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Hyperfine-structure measurements by optical detection of Zeeman-level crossings in the 656p 3P;state were
made with natural-linewidth precision in three radioactive isotopes of mercury. The magnetic dipole (4) and
electric quadrupole (B) interaction constants.in Mc/sec implied by these measurements (without second-
order hyperfine corrections, but including second-order Zeeman and cross-Zeeman hyperfine corrections) are:

Hg'*® (9.5-h half-life) A4 (3P;)=15813.460.23

Hg** (isomer, 40 h) A (3Py) = —2368.044-0.08
B(3P;)=—1782.45+0.86

A (3Py) = —2399.69-+0.06
B(3P:)=—1724.8490.0.

The g factor for the 3P, state of Hg'® is obtained from a new level-crossing measurement. The value, in-
cluding second-order Zeeman and Zeeman-hyperfine corrections, is g;/=1.4861184-0.000016; 37X 10~ of
this is the total contribution from gr and the second-order corrections. Our value is in substantial agreement
with a recent measurement in the even Hg isotopes. The measured ratio of the 4 factors of Hg!% and Hg!%®
with all second-order corrections (resulting from interaction with neighboring fine-structure levels) in-
cluded is combined with the value for the ratio of the magnetic moments in an external field obtained by
Walter and Stavn to yield the Bohr-Weisskopf hfs anomaly between Hg!®® and Hg'®, which is calculated to
be 95A19 (3P,) =0.1476(76)%. The contribution to the anomaly from the sy/2 electron is extracted and used
to estimate admixture coefficients in the single-particle model of the nucleus with configuration mixing.

Hg** (isomer, 11 h)
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These turn out to be satisfactorily small for the configurations assumed.

INTRODUCTION

RECISION measurements of the hyperfine-struc-
ture interaction constants in the 6 3P; state of
three radioactive isotopes of mercury have been
obtained by using optically detected Zeeman-level
crossings. These measurements represent an increase
in accuracy by a factor of approximately 100 over the
previously available spectroscopic values for the
magnetic-dipole interaction constants.!? This precision
is sufficient to give information about the effects of the
finite size of the distribution of magnetization in the
nucleus.? If the nuclear magnetic moments have not
been measured directly, these measurements can serve
as a guide for making precision measurements of the
moments by optical pumping.45
With the completion of the present work, double-
resonance or level-crossing measurements of the hyper-
fine structure of mercury in the 6 3P; state are available
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Physics, MIT, 1963, was supported in part by the U. S. Army,
Navy, and Air Force under Contract DA-36-039-AMC-03200(E).
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for the radioactive isotopes Hg!%", Hg!%5 Hg'%* Hg7
Hg®”, and for the stable isotopes Hg'*® and Hg?.6
Since there are independent magnetic-moment data for
Hg'%5,” Hg'75 Hg!% and Hg®.,? one should be able to
make a systematic comparison of the moments and
hyperfine anomalies for these isotopes, using the shell
model of the nucleus with configuration mixing.?:10
The level-crossing technique was first used to
measure the fine structure of the 2 3P state of helium.
Essentially a rediscovery of the Hanle effect for large
magnetic fields, this technique makes use of the change
in the angular distribution of resonance fluorescence
when two excited-state Zeeman sublevels become
degenerate (“cross”) in an applied magnetic field. The
intensity resonances are quite sharp as a function of
magnetic field, permitting calculation of the energy
separations at zero field and hence the hyperfine struc-
ture, with a precision determined by the natural line-
width rather than by the Doppler width. The high
precision obtainable with level crossings is also char-
acteristic of the technique of optical double resonance,?
although in this case it is necessary to produce popu-
lation differences between magnetic sublevels in order
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to observe the resonance. Level crossings in other
isotopes of mercury have previously been observed by
a number of workers,*15 as well as crossings in zinc,
cadmium, and lithium.!® The theory of level crossings
has been worked out in detail by several workers.!?

EXPERIMENT

Figure 1 shows the lowest lying energy levels in
mercury. The 6 3P; state is excited by using the 2537-A
intercombination resonance line. The general features
of a level-crossing experiment are illustrated in Fig. 2,
which applies specifically to the 3P; state of an isotope
with nuclear spin /=% (for instance, Hg'® or Hg!%5).
Each of the hyperfine levels is split by the applied
magnetic field. Two of the Zeeman sublevels (F=3,
mp=—% and F=1%, mp=-+3) become degenerate at a
value of the applied field given approximately by

grmoll/A=1, ¢Y)

where gs is the gyromagnetic ratio for the 3P; state, uo
the Bohr magneton, H, the magnetic field at the
crossing, and A4 the magnetic dipole interaction
constant. Equation (1) can be obtained by solving the
secular equation for each of the two magnetic substates
that cross, by using the perturbation Hamiltonian!®

J¢=AI-J4+BQop.+no(g/I—gI)-H. (2)

[Here g7 and g7 are each expressed in terms of the Bohr
magneton; {Qop.)=0 when I<%; therefore, B does not
enter into (1).] It is clear from (1) that a measurement
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of the field H, is tantamount to measuring the ratio
gs/A, so that if g7 is already known (from a measure-
ment on another isotope), we can obtain 4.

