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Quantum Approach to Amplification of Optical Phonons in Semiconductors
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It is shown by using a quantum-mechanical treatment that, in semiconductors with some ionic character,
optical phonons can be ampliGed via their interaction with conduction electrons. The amplihcation of the
optical phonons occurs when the drift velocity of the conduction electrons exceeds the phase velocity of the
optical phonons. Both longitudinally and transversely polarized optical phonon modes are ampliGed via the
electron-phonon interaction when the quantum treatment given is valid. The ampliGcation of the optical
phonon modes can be viewed as a phonon maser process, with the external drift Geld inverting the electron
population. When the drift velocity of the electrons exceeds the optical-phonon phase velocity, the number of
electrons that will emit optical phonons exceeds the number that will absorb optical phonons. The result is a
net gain for those optical phonon modes whose phase velocity s =~/g satisfies the condition Vz) S.

I. INTRODUCTION

'HE observation of ampli6cation of acoustic mode
lattice vibrations through their interaction with

conduction electrons' ' has lead to some speculation on
whether the same mechanism could be used to amplify
optical mode lattice vibrations. "Recent experiments
on the current-voltage characteristics of GaAs and
InP' ~ at high drift fields have been interpreted on the
basis of this mechanism. The existing theory developed
to calculate the amplification of the optical phonons is
based on a phenomenological treatment. "However,
the phenomenological approach is valid only when the
phonon wavelength is longer than the electron mean
free path, i.e., ql(1, and the phonon frequency is
smaller than the electron collision frequency, i.e., cur(1.
Since the optical phonon frequencies in most materials
are in the infrared, co=10"—10" sec ', and the electron
relaxation time is about 10 " sec, the condition for
the phenomenological treatment to be valid will often
be violated. Also, for short wavelength optical phonons,
the conditions for the validity of the phenomenological
treatment will always be violated.

In this paper, we give a quantum mechanical treat-
ment of the interaction of the optical phonons with a
gas of conduction electrons. The procedure used is that
of the self-consistent 6eld method described by Ehren-
reich and Cohen and applied by Takimoto to the
calculation of the absorption of acoustic phonons in
the quantum limit. This treatment is valid when cov.& 1
and ql&1, and also when cv7(1 and q/&1. In Sec. II,
we calculate the conductivity tensor for an electron gas
interacting with the optical phonons in the presence of
a strong drift field. The dispersion relations for the

'A. R. Hutson, J. H. McFee, and D. L. White, Phys. Rev.
Letters 7, 237 (1961).' A. M. Toxen and S. Tansai, Phys. Rev. Letters 10, 481 (1963).
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optical phonon modes interacting with free electrons is
derived in Sec. III, and the amplification coeKcient is
related to the components of the conductivity tensor.
The arnplification coeS.cient is calculated for both
longitudinal and transverse polarized optical phonons in
Sec. IV, and in Sec. V we give a discussion of the results
obtained.

II. DERIVATION OF THE CONDUCTIVITY TENSOR

We treat the conduction electrons as a free electron
gas of density Ão. The optical mode lattice vibration
of frequency co and wave number q manifests itself by
means of a self-consistent field with scalar and vector
potentials pt(r, t), Ar(r, t)n expLi(q r—cA)j. The effect
of the external drift fields is taken into account by
using a drifted distribution function, ' fs(k —mVd/A),
as the equilibrium electron distribution. Here, Vq is
the drift velocity induced by an external electric 6eld
and k is the wave vector of the electron.

The electron-current density induced by the self-
consistent field is obtained by taking the trace of the
current-density operator and the single particle density
matrix. The density matrix operator p must satisfy the
equation of motion

i ft (Bp/R) = )BC,pj,
where 3C is the Hamiltonian of the system. We can
separate the Hamiltonian into two parts,

where
X=Xp+Xr,

Xo=P'/2m

is the free-electron Hamiltonian and,

e
Xr ————(v Ag+Ag v)+ePt

2G

is the part of the Hamiltonian that contains the
electron-phonon interaction to first order via the self-
consistent fields.

' B. V. Paranjape, Phys. Letters 5, 32 (1963); K. Nakamura,
Progr. Theoret. Phys. (Kyoto) 30, 919 (1963).
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P(r) = expik r, Eq (A——k)'/2stt. (2.5)

The free-electron Harniltonian has wave functions using the relation"
and energy eigenvalues

lim =E —
I

—
sires (s),

si
(2.14)

The state of the electron is specified by the quantum
numbers k, k„, and k,.

