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the capture cross sections as given by Eq. (8). First,
for a sufficiently high incident-proton velocity and for
all neutralizers we have the well-known result that the
s-state capture distribution varies as n ', as deduced
from the coeKcient of the asymptotic form for P'(mE).
Second, captures into the very high angular-momen-
tum states are in general not expected to contribute
appreciably to the total cross section since the magni-
tude of P'(rsE) is dominated by the coefficient

2'E(E!)'L(e—E—1)Ij'L(m+E)!j '.

reported by Butler and Johnston" at p'=1 is not
reproduced in these calculations.

Note added its proof: This resonance has been dis-
cussed further by S. T. Butler, R. M. May, and I. D. S.
Johnston, Phys. Letters 10, 281 (1964).
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The "linear" theory of configuration interaction has met with considerable success in giving a phenom-
enological description of the energy levels of equivalent-electron systems. In the present paper the general-
jgation of the "linear" theory to configurations containing nonequivalent electrons is examined from the
point of view of second-order perturbation theory. It is shown that most second-order electrostatic inter-
actions can be phenomenologically described by the first-order terms of a set of effective two-body scalar
interactions. The significance of these interactions in atomic energy-level calculations is considered.

I. INTRODUCTION

'T is well known' that the solutions of the Hartree-
~ - I ock equations for complex atoms or ions yield

multiplet energy separations that are considerably

larg er than those found experimentally. The dis-

crepancies are usually so great that these calculations

are of little value in the prediction and correlation of
atomic energy levels. As a result, atomic spectroscopists
have tended to correlate their observations with theo-

retical energy levels calculated by constructing the

energy matrices for the relevant electron conhgurations

and then treating the radial integrals as phenomeno-

logical parameters. ' The parameters are usually found

to be substantially smaller than the Hartree-Fock radial

integrals. The agreement between the theoretical and

experimental energy levels has frequently been strik-

ingly close considering that in most cases configuration

interaction has been explicitly ignored. It is as if the

parameters have adjusted themselves so as to accom-

modate part of the effects of configuration interaction.
The "linear" theory of configuration interaction has

been a natural outgrowth of an early paper of Bacher

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

~ J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc. , New York, 1960), Vol. I.

2 E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, New York, 1935).

and t oudsmit' who demonstrated that most, though
not all, of the second-order electrostatic interactions
can be added linearly. Originally Bacher and Goudsmit
used linear relations to express the unknown energy
levels in terms of the observed energy levels of the atom.
and its ions. Later developments by Trees' ' and
Racah"—"have sought to replace the second-order
effects by the first-order terms of an effective two-body
interaction. A detailed analysis of the physical content
of these interactions in /~-type conhgurations has been
given by Rajnak and Wybourne. ' ' The use of effective
two-body interactions has found extensive application

' R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 94g (1934).
4 R. E. Trees, Phys. Rev. 83, '756 (1951).
~ R. E. Trees, Phys. Rev. 85, 381 (1952}.
' R. E. Trees, J. Res. Natl. Bur. Std. 53, 35 (1954).
R. E.Trees and C. K. Jgrgensen, Phys. Rev. 123, 12'?8 (1961).' R. E. Trees, Phys. Rev. 129, 1220 (1963).
R. E. Trees, J. Opt. Soc. Am. 54, 651 (1964).

zo G. Racah, Phys. Rev. 85, 381 (1952)."G. Racah, L. I'arkas Memoria/ Volume (Research Council of
Israel, Jerusalem, 1952), p. 294."G. Racah, Lunds Univ. Arsskr. Avd. 2 50, 31 (1954)."G. Racah and Y. Shadmi, Phys. Rev. 119, 156 (1960}.