Observation of the crossing field is made possible by
illuminating the sample (in vapor form) with 2537-A
resonance radiation whose frequency has been Zeeman
shifted slightly® to be in optical resonance with the
levels at the crossing point. The Doppler width of the
lamp is represented in Fig. 2 by the cross-hatched band,
and the necessary isotope shift for illuminating the
crossings in Hg!® and Hg'®® by the positions of arrows
P and Q. The isotope shift relative to Hg!®3, as well as
approximate A4 values for each isotope, were available
from previous spectroscopic work!; this greatly facili-
tated proper Zeeman shifting of the lamp and location
of the level-crossing point.

The apparatus, which is patterned after that used
by Hirsch,® is shown schematically in Fig. 3. Quartz
lenses and cells are used throughout to transmit the
2537-A line. Light from an electrodeless Hg!® lamp,
located inside the Zeeman-scanning magnet, passes
through a collimating lens and a quarter-wave plate-
polarizer combination (which passes only one com-
ponent of the Zeeman triplet from the lamp when the
light emerges parallel to the scanning field) into the
cell containing the radioactive mercury vapor. The cell
(a 1-cm cube) is placed in the gap of a Harvey-Wells
12-in. magnet. Light scattered (at 90°) from the
radioactive vapor (density ~10® atoms/cc) is moni-
tored by a 1P28 photomultiplier and its intensity
recorded as the magnetic field (“splitting field”) is
slowly swept through the value H,. The curve of
intensity versus field has roughly Lorentzian shape.l”
Small-amplitude field modulation and phase-sensitive
detection are used to increase sensitivity, thereby giving
a recorder tracing that looks like the derivative of a
Lorentzian curve. No filters for the 2537-A line are
needed, since the mercury vapor cell acts as its own
filter. The solid angle for the light scattered by the cell
into the photomultiplier was limited to approximately
0.01 sr.

A= MAGNETIC DIPOLE INTERACTION CONSTANT

Heai.T-p-W =172

(F=3/2) 05 me=-1/2
Q 05 1o

°

OS2

(F=1/2) -1

ENERGY_ (UNITS OF A)

-2l ——p —Hg'"® RELATIVE TO Hg'"®®

—=Q — Hg'®® RELATIVE TO Hg'®®

I —DOPPLER WIDTH AT 273°K~370Avy
F16. 2. Hyperfine levels in a magnetic field for J=1, 7=4%.

1 . Bitter, H. Plotkin, B. Richter, A. Teviotdale, and J. E. R.
Young, Phys. Rev. 91, 421 (1953).
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F1c. 3. Experimental arrangement for level-crossing work.
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The scanning magnet for the lamp (see Fig. 3) is a
commercial unit built to our specifications,” and has a
maximum field of ~11 kG.

All of the isotopes were produced by the reaction
Au(p,am)Hg'*®~=; internal bombardments with pro-
tons in the energy range 30-50 MeV were carried out
at the Harvard University cyclotron. Beam current
was 51 uA, requiring bombardment times of 6-8 h on
a 1 cmX5 cmX0.006 in. gold-foil target. Target probe
positions were determined in order to optimize the
production of the desired isotopes for each run at the
expense of the others. The isotopic composition of each
sample was verified for each cyclotron energy by high-
resolution optical spectroscopy and gamma-ray spec-
troscopy.! The procedure for transferring the radio-
active mercury from the target foil was essentially the
same as that used by Melissinos.”

The magnetic field was measured in the vicinity of
the crossing by using a proton-resonance probe.”” Since
the cell and resonance probe were not at the same point
in the field, it was necessary to reduce the difference in
field between them to zero or to obtain an estimate of
this small field difference. The most satisfactory
arrangement of cell and probe was to place them in
symmetrical positions about the center of the magnet
gap. The residual correction, estimated to be approxi-
mately 1:60 000 or less, was difficult to measure ac-
curately because of fluctuations in the magnet current
of the same order of magnitude. A method is suggested
in Appendix C for measuring small field differences in
the presence of fluctuating magnetic fields by using
two magnetic resonance probes connected in parallel.

20 The magnet (Model UFS-1) was built by Magnion, Inc.,
Cambridge, Massachusetts. It is roughly a cube, 8 in. on a side,
and weighs approximately 100 lb.

2 A, C. Melissinos, Phys. Rev. 115, 126 (1959).

22 Probe was similar to the Harvey-Wells Type-124 magnetic-
resonance probe. Proton resonance frequencies in Mc/sec were
converted to units of weH in Mc/sec using the conversion factor
328.731940.0006 derived in Appendix A of Kaul’s thesis (Ref.
15). This takes into account an approximate diamagnetic cor-
rection due to probe composition and cylindrical shape. This con-
version factor is consistent with the value of the Bohr magneton-
proton magnetic moment ratio obtained by Hardy and Purcell
[see J. H. Sanders, The Fundamental Atomic Constants (Oxford
University Press, London, 1961), p. 52, referring to W. A. Hardy,
Bull. Am, Phys. Soc. 4, 37 (1959) ].
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TasLE I. Measured proton resonance frequencies for level
crossings.® (Mean values normalized as indicated in Appendix B;
except for Hg'®, errors are three times the standard deviation of
the mean.)