We can now solve (2.1) to first order in Hi by
expanding the operator p, p= po+pz. Here po is the value
of p in the absence of the interaction, but in the presence
of the drift fields. The equation of motion becomes

ik(rip&/@) I
~o Pij+L&»poj (2 6)

to first order in the self-consistent fields. Taking the
matrix elements of (2.6) in the representation (2.5),
we Gnd

3M& co x'Mp, zkg
L~(~+)+~(~-)j,

8sr(qVs)s qVt q

F(a) =a+-', (1—a')In
1—8

(2.15a)

where P(1/s) indicates that in any integration, the
principal part of the integral is taken. The actual
evaluation of g„and 0& is done in the appendices. The
results of the calculation for a degenerate electron gas
give

(f~—f')(k'I5('i
I k)

(k'Ip, lk)= iims~ Es E),.+ho)+—iM
(2.7)

16srto qVt (2k-s) EqVt. J

where fs is the drifted distribution evaluated at wave
number k.

The current density induced by the self-consistent
fields is

(2.15b)
g

5) 1+tt
p e)o(»»)=2»( —»'+- l+o —»')~»

3i 1—tt
Ji(r, t) =Trl Je,p7,

Js„=——',eL(v —eAi/mc), b(r —x)j+.
and

(2.8b) where a+ q/2ks +o)t——s/qVsr, and tt = 1—tl Ve/co. In
(2.15), ks is the Fermi momentum and Vs is the Fermi
velocity. The real parts of 0-„and 0-& are diferent from
zero only for wave numbers q lying in the range o)tt/VF
&q&2kp. Elsewhere, the real part of the conductivity
tensor is zero.

In (2.8b), I $+ denotes the anticommutator. We can
use (2.8a, b) together with (2.7) to obtain a relation
between the induced current and the self-consistent
electromagnetic field,

where
Ji——tr 8, (2.9)

III. DISPERSION RELATIONS FOR THE
OPTICAL PHONONS

(fe—f~ )(k'I ~lk)(k'I ~lk)*
I+— (2.10)

The operator V in (2.10) is defined by

V=-', [expitl r, v]+. (2.11)

If we choose the direction of g to be the s axis of our
coordinate system, then the matrix elements of V are

A

(k'
I
V

I k) = b)»», s+e—(k+ s q) . (2.12)

The components of the conductivity tensor parallel and
perpendicular to the direction of propagation are
given by

D= 8+4srP,

V & a= —(1/c) (a B/at),

4x 188
v se B=—

I J+c)P/rit)+-
C c Bt

(3.1)

(3.2)

(3.3)

In a diatomic crystal with some ionic character, the
optical lattice vibrations are accompanied by polariza-
tion waves. These polarization modes are described by
the theory of Born and Huang" for a diatomic crystal
with optical isotropy. In their theory, they introduce the
vector w, which is the relative displacement of the
negative ions with respect to the positive ions multiplied

by the square root of the reduced mass of the two
ions per unit volume. The relevant equations are
Maxwell's equations and the equations involving w,

CO~ CO SS & Ic+q
gg-

4iriq' Epk ) (kq/sti) (k,+-,'q) —to
(2.13a) ct w/Bt =biiw+bis8,

P=bsiw+bss8.

(3 4)

(3.5)
srt (fj, fj,+,) (kks/sit)'—

1')rt & (hq/srt) (k,+,'q) co-—(2.13b)

The real and imaginary parts of e can. be evaluated by

"P.M. Morse and H. Feshbach, Methods of Theoreticot Physics
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1,
p. 473.

"M. Born and K. Huang, Dynamica/ Theory of Crystal Lattices
(Oxford University Press, New York, 1954).



AM PL IF I CATION OF OPT I CAL P HONONS I N SEM I CON DU CTORS A313

b11= 0 ) (3.6a)

Here, D is the electric displacement, P is the polariza-
tion, and J is the electron-current density induced by
the electromagnetic fields. The coefhcients b;; are related
by Born and Huang to the infrared dispersion frequency
coo, the static dielectric constant eo and the high-fre-
quency dielectric constant e„ in the following way:

InSb
InAs
InP
GaSb
GaAs
GaP
AlSb

0.123
0.191
0.238
0.079
0.155
0.168
0.149

TABLE I. Electron-optical phonon coupling constant,
K = 1 —ep/p„ in III—V compounds. '

bn= f pi =L(eo—e )/4~]'"~o,

bop ——(e„—1)/4m .

3 6b) cvalues of eo and e taken from S. S. Mitra and R. Marshall (to be
published).

(3.6c)
IV. ABSORPTION COEFFICIENT

The Eqs. (3.4)—(3.5) are valid for wavelengths much
greater than a lattice spacing. Using (3.1)-(3.6)
together with (2.9), we obtain the following dispersion
relations for the longitudinal and transverse polarized
waves, respectively:

Longitudinal waves

~'=~P+(4~/jpp)(~, / ce)~P~/1 (4~~„—/i~e„); (3.7)

Transverse waves

=GOO— (3.8)
(cq/pp) e~ —1+(4'Eo'g/(zppe~)

(3.7)-(3.8), co~= (ep/e„)'"cop is the longitudinal
optical phonon frequency in the absence of the electron-
phonon interaction, and x=1—e„/ep is the parameter
which gives the strength of the electron-optical phonon
interaction. Table I shows the value of K for some typical
III—V semiconductors. The absorption coefFicient is
obtained by taking the imaginary part of the frequency
which one gets from the dispersion relations, co=or„—iu.
Since K is much less than unity for those ionic serni-

conductors which have very mobile electrons, we obtain
the following for the absorption coefEcient for small K

The absorption coefficient for longitudinal optical
phonons can be evaluated by using (2.15a) in (3.9).
The result is

+~cog(q/qg)'((oy/qVs) e„

&op 'i' lt'kp

I +I — ~(a+)+I'(a )+I—-
qV~) ( q &k q.)