14 K. Rajnak and B. G. Wybourne, Phys. Rev. 132, 280 (1963)."K. Rajnak s,nd B.G. Wybourne, Phys. Rev. 134, A596 (1964)."K. Rajnak and B. G. Wybourne, J. Chem. Phys. 41, 565
(1964).

r7 K. Rajnak, J. Opt. Soc. Am. (to be published).
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not only in atomic spectroscopy but also in nuclear
shell models. """

Briefly, the central idea of the "linear" theory is to
augment the Hamiltonian of the E-electron system with
additional two-body scalar interactions. Associated with
each interaction is an adjustable parameter. In general,
the number of additional interactions is chosen so that
the total number of adjustable parameters equals the
number of allowed LS terms occurring in all distinct
two-electron configurations that may be formed by
deleting Ã—2 of the electrons from the configuration
under study. That is, we may take into account the
distortion of a pair of electrons by interactions with
other configurations and then generalize the result to
say that the distortions add linearly when we form the
E-electron system. Previous work has been devoted
almost exclusively to configurations of equivalent
electrons. In this paper we shall show that the "linear"
theory can be systematically extended to condgurations
containing nonequivalent electrons. The relationship
of the parameters that are derivable from the "linear"
theory to those calculated from the solutions of the
Hartree-Fock equations is noted.
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In general we shall follow the notations used by
Rajnak and Wybourne'e (henceforth referred to as I).
The C'l"&'s are tensor operators related to the usual
spherical harmonics, " the R~, F', and 6' are Slater
radial integrals, while AE is the first-order energy
difference between the mutually perturbing states.

The electrostatic matrix elements between the states
of n&z'l' and m"l"e'"/"' may be written as follows":

II. CONFIGURATION INTERACTION IN
TWO-ELECTRON SYSTEMS

Let us first consider the role of configuration inter-
action in two-electron systems and then extend our
results to E-electron systems. For greatest generality
we shall assume the con6guration el@'/' is perturbed by
some other configuration e"l"e"'l"'. The following
abbreviated quantities will be found useful for our
purposes:

D'= (lIIC"'ill") (l'IIC"'Ill"')
&&R ~(nln'l'; e"l"n"'l'"), (1a)

E"=(lllC"'ill"') (l'll(-"'ill")
&&R"(nle'l'; e"'l"'e"l"), (1b)

~'= (lllC" Ill) (l'IIC" ill')R'(«n'l') (1c)
8'= (lllC" ill')(l'IIC" ill)G'(nl n'l') (id)
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and

DE=E(n"l"n"'l"', SL) E(eln'l', SL). (1g)—
"I.Talmi, Rev. Mod. Phys. 34, 704 (l962).
9 A. de-Shalit and I. Talmi, lVNclear Shel/ Theory (Academic

Press Inc. , New York, 1963).

The second-order perturbation between two states
will be

P M'(SL)M'(SL)
QE a, as

=Z(—1)"' (—1)'
t l' /' L

l l'-(—1)' S" . (3)
l l' L

I In deriving Eq. (3) use has been made of the Bieden-
harn-Elliott sum rule. ")Let us now assume the per-
turbing configurations are suAiciently separated to
allow us to replace the quantities 6" and g" by the
quantities (S"), and (g"), , which are understood to
represent the weighted average that would be obtained

by summing Eq. (3) over all the perturbing configura-

tions. Under these circumstances the summation index

t may assume both even and odd integral values subject
to the restrictions that for (5"), we have 0(t&21~,
where 1& is the lesser of l and l', and for (g"), we have

I
l—l'I &t&l+l'. In fact, there are as many values of

(5"), and (g"), as there are L,S states in the un-

perturbed configuration elm'l'.

~B. R. Judd, Operator Technigges in Atomic Spectroscopy
(McGraw-Hill Book Company, Inc. , ¹wYork, 1963).

+ U. Pano and G. Racah, Irredmcible Tensersol Sets (Academic
Press Inc. , New York, 1959),



B. G. WYBOURN E

The electrostatic matrix elements within the rsAs'l'

configuration are given by

nsln'sl'; SL g (Ct') Ct')) nsln'sl'; SL
~v'+1

l l v.

=2(—&)"' (—&)'
l1 lI

Comparison of Eqs. (3) and (4) shows that the formal
structure of their dependence upon 5 and I.is the same
except that the range of values of ~ are restricted to
only eve@ integral values for 5 and to integral values of
parity (—1)'+" for g' while for t there are no parity
restrictions. The upper and lower bounds on t and v are
the same.