Frequency®
Isotope Crossing (kc/sec)
Hg® (I=%) (F=3%, mp=—3%  32370.06+0.45
F=%: mp=3%
13 (15 15
Hgs* I=? f=— mp=— 339264 +1.1
13 11
F= —, My =—
2
( 13 11
F=— mp=—  32682.6 £-0.8
13 7
F—~—, mp=-—
L 2
13 9
F=— mp=- 31580.7 +8.7
2
13 5
F=— mp=-—
13 [ 15 15
Hgs* ( [=— F=— mp=—  34380.51£0.42
2 2 2
13 11
Fe=—, mp=—
L 2
He™ (I=3) {F—-g, mp=—3%  30197.95+4-0.23
(Calibration:) F=3} mp=}%

® Preliminary results for Hg!® and Hg!%* have appeared previously:
W. W. Smith, Bull. Am. Phys. Soc. 8, 9 (1963).
b See Ref. 22.

RESULTS

Proton-Resonance Frequencies for
Level Crossings

A summary of the observed level-crossing data is
given in Table I. The crossings observed in Hg!®s*
(I=13/2) may be identified from the Zeeman diagrams
(Figs. 4 and 5). The Zeeman diagram for Hg%* (also
I=13/2) is similar to that for Hg"%%" although the
detailed positions of the crossings in this isotope are
uncertain because only one crossing was observed.
Figure 6 shows some sample recorder tracings obtained
by field modulation. In searching for a crossing, the
modulation amplitude was adjusted to produce maxi-
mum signal® and then reduced to narrow the linewidth
when making measurements.

The search for each crossing and identification of the
associated Zeeman levels was facilitated by the availa-
bility of spectroscopic data on the hyperfine structure

% H., Wahlquist, J. Chem. Phys. 35, 1708 (1961).
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FI1G. 4. Zeeman pattern of Hg!®* (40 h).

for each isotope,! which permitted a prediction of the
approximate positions of the crossings. In the case of
Hg'¥%" in which three crossings were observed, the main
(narrow) crossing (F=15/2, mp=15/2XF=13/2,
mp=11/2) was identified by its width and by the fact
that its implied A value agreed with the spectroscopic
value for 4. The two broader crossings can be identified
partly by width and intensity, but most convincingly
by the fact that their approximate positions can be
calculated from the 4 value obtained from the first
crossing (which is relatively insensitive to B) and the
spectroscopic B value. The assignments of levels for
these crossings are the only ones that correspond to
|Amp|=2 and are consistent with the spectroscopic
data. Furthermore, the position of the third crossing
for Hg*%" listed in Table I, predicted by using the
known value of g; for the #P; state and the 4 and B
values obtained from the first two crossings alone,
agrees with observation. One may also consider the
consistency of the three crossings as a confirmation of
the measurement of the nuclear spin as 13/2.1

The values given in Table I were obtained by using
the ratio of the measured frequency for any given
crossing to the proton-resonance frequency for the
single crossing in Hg'®. The frequency ratios were
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F1c. 5. Detail of level crossings in Hg!®* between
7300 and 8300 G.
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found to be more consistent from run to run than the
absolute frequencies, probably because small cell-to-
probe corrections cancel out of the frequency ratios.
These ratios were obtained separately for each run and
then averaged. The “normalized means” (the mean-
frequency ratio multiplied by the mean proton-
resonance frequency for the Hg'® crossing) of all runs
fall within the error limits given, which in general are
three times the standard deviation of the mean. The
data are presented in detail in Appendix B.

An attempt was made to seek out sources of system-
atic error. The shifts in the position of the center of a
level crossing resulting from the finite lock-in time
constant and sweep time have been discussed by
Novick. For a small ratio of lock-in time constant to
sweep time, the shift is linear and should cancel out
of the mean if an equal number of up-field and down-
field sweeps are included. For the sinusoidal field
modulation used here, there is no shift of the center of
the line but merely a broadening that is due to the finite
modulation amplitude® No significant shifts were
observed when the lamp power was changed slightly,
or when the lamp frequency was detuned from optical
resonance.

Hyperfine-Interaction Constants

Values of the magnetic dipole and electric quadrupole
interaction constants, calculated from the values in
Table I, are given in Table II. The 4 value for Hg'®
is obtained from the Hg"¥%-Hg'® proton-resonance fre-
quency ratio and the accurately known A4 value for
Hg®.25 Second-order Zeeman and cross Zeeman-
hyperfine corrections have been applied to get the
“low-field” values of Ai95/A199 and the “low field” 4

’H‘ﬁ-‘r”"’ o,
i * \
Hg'9® Hg'®%: J':"('JQZU\‘JI W
mF=I5/2xII/2 /[
—t
APPROX.
| GAUSS

3437842

\i

Fi1c. 6. Typical recorder tracings for level crossings observed by
using field modulation. Integrating time: 1-3 sec. Lines are
broadened by a factor ~3 by finite field modulation amplitude;
modulation was set to maximize the signal.

2# R, Novick, Quarterly Progress Report, Columbia University
Radiation Laboratory, 1961 (unpublished).
26 C, V. Stager, Phys. Rev. 132, 275 (1963).
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TasLE I1. Values of the hyperfine interaction constants.

“Low-field” constants.
Second-order Zeeman and

Present work
Present work

“Isolated” constants.

