises when these
operate on the product wave functions (Slater orbitals)
and consequently the integrals are simpler to evaluate.

4. PERTURBATIONS BY OTHER
ROTATIONAL STATES

The energy separation between rotational states is
about 10' times larger than the fine-structure separa-
tion. The second-order energy correction E(') due to

"M. E. Rose, Hementary Theory of Angular Momentum (John
Wiley R, Sons, Inc., New York, 1961),p. 124.



the perturbation from nearby rotational states via fine-structure interactions is therefore very small. The
off-diagonal matrix elements4 (for para Hs of even N level and ortho Hs of odd N level) are the following:

-(J+N+2) (J N—+2)(J+N 1)—(N J+—1)-"'

(N+ 1)(2N+ 1)(N —1)(2N —1)

and

Bp 82- N' —1
X 4sLN'+1 —J(J+1)j —— j

N +6 2N

(J+N+3) (J N+1)—(J+N) (lV J+2) —'i'

(N+2) (2N+3) (N) (2N+1)

(4.1)

Bs Bs N(N+2)
X —,'$N(N+2) —(J—1)(J+2)j — + + A . (4.2)

N+1 Q6 2 (N+1)

The H' here is defined in (1.1) and does not connect
states of X=O and %=1.23 By substituting the calcu-
lated values of A, Bs, and Bs (see Table I) into (4.1)
and (4.2), we obtain the correction Ets' on fine-structure
levels as follows:

For N = 2 of para Hs we have
E&'& (J'=3)= —0.30 Mc/sec,
E&'&(J=2)= —1.7 Mc/sec,
8"&(J=1)=0.13 Mc/sec;

and for X= 1 of ortho H2 we have

E&'& (J= 2) = —0.42 Mc/sec,
E&'i(J= 1)= —7.9 Mc/sec,
E&'&(J=O) =0.

(4 4)

TABLE I.Fine-structure coupling constants of the c'Ir„state of H2.

Coupling
constants~

A1
A2

A =A1+A2
80
82

&o+(6)' &u

Calc.
(kMc/sec)

+5.737—9.8—4.1—1.33—3.84—10.8

Expt.
(kMc /sec) b

~ ~ ~

—3.822144

~ ~ ~

—12.40410

Expt.
(kMc/sec)
with E(')

correction'

~ ~ ~

—3.82249

~ ~ ~

—12.4079

a A1 is due to spin-orbit interaction; A~ is due to spin-other-orbit inter-
action; Bo and Bs are due to spin-spin interaction.

b Calculated from Lichten's experimental fs splittings (Ref. 5) using
Eq. (c.2).

o Measured fs splittings mere corrected by perturbations from the nearby
rotational states (Sec. 4),

A typical fine-structure splitting is of the order of 5
kMc/sec; these corrections contribute only about 0.1 jo
or less.

5. RESULTS

The calculated coupling constants Ai, A2, A, Bp, and
Bs which are defined in Eq. (1.2) are presented here in
Table I. These constants were evaluated at the equi-
librium internuclear distance instead of being averaged
over the vibrational wave function. The failure to
average over the vibrational state was estunated by
Lichtens to give an uncertainty of 5%, which is larger
than all the other higher order effects in their con-
tributions to the fine-structure splittings. In the last
column of Table I, the measured fine-structure split-
tings were first corrected by the second-order energy
due to perturbations from nearby rotational states (see
Sec. 4), and then substituted in Eq. (1.2) to obtain the
coupling constants. These values are very close to the
values in the column to the left where no corrections
were made.
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"It is evident from (4.1) and (4.2) that the spin-orbit inter- the triangular relation for vector coupling n(2, JV,IV ) cannot be
action does not connect fV =0 and iV=1 states. For the case of satisimd for 1V=O and iV'=1 /see Ref. 4, Eq. (3.5) and footnote
spin-spin interaction where the operator is a second-rank tensor, 15j. The matrix element therefore vanishes.