Part of the distortion produced in the nte'l' configura-
tion by the perturbing configurations may be included
by simply treating the 21&+2 radial integrals contained
in Eq. (4) as adjustable parameters. The complete dis-
tortion, to second order, could be included by introduc-
ing 23& additional parameters to represent those terms
in the averaged form of Eq. (3) having values of t differ-
ent from those of r in Eq. (4). However, we would then
have as many parameters as there are I.S terms in the
vie'l' configuration and no significance could be
attached to any agreement between the calculated and
observed energy levels. To obtain a physically signi6-
cant result the theory has to be extended to con-
figurations tha, t have more LS terms than there are
parameters.

III. CONFIGURATION INTERACTION IN
N-ELECTRON SYSTEMS

To extend the theory to X-electron systems we first
note that Eq. (4) may be expanded in terms of the
tensor operators u(') and v(") to yield'~23

( r&'
I

@sin'sl', SI. P - (C('~: C(') nsln sl)''
r)&+&

l l
$(u(K) .u(L))+4(v(IK}.v(1K))jgT (5)

where we have suppressed the quantum numbers
associated with the matrix elements of the scalar
products. An analogous expression may be developed

"G.Racah, Phys. Rev. 62, 438 (1942).
A. Arima, H. Horie, and V. Tanabe, Progr. Theoret. Phys.

(Kyoto) ll, l43 (1954).

for the averaged form of Eq. (3) except that t, unlike r,
is of unrestricted parity.

Consider the case of electrostatic interaction in a
configuration ePe'l'. The electrostatic energy matrix
will contain the matrix elements of the interactions
within the el~ core as well as those between the core
and e'/'. The effects of one- or two-electron substitutions
involving the el~ core but leaving the quantum numbers
of the added e'l' electron unchanged may be included by
the introduction of the effective two- and three-body
interactions discussed in I. The electrostatic matrix
elements that express the interaction of the eV electron
with the nP core may be found from Eq. (5) by replac-
ing the tensor operators that operate on the nl electron
by operators that operate on the states of the el~ core,
viz. )

1(
~
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l
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In this equation the upper-case tensors operate on the
states of the el~ core while the lower case operates
on m'l'.

The energy levels of the ePe'l' configuration will be
distorted by interactions with other con6gurations. If
we make a closure over the states of the perturbing
configurations of the type ePe"/" we obtain an expres-
sion identical to Eq. (6) apart from the replacement of
0."and g' by (5"). and (g"), where, as in Eq. (3), the
summation index r ranges over both parities. A similar
result is found for most other types of con6gurations
that interact in second order. '4

Again we see that part of the linear distortion is taken
up by treating the 2l&+2 radial integrals that arise in
the expression of the electrostatic interaction between
the eP core and the m'l' electron as adjustable param-
eters. In fact for the el~a's configurations the entire
linear distortion, to second order, will be accom-
modated. "The total second-order linear distortion may
be included by supplementing the 2l&+2 radial integrals
by 2l( additional parameters, exactly as discussed in
the previous section.

~ The sole exception is the perturbation due to the nl~+' con-
6guration. This configuration gives rise to nonlinear distortions in
the nl n'l' con6guration that cannot be accommodated in the
simple linear theory. These nonlinear eGects will arise only if l and
L' are of the same parity.

'5 Nonlinear eGects will be felt in the d~s configurations though
not, of course, in the PNs or fNs configurations.
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Let us consider the case of a configuration Pp(l) 0).
Four parameters Ii' Il' G', and G' arise from the
interaction of p with the P core. We need two additional
parameters to fully account for the second-order linear
distortions. The choice of these parameters is not unique.
One choice might be to introduce (5"), , and (g"), as
parameters. The coeKcient (U&'& u&'&) of (5"), may be
evaluated to yield "
(Pn&SiL isl', SI.

i
(U&i& u~'&) & Pn,S,1,sl';'SL)(r")

LL(L+ 1)—Li(L&+1)—l'(l'+1) j
Pl (1+1)(2l+ 1)l'(l'+ 1) (21'+ 1)]'i'

X &(ni, ns) 6(Si,Ss) 5(L&,Ls)

=aL(L+1)+nLi(Li+1)+c . .