. Spectroscopic cross Zeeman-hyperfine All second-order
Quantity results® corrections included corrections included
A195P1) 15838130 Mc/sec 15813.464-0.23 Mc/sec 15815.5640.24 Mc/sec
A195(GP1)
—_— 1.071927+0.000015 1.071936-0.000018
A 199 (SPI)
A195*(3P1) —23677 —2368.04-+0.08 Mc/sec —2367.984-0.08 Mc/sec
Bios*(3P1) —794-£90 —782.45+40.86 —777.9740.86
A 193*(P1) —2394+11 —2399.69-£0.07> —2399.63+0.07>
Big3*(3Py) —749-+150 —724.8 £90.0° —720.2 £90.0°

s W. J. Tomlinson, III and H. H. Stroke, see Quarterly Progress Report No. 66, Research Laboratory of Electronics, MIT, 1962, p. 18 (unpublished) ;
and W. J. Tomlinson, I1I, Ph.D. thesis, Department of Physics, M.I.T., 1963 (unpublished).

b Preliminary value: it is assumed that B = —749 4150 Mc/sec.

¢ Least-squares fit to all available spectroscopic and level-crossing data. Only one level-crossing measurement for this isotope was available, hence the
large uncertainty in B. The crossing observed is much more sensitive to 4 than to B.

and B values listed in Table II. These represent the
experimental values for these quantities which could
be measured by direct hyperfine transitions in small
fields. Second-order hyperfine corrections, independent
of magnetic field, are included in the “isolated” 4 and
B values of Table II; these should be used in hfs
anomaly calculations. The 4 and B constants were
determined by a least-squares fit to the data, through
use of the program HYPERFINE-4, modified to permit
calculation of the second-order corrections.

Second-Order Corrections and g,

The magnetic field for a level crossing between sub-
levels of a state with J=1 is given approximately by
A=gsuoH, when I=%. Thus the ratio of the 4 factors
is very nearly the ratio of the proton-resonance fre-
quencies for the crossings in the two isotopes. This
statement is exact if gr/gs is vanishingly small and if
there are no other fine-structure states nearby with the
same (mp) values as the crossing levels to perturb the
energies.

To retain the full precision of the data, one must
apply second-order Zeeman and Zeeman-hyperfine
corrections in intermediate coupling?”?® when calcu-
lating an expression for the level-crossing field in terms
of A. The first-order energies of an isolated hyperfine
multiplet in a magnetic field are calculated by diago-
nalization of the matrix of the hyperfine Hamiltonian
(2). Here we consider only states belonging to a single
fine-structure level. When the perturbations from

26 We are grateful to Professor H. Shugart, Lawrence Radiation
Laboratory, University of California, Berkeley, for the original
version of this program. The modifications to include the second-
order corrections were made by Dr. P. Thaddeus; the first use of
this program is reported in P. Thaddeus and M. N. McDermott,
Phys. Rev. 132, 1186 (1963).

( 27 IV}[ N. McDermott and W. L. Lichten, Phys. Rev. 119, 134
1960).
( 2’3A). Lurio, M. Mandel, and R. Novick. Phys. Rev. 126, 1758
1962).

neighboring fine-structure levels are included, it turns
out that there are off-diagonal matrix elements of the
Zeeman and hyperfine interactions between different
fine-structure states. The final values of the term
energies with second-order corrections are obtained by
diagonalizing the submatrix for the fine-structure state
of interest, after making a Van Vleck transformation
on the complete matrix for the 6s6p configuration which
eliminates the off-diagonal elements between different
fine-structure states to second order.!%2

The procedure just described, when applied to the
level crossing in the ?P; state of an isotope with I=4¢,
yields®®

gr » PutH 278 362 1
A= gJ'#0H+(1 —"*“) + /—-+ —>
2%,/ 24 \& & b
39 aBuoH+

288 &

c¥—ca?
{~3C1€2da+5(6102+ 5)03/2
42

aueH { 5v2 l

C2 (as_ 0/1/2) - 61‘—8‘—203/2

- 2616201/2 } +

V3 apoH+ 5v2
E— {clas—(cl—l—cr—f)da/?} . (3a)
6 & 8

6125,

A in this expression is what would be measured by
double resonance in low external field. The constant
gJ is the gyromagnetic ratio for the 3P, state which
would be measured in an even Hg isotope at low field.

¥ E. C. Kemble, The Fundamental Principles of Quantum Me-
chanics with Elementary Applications (Dover Publications, Inc.,
New York, 1937), p. 394 fi.

% This expression applies to a positive magnetic moment (4 >0)
so that the levels that cross are (Fymr) = (3,—3%) and (},3). If the
moment is negative, then the crossing levels are (§,3) and (3, —%)
and (3) is transformed into the appropriate expression by changing
the sign of H,, in agreement with Thaddeus and Novick [Phys.
Rev. 126, 1774 (1962)].
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The expansion coefficients «, 8, and c¢i, ¢2 express the
“3P,” state wave function in terms of pure LS and jj
wave functions, respectively. as, 1)z, @32 are the single-
electron hyperfine interaction constants.’® £ has been
defined by Schwartz.3' The fine-structure energy de-
nominators are:

do=E(P1)—LE(Po),

51=E(IP1)—‘E(3P]) 5

62= E(3P2)—‘E(3P1) .
The numerical values used in evaluating (3a) and in
the computer calculation of second order corrections

for the other isotopes are given in Table III.
Making the substitution,

y=A/ueH—gs'T1— (g1/2¢,)],
(3a) can be written:
A=gs uoH [1— (g1/2g7) 1+noH 1y

From this we obtain the ratio of the 4 factors for Hg!%
and Hg" in terms of the ratio of the level-crossing
fields:

A(195)  H.(195)(gs—38r+y)us
A(199) H,(199)(gr—3gr+9) 190

(3b)

H+(195)(1 Agr Ay)

H.,(199) 285 g7
Vproton(195>

e (1—13.1¢10-54-11.3% 10-9)
Vproton(lgg)
Vproton (195)

e 1 1.8 10-9). @)
Vproton (199)

In this case, fortuitously, the g and second-order
corrections nearly cancel out of the ratio.

The experimental value®® for the proton-resonance
frequency ratio for the crossings in Hg'®® and Hg'¥ is
v,(195)/v,(199) =1.071929(15) (see Appendix B) which
leads to

A(195)/4 (199) =1.071929(15) X (1—1.8X 10-5)
=1.071927(15). (5)

Since the A4 factor for Hg'® is known,?® Eq. (3a) can
be used, together with the H, for Hg!®, to calculate
gs for the 3P, state. Although a preliminary gs value
has been given previously for Hg!® with high precision,!®
it is of some interest to report the value obtained here
in view of a small disagreement with this earlier value,
for which no explanation has yet been found. Using

3 C, Schwartz, Phys. Rev. 97, 380 (1955).

3 The notation 1.071929(15) means 1.071929+4-0.000015; that
is, the number in parentheses represents the uncertainty in the
last place.

Hg195,
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TasrLe III. Constants used in second-order corrections.
Symbols are defined in the text, or in Ref. 28. The symbols
a, B[ =— (1—a?)2], ¢1, and cs= (1—c12)12 were calculated to be
consistent with the measured value of g/, using formulas given in
Table IV of Ref. 28. The single electron dipole interaction con-
stants for Hg!® were calculated in the manner of Ref. 27 from
A(3P1)199, A(3P2)199 and the theoretical value for 01/2/03/2. The
single-electron constants for the radioactive isotopes were then
derived from the Hg'¥ constants by the method outlined in Ref.
25. The quantity bs2 was calculated from B(®P;) for the same
isotope according to Eq. (13) of Ref. 28. The uncertainties in
ay2/ay2 and the neglect of hfs anomalies (typically ~0.1% in
Hg) suggest that the single-electron interaction constants should
be reliable to ~1%,2 sufficient accuracy to obtain the corrected
A’s and B’s to within the experimental uncertainties.

gr’ 1.486118 A (3P1)199° 14 752.37 Mc/sec
@ 0.98488 A (3P2)199% 9066.62 Mc/sec
c1 0.42717 d0d (Mc/sec) 0.5298 X108
£o 1.094 519 (Mc/sec) 4.3939 X108
7% 1.354 824 (Mc/sec) 1.3882 X108
aifa/assr b 11.52
Isotope: 199 195 195% 193%*
as(Mc/sec) 34969 37484 —5614 —5689
az;2(Mc/sec) 432.6 463.7 —69.45 —70.38
bas2(Mc/sec) .. cee +1216 +1186
81 0.542 X103 0.581 X103 —0.870X10% —0.882 X10™*

a M. N. McDermott and W. L. Lichten, Phys. Rev. 119, 134 (1960).

bR. D. Kaul, Ph.D. thesis, Case Institute of Technology, 1963 (un-
published).

° Reference 25.

d Charlotte E. Moore, Atomic Energy Levels (U. S. Government Printing
Office, Washington, D. C., 1958), Vol. III, p. 192.

the mean value of the proton-resonance frequency for
the Hg'® crossing given in Table I, we find from (3a)
that g;/=1.486118(16), of which +3.7X10~% is the
contribution from g7 and the second-order corrections.
A comparison among some values for g;/ recently
obtained is given in Table IV. The values for g,/ in
Hg'® were all calculated by using Stager’s precision
measurement of 4 (3P;) in this isotope.?® Similarly, the
values for g;/ in Hg® are based on Kohler’s precision
measurement of 4 (*Py) in Hg?".® (The self-consistency
of Kaul’s results'® for g;/ in Hg'® and Hg® indicates
that the A wvalues for Hg!® and Hg are probably
consistent within Kaul’s stated error.) There is a dis-
crepancy of a few parts per million between Kaul’s
value for g;/ and the value obtained here.®® While the
even-isotope value of Kohler and Thaddeus* is just
consistent with our value, there appears to be a definite
discrepancy of approximately 2:10° between Kaul’s
value and that of Kohler and Thaddeus.

As far as our measurement is concerned, it is possible
that some small systematic errors of a few parts per
million are present because of the difficulty in measuring
the cell-to-probe field difference (see Appendix C and
Ref. 34). Nonetheless, as indicated in Appendix B, the
error limits for H,(199) were chosen to encompass the

3 A new preliminary measurement of A, for Hg!® by O. Redi,
National Magnet Laboratory, M.L.T., gives a proton-resonance
frequency (for 0.01)4 FeCl; solution) of 30198.1440.15 kc/sec,
in agreement with our value. This leads to a corrected
¢7=1.486107(12). The magnet that was used had a current
stability of 1:106. O. Redi (private communication).