Th««m»nvo»ing nLi(I i+1) and c may be discarded
as they are already included as parameters for the P
core (see I). Thus the appropriate parameter would be
just aL(L+1). The angular coefficient of (g"), is
represented as a sum over several tensor operators as
in Eq. (6). While we could use (g"), as the second
parameter it would clearly be better to choose a param-
eter that possesses simpler angular coefficients. "This
may be done easily by recognizing that the number of
distinct tensor operators contained in Eq. (6) is equal to
the number of states that arise in the con6guration
elm'l'. Thus we are free to make our choice from any of
these provided they do not already occur in association
with the 5' parameters, e.g. , in Pp we may not choose
(U('& u(o&) or (U(~'un&I.

The simplest choice for Pp configurations is to
introduce parameters proportional to the matrix ele-
ments of (U&'& u&'&) and (Vo'&. v"").We note that"

(PniSiL, isl'; SL
i

(7&"&.
v& "&)

i PnsSsL, sl', SL)

= (S )/(D, l'3)"'

$S(S+1)—Si(Si+1)—s (s+ 1)$
8

2 (Pl, l'$) 'I'

We may discard Si(Si+1) and s (s+ 1) from our scheme
of parameters since they are already associated with the
parameters of the P core. Thus for Pp configurations
we may include the effects of second-order linear dis-
tortions by the introduction of two additional param-
eters aL(L+1) and bS(S+1) as has already been noted
by Sack'~ though from a different but equivatent
argument.

The extension to other Pl' con6gurations is not
dificult. For Pd(l)1) configurations we need four

"The use of (G's) would, however, have the advantage that
its radial dependence is more readily visualized in terms of the
perturbing configuration."N. Sack, Phys. Rev. 102, 1302 (1956).

additional parameters. Here we may choose L,(I+1)
and S(S+1),as in Pp, leaving two additional param-
eters to be found. One choice would be to have param-
eters proportional to the matrix elements of (U&'& u&'&)

and (V&"& v&"&). The reduced matrix elements of these
tensor operators have been tabulated for p~, d~, and fN
configurations by Nielson and Koster. 28 It should be
noted that these matrix elements will not be diagonal
in the states of the l~ core.

The phenomenological treatment of second-order
linear distortions in more complex con6gurations pro-
ceeds in a similar manner. We first expand in terms of
tensor operators the formulas for the electrostatic
matrix elements ignoring con6guration interaction, and.
then for each distinct pair of electrons pick out the
simplest possible set of 2l& operators to be used as the
coef6cients of our 2l& additional parameters.

In practice we must be careful not to select so many
parameters as to destroy the physical significance of a
6t to the observed energy levels. For example, in the
Pl'l" configuration we would be justi6ed in choosing
additional parameters to correct for linear distortions
involving P and l' and for P and l" but not for the l'l"
pair. In the latter case we would end up with as many
parameters as there are JS terms in 1'/". Where E&2
there will normally be more I.S terms than there are
parameters, and significance could be attached to the
fitting of the observed. energy levels.

IV. "LINEAR" PARAMETERS AND HARTREE-FOCK
RADIAL INTEGRALS

Several problems arise when a comparison is made
between the phenomenological "linear" parameters and
the corresponding radial integrals computed from
solutions of the Hartree-Fock equations in their various
modi6cations. Comparisons are most commonly made
for the Slater radial integrals Ii~ and G~. The relation-
ship between the parameters and the integrals is by no
means clear. First we note that since the choice of the
additional parameters in the "linear" theory is not
unique, different choices of these parameters will yield
different values for the F~ and G~ "integrals. " Even if
no additional parameters were to be introduced the
parameters corresponding to the Ii~ and G~ integrals
would contain contributions from the many interacting
configurations and hence could not be expected to
correspond to the integrals calculated for a pure wave
function. In deriving the linear parameters it is assumed
that they are independent of the state of the con6gura-
tion under study and hence the phenomenological
parameters represent the average effect over an entire
configuration. The corresponding Hartree-Fock solu-
tions are usually obtained. for a particular state of the
configuration, normally the ground state.