# R. Kohler and P. Thaddeus, Phys. Rev. 134, A1204 (1964).
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TaBLE IV. Some recent measurements of g;/(3P;) in mercury.®

Method of
Isotope measurement gr Reference
Even High-field double resonance 1.486094(8) Kohler and Thaddeus (Ref. 34)
199 Level crossing 1.486118(16) Smith (this paper)
Level crossing 1.486147(10) Kaul (Ref. 15)
Level crossing 1.486165(50) Dodd (Ref. 14)®
201 Level crossing 1.486156(18) Kaul (Ref. 15)

Level crossing

1.486030(130) Dodd (Ref. 14)®

a Values are corrected in the same way for gr and second-order Zeeman and fine-structure effects.

b Recalculated from the data using Kaul's second-order corrections.

means of several runs taken under a variety of con-
ditions which would be expected to affect the cell-to-
probe correction in a more or less random fashion. A
brass light pipe in the apparatus, suspected because of
possible magnetic impurities, was found to produce no
shift of the field in the magnet to within 1:10° or less.

Hyperfine Anomaly for Hg!®® and Hg!®?

Although the magnetic dipole interaction constant A
is approximately proportional to the nuclear g factor
(gr), the ratio of the A factors for two isotopes, in
general, deviates slightly from the ratio of the g;’s.?
The quantity

(©)

frequently referred to as the hyperfine-structure
anomaly, can be calculated when the ratios of the 4
factors and the g factors are measured independently.

For comparison of the anomaly with theory, it is
desirable not to use the experimental 4 factors in (6),
since the A factor for the “®P,” state includes contri-
butions from the 3Ps, Py and 'P; fine-structure levels.
To get the anomaly for the isolated 3P; state (which
will be used to calculate the anomaly for a single
electron), we calculate the second-order hyperfine cor-
rections?® and subtract them from the ‘“low-field” 4
factors before using (6). The corrections to be sub-
tracted are

IAN2=4 1g2/A2g1—1 ,

84 195=—2.10 Mc/sec,
84 190=—1.83 Mc/sec,
so the corrected (or “isolated’”) A factors become
A5’ BP1) =15 815.56(24) Mc/sec,
A 99’ (BP1) =14 754.20(2) Mc/sec. (7
Using these values in (6), together with the ratio of the

nuclear g factors gigs/g190=1.070356(66) reported by
Walter and Stavn,” we obtain

15199 (3 P) =0.1476 (76) % . )

The theory of hyperfine-structure anomalies as worked
out by Bohr and Weisskopf? is in terms of the anomaly
for the individual s1/2 and py2 electrons. The anomaly
for the sy2 electron [A(sy2)] can be expressed in terms
of A(3P,) if we break up the 4 factors into individual

electron contributions.?®?7 Using the single-electron 4
factors and intermediate coupling coefficients from
Table III and assumptions similar to those of Stager,?
we estimate that

1957199 (5, o) = 1.141 (20) 95A1% (3P)) . 9)

In making this estimate, we have explicitly included
an estimate, using the single-particle model, with
admixtures, of A(py/2)/A(s12)=0.363. Then, from (8)
and (9), we find

195A199 (5, ) = 0.1684 (118) . (10)

DISCUSSION

Configuration Mixing Coefficients in the
Nuclear Shell Model

The sy/» electron hyperfine anomaly (10) and the
measured nuclear moments for a pair of isotopes pro-
vide three quantities that can now be interpreted in
terms of the single-particle model of the nucleus with
configuration mixing. Adopting the semiphenomeno-
logical approach suggested by Stroke and others,® we
try to obtain a fit of the experimental values for the
anomaly and the moments of the pair of isotopes to the
theoretical values for the u; and *A'? based on the
single-particle model with two admixed configurations
in the nuclear wave function. For example, using the
configuration mixing model, we can write the magnetic
moment for a nucleus in a single-particle state of total
angular momentum j and orbital angular momentum I,

pr=ps.p. (L) + 20, (gsD—gr @), (11)

Here us.p.(1,7) is the single-particle or Schmidt value
of the magnetic moment and the ao 5 are coefficients
used by Stroke,® which are proportional to the co-
efficients o for the admixed configurations in the
nuclear wave function.!® We vary the «; subject to
the condition that D> i |ex®|?=minimum, to get a
fit to the data by using as little admixture as possible.
The perturbation approach of Stroke and others® and
Arima and Horie!® is not satisfactory when the |ay,®|
get much larger than 0.1-0.2. The three isotopes of
Hg with 7=% and the /=3 isotope (Hg?") for which
anomaly data are available can be fitted in this way
with reasonable values of ‘the admixture coefficients,
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TaBLE V. Admixture coefficients ax(*) obtained from magnetic moment and anomaly data on Hg isotopes.®

(1}!11/2)12 band (1]19/2)0 and
(2ds12)® — (2d3)2)*

Isotope Nuclear proton excitations admixed:
(%) urk L spin ap™ ag®
Hg'% +0.5381 +0.1684(118) 3 —0.014(3) +0.001 (1)
Hg7 +0.5241 4-0.0899(52) 3 —0.009(2) —0.014(5)
Hg® +0.5027 s ] —0.006(1) —0.027(2)
Hgt —0.5567 +0.1597(73) 3 +-0.004(0) +0.294(0)

a The pr are diamagnetically corrected nuclear magnetic moments in nuclear magnetons (Refs. 6, 7) and the ¥A1% are the hfs anomalies for the si/2
electron in percent relative to Hg!® [this paper and C. V. Stager, Phys. Rev. 132, 175 (1963) ].

as shown in Table V. The two admixed configurations
considered are the only ones permitting a fit to the data
with small enough values of the admixture coefficient.®
In the absence of a detailed calculation of the
from nuclear theory, we can at least say that the con-
figuration mixing theory is not inconsistent with the
observed moments and anomalies for these isotopes.
The a® for the I=1% isotopes cannot be calculated by
using the simple é-function interaction of Arima and
Horie,!® since this interaction gives a@=0 for a pi/
shell-model state. It may be feasible to calculate o®
for the py/2 isotopes by using a somewhat more complex
effective nucleon-nucleon interaction®® than the delta-
function interaction.
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APPENDIX A: SHIFTS IN THE CENTER OF A LEVEL-
CROSSING CURVE CAUSED BY DEVIATIONS
FROM EXACT 90° SCATTERING

The intensity change in the neighborhood of a
crossing of two excited-state sublevels!? is given by

A+A* i(A—A¥)or

R(f7g)_R0= + I
1+ (Awr)? 14 (Awr)?

, (A1)

where 4= A (,g) is proportional to the product of four

3 See, for example, F. Tabakin and F. Villars, Bull. Am. Phys.
Soc. 9, 74 (1964).

electric-dipole matrix elements as defined by Franken,'
f is the polarization vector of the incident light, g the
polarization vector of the scattered light, 7 is the
natural lifetime of the excited-state levels that cross,
and Aw= (E—E')/% is a measure of the energy sepa-
ration of the two atomic sublevels. As the applied
magnetic field is swept through the crossing point, Aw
goes through zero, and an intensity change is observed
in the scattered light. Whether the intensity increases
or decreases in the neighborhood of the crossing and
whether the line shape is pure Lorentzian, dispersion-
shaped, or some mixture of the two, is determined by
the sign of the quantity 4 and by whether 4 is real,
imaginary or complex.

As an example, we assume that the incident and
scattered polarization vectors both lie in a plane per-
pendicular to the applied magnetic field and that the
angle between them is ¢. From knowledge of the electric
dipole matrix elements at the crossing field between the
initial ground-state Zeeman sublevel and the two
excited-state sublevels that cross, 4 can be computed
as a function of the angle ¢. For the case (see Fig. 2)
of an atom with a 15 ground state and 3P, excited state,
having a nuclear spin 7=1%, we find

A~ — (sin’¢— cos?’p-+2i sing cose) . (A2)
If $=90 or 180° A4 is real and we have a Lorentzian
line shape. If ¢=45 or 135°, A4 is pure imaginary and
we have a dispersion line shape. If, as is often the case
in level-crossing experiments, 4 is close to but not
exactly 90°, then some of the dispersion shape is mixed
with the Lorentzian shape, with the result that there
is a shift in the center of the line. It will be shown below
how a set of level-crossing data may be corrected for
small deviations from effective 90° scattering by esti-
mating the asymmetry in the line accompanying the
shift of the center.

Defining x= Awr, we rewrite (Al) as

2 Red
R—Ry= 2 ImA

14 1422 (A3)

For small-amplitude field modulation, the observed
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line shape is proportional to the derivative of (A3):

d x 1—a?
. —(R—Ry)=—4Red 2ImA . (A9
dx (14222 (1+4a2)?

For exact 90° scattering, 4 is real and the line has a
zero at x=0 and peaks at positions given by x= - (§)1/2.
Both peaks have the same height, measured from the
base line.

If the scattering is not exactly 90°, we have ImA 0,
but instead |ImA|<<|Red|. The center of the line is
now given by —2 Redx—ImA4 (1—4?) =0 or

—Imd (1— xz) 1 —ImA

WINTHROP W. SMITH

and the corresponding peak heights are

9
Azl-—-— Red—2 ImA

43 (A7)
9
B=~|—Red—3%1ImA
43
If we define the resulting “asymmetry” by
B—4 1 —Imd
o= = ’ (AS)
B+4 V3 Red

we see that for small contributions to the line shape

o= (A5) from ImA4 (—ImA4/ReA<K1), the shift of the center of
Red 2 2 Red the line is related to the measured asymmetry by
o . . -\/3
’tI;lhe positive and negative peaks are now located at pr e 0.8660. (A9)
€ positions 2
1 1-—-Im4 .
P ——— Putting this another way, if 6<1 is the small angular
V3 2 Red (A6) deviation from ¢=m/2, the shift, by using (A2),
1 1—Im4 1 —ImA —sin(%w-]—&) cos(3m+36)
A ~4§. (A10)
V3 2 Red 2 Red sm2(%7r+5)~cosz(%7r+6)

APPENDIX B: DETAILED PRESENTATION OF EXPERIMENTAL DATA
(Errors are one standard deviation of the measurements unless otherwise indicated.)

TasLE B.I. Hg'® level-crossing data: F=§, mp=—§XF=%, mr=%. Weighted mean of all data=30 197.95(36) kc for 93 peaks.
The error quoted in Table I for this crossing in Hg'™ is larger than three times the standard deviation of the mean. The error limits
are chosen to encompass all four of the means given here. Thus, some of the uncertainty resulting from cell-to-probe corrections is
included in this error estimate. Changes in the cell and probe positions from run to run are believed to account for most of the
scatter between the various means.