"C.W. Nielson and G. I'. Koster, Spectroscopic Coegcients for
the p", d", and f" Congguratio~zs (Technology Press, Cambridge,
Massachusetts, 1963).
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V. CONCLUDING REMARKS

The additional parameters that enter the "linear"
theory can be considered to be physically significant
only if they lead to a definite improvement in the
description of the observed energy levels. Their general
validity could be best established by deriving them from
a series of ions of fixed ionization. In this case we could
expect the parameters to exhibit a systematic linear
variation across the series. Having established the
variation of the parameters in one stage of ionization for
the series it should then be possible to extrapolate the
parameters for the other stages of ionization once the
parameters are known at the commencement and end
of the new ionization series. This has indeed been the
great virtue of the "linear" theory; it has been highly
successful in predicting the positions of unknown levels.

Sack'r has examined the efi'ect of the aI, (1.+1) and
bS(S+1) corrections in Tire(3d'4p) and Nizam(3d'4p)
and found a substantial reduction in the deviations
between the observed and calculated energy levels.
Racah and Spector" have studied the role of these cor-
rections in Cr rr(3d'4p) and Fe rr(3d'4p) and concluded
that the corrections have no statistical signi6cance.
However, their calculations, like those of Sack, ignored
the effects of spin-orbit interaction. Several multiplets
of these con6gurations show gross deviations from the
I-ande interval rule. The calculations need to be re-
peated with the inclusion of the spin-orbit interaction
before a final conclusion for the second spectra of the
iron group can be reached.

The linear" parameters should give a very good.
phenomenological description of the effects of electro-
static interactions with configurations well removed
from the con6guration of immediate interest. The effects
of overlapping interacting con6gurations will still need.
to be included explicitly by constructing the energy
matrices in a basis that includes the states of the
relevant configurations. Likewise, the nonlinear effects
produced by certain interacting configurations"" will
not be entirely included. It is unlikely that any of the
"linear" parameters can be completely associated with
a particular interacting configuration; rather they
will represent the weighted contributions of many
configurations.

The "linear" theory allows us to make statements
about the relationships between the parameters of one

"G. Racah and N. Spector, Bull. Res. Council Israel 9F, 75
(~no)'.

con6guration and those of a related con6guration, not
necessarily of the same parity. Consider the 4f' and
4f'5d configurations of Pr rrr that have been studied
experimentally by Sugar" and theoretically by Trees. '
The parameters associated with electrostatic interac-
tions among the 4f electrons, on both configurations,
will be affected principally by perturbations from con-
6gurations differing by a two-electron substitution in
the 4f~ core. All the possible two-electron substitutions
that can be made in 4f' can also be made in 4f'Sd, and
hence we would predict that the "linear" parameters
for the 4f 4f in—teractions would be approximately
equal. This equality will tend to be weakened by one-
and two-electron substitutions involving the 5d electron
of the 4f'Sd configuration as may be seen from an
inspection ot Eq. (7). When the additional "linear"
parameters are introduced to account for distortion of
the 4f Sd inter—action we can expect the 4f 4f para—m-
eters to be modified as well. This is in accord with the
observation of Trees' that the 4f 4f param— eters in
4f'Sd and 4f' are indeed diferent though this may not
be the sole cause of the discrepancy. One-electron
substitutions involving the 4f' configuration will give
rise to nonlinear effective three-body interactions that
are not included in the usual two-body "linear" theory. '4

In the 4f'5d configuration these same one-electron sub-
stitutions can only give rise to linear effects. These
linear eGects will be felt by the 4f—4f parameters of the
4f'Sd configuration.

In the foregoing we have demonstrated that the
"linear" theory, which has had much success in explain-
ing the properties of equivalent electron systems, may
be readily generalized to the case where nonequivalent
electrons are involved. The generalization has been
shown to be a direct consequence of second-order
perturbations. It should be of considerable interest to
atomic spectroscopists to see if the generalized "linear"
theory will meet with the same success that the "linear"
theory has had in P con6gurations. The theory should
be particularly useful in the analysis of the higher
stages of ionization where, at least for the lower con-
6gurations, the perturbing configurations will be at
higher energies and thus more in accord with the ap-
proximations of the theory. While we have confined our
discussion exclusively to atomic shells the same types of
effective interactions will also arise in the nuclear shell
model.

"J.Sugar, J. Opt. Soc. Am. S3, 831 (1963).