Mean proton resonance Number Mean proton frequency
Run  frequency for crossing® (kc) of peaks corrected for asymmetry Remarks
1 30 197.86(26) 15 30 197.76 (30) Intensity crossing, 4 pole pieces
2 30 198.18(26) 20 30 198.18(26) Observed by using field modulation, 4 pole pieces
3 30 197.80(46) 19 30 197.80(46) Observed by using field modulation, B pole pieces
4 30 197.93(28) 39 30197.93(28) Observed by using field modulation, B pole pieces.

a “Normalized means’’ presented in Table I are computed from the weighted means of the frequency ratios by multiplying by the mean proton reso-
nance frequency for the Hg!®® crossing: 30 197.95 kc/sec.

TasLE B.II. Radioactive level crossings observed

Mean proton resonance Weighted Ratio of proton resonance frequencies

Isotope frequency corrected for Number mean of for each run »[H,]/v[ H,(199)]
and asymmetry (kc/sec) of peaks all data (Errors here are three times the
crossing Run (see Hg'® data) in run (kc/sec) standard deviation of the mean.)
195
3 1 32 369.86(34) 79 1.071929(12)
& - 3 X G2 2 32 370.30(33) 20 32 369.95(38) 1.071929(13)
*
(1515 (311 1 33925.86(37) 31 56(15)
3 925.86(3 1.123456 (1
) ) 2 33 926.93 (40) ) 33926.78(63) 1123476 (14)
*
13 11 137
—,— | X{ —— 2 32682.7(9) 18 32 682.7(9) 1.082278(27)
2 2 22
195*
139 135
—,—)X —,—) 2 31 580.7(70) 6 31 580.7(70)
22 22
193*
1515 1311 3 34 380.54(48) 8 1.138511(26)
—,—) X —,—) 4(a) 34 380.36(19) 11
2 2 2 2 4(b) 34 380.84(34) 9 34 380.51(38) 1.138505(12)
4(c) 34 380.59(29) 10
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APPENDIX C: A METHOD FOR MEASURING SMALL
MAGNETIC FIELD DIFFERENCES IN THE
PRESENCE OF FIELD FLUCTUATIONS

Gabillard?®® has shown that if one looks at the envelope
of a fast-passage proton resonance induction signal
when the inhomogeneities over the sample are fairly
large ((AH)ay21/vTs, where Ts is the transverse re-
laxation time), what one sees is not a simple exponential
decay of the side wiggles, but an exponential decay that
is modulated by the Fourier transform of the field
distribution over the sample. This modulation is the
result of beats between the induction signal from vari-
ous parts of the sample which have slightly different
Larmor precession frequencies, and the oscillator
voltage in the coil. Thus, we can write for the envelope
of the nuclear induction signal

V(§)=VeeUTF (1), (C1)

with F(f) = J_,* e*1%$(8)dd, where 6=H —H,, v is the
proton gyromagnetic ratio, and ¢(8) is the distribution
of inhomogeneties. Gabillard considered the case in
which the magnetic field varies linearly across the
sample, that is

$(8)=0, [8]>A
=constant, |8§] KA.
Then we have
A
F(f)~2 f cosydtds
0
=2A(sinyAt/vAt). (C2)

The separation between zeros (or maxima) of F(¢) then
gives a measure of the inhomogeneity parameter A.
This effect can be used to measure small magnetic
field differences (for example, the cell-to-probe cor-
rection in a level-crossing experiment) in the following
way. Separate small magnetic-resonance probes are
placed at the two positions to be monitored and con-
nected in parallel to the oscillator. If the fields at the
two probes are HoA and are homogeneous over the
volume of each probe, we can write ¢(8) as a sum of
two & functions: ¢(8)~8(8+A)+38(8—A), which gives
F(t)~2 cosyAt. (C3)
36 See P. Grivét, La Résonance Paramagnétiqgue Nucléaire

(Centre National de la Recherche Scientifique, Paris, 1955), pp.
137 and 145.
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Fi1c. 7. Effect of increasing increments in small magnetic field
differences on side wiggles in nuclear magnetic resonance, using
two probes connected in parallel. (A quantitative analysis of these
beat patterns is difficult when there is appreciable inhomogeneity
over the sample volume of one probe.)

Measuring the time between successive zeros of the
nuclear induction envelope by using an oscilloscope with
calibrated time base gives the value of the field differ-
ence A. We note that (C2) represents essentially a
single-slit diffraction pattern, while (C3) is a double-
slit pattern. In any practical case there would be small
inhomogeneties over the volume of each probe, so the
“double-slit” pattern (C3) would have a “single-slit”
envelope. This makes the interpretation of the patterns
difficult when one attempts to measure field differences
as small as the inhomogeneties over the probe volume.

The technique just described seems to have the
advantage that one can measure field differences that
are somewhat smaller than the linewidth of the nuclear
resonance signal. Furthermore, if there are random
fluctuations in the fields at each of two probes such
that the field difference remains nearly constant, the
beat pattern may still be observable. This was the
reason the method was thought to be applicable to the
present experiment, in which fluctuations in magnet
current produced field fluctuations comparable in size
to the differences to be measured. Inhomogeneities over
the volume of the rather large probes that were used
made it impossible to get good measurements of the
field difference (see above). Some of the patterns ob-
served are shown in Fig. 7. This “beat-pattern method”
would be particularly useful if one were trying to set
the fields in two separate magnets equal with high
precision.
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