"
(4.1)

(7r/4)~op)(q/qe)'((op/qV p) e„
0!)=

9+e-(q/q. )'3'
(4.2)

where qe=v3(~„/V~) is the Debye wave number. The
absorption coe%cient is positive, giving attenuation of
the optical phonons when p, &0.%hen p&0, the reverse
is true and we get amplification of the optical phonons.
Therefore, the condition for an optical phonon of
frequency co and wave number q to be ampli6ed is that
the component of electron drift velocity in the direction
of propagation q Ve exceed the phase velocity of the
optical phonon s=co/q.

When q/2k~&1 and cop/q V~(1, (4.1) takes the
simpler form

47I'0'g g/ZM e~
ng= —~mgK Im

1—(4m o.„)/(ia)e„)
(3.9)

F(a) =2a, a((1. (43)

In deriving the expression (4.2), we have used the
following limiting form of F(a) for small a:

COg K

ng= Im (3.10)
2ppp (cq/(o)'e„' —1+( 4~ o) /(i~ „e)

The absorption coefFicients for longitudinal and trans-
verse optical phonons are evaluated in the next section.

The amplification increases with wave number for q
up to qg and decreases with g thereafter. The wave-
number dependence of 0.~ with q is shown in Fig. 1.

The absorption coefFicient for transverse optical
phonons is calculated by using (2.15b) in (3.10). We
obtain the result

3n. ~P/~|, Pf ~)P &op f q
o f o&p

8 kqc Egal qV (2k kqV )
(4 4)

~++ I

— —G(~+) —&(~-) —
(
—
) ~. + I

—
) ( ) &

—
I I

—
(16 qc) q 3k& qc 16 k qc qVF (2kp) qV pl
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FIG. 1. The normalized
amplification coeKcient for
longitudinal optical pho-
nons, l@n„/sscy~cope )n~, is
plotted as a function of the
ratio of the optical phonon
wavelength to the Debye
wavelength.

In this case also, the optical phonons are absorbed when

p) 0, and amplified when p(0.
When q/ 2k s&&1, cc/qc&&1, and cop/qV~&&1, we get

the following for o.~.

K Geo

8 Ms qVp~ qc qc)
(4.5)

9~'/~„ '/ ~I ~'
1+31 —

I +
&qc kqv, 16 kqc Eqv i

We have used the following limiting form of G(a) in
obtaining (4.5) from (4.4):

G(a) = 16a(1—a')/3, a((1. (4.6)

z
Q

& l0

lP"R

4J
14

Oz iP'

FiG. 2. The normalized ampli-
fication coefficient for transverse
optical phonons, (8/s. l (c/Uzl
X(coo/coPse„la&, is shown as a
function of the ratio q/qp. We
have used the values co = 10»
sec ', co„=10" sec ', p, = —0.1,
and qp=104 cm ~.

-5

0 I P 5 4 5
9, /g

The dependence of n~ on wave number falls into two
regions according to whether q&&(glpl)qs, where qs
= (qscc/c)'i'. When q( (0 l p l )qs, the amplification
increases as q', while in the region q)(Qlp, l)qs, it
decreases as q '. Figure 2 shows the dependence of n~

on wave number.
To get numerical estimates of n~ and o.&, we use the

following values of the physical parameters, which are
valid for GaAs: u~= 5.4&& 10'3 sec ' ~p= 4.8)& 10'3 sec
@=0.15, Ep= 10 cm ', and 6~= 11.7Vith these param-
eters, we get the values O. g

——10"sec ' and a&——10' sec '
when q=10' cm ', and n~ ——10" sec ' and 0.|,=10 sec '
when q= 10' cm '. From these estimates, it can be seen
that the amplification coeKcient for the optical phonons
can be quite large. Also, the longitudinal optical

phonons have larger amplification coefficients than the
transverse optical phonons.

V. MSCUSSION

The treatment given in this paper of the interaction
of optical-lattice vibrations with conduction electrons
indicates that amplihcation can occur for all modes with

q lying in the range cc/Vs(q(2k~. In practice, the
lower limit on the wave number which can be amplified
is set by considerations of power dissipation. Since the
frequency is fairly independent of wave number for
small q, it follows that V~ and therefore the electric
fields, must be increased to amplify optical phonons of
lower q. Power dissipation considerations would limit
the drift velocities to not more than about 10' cm/sec.
Therefore, the lower limit on the wave number of the
optical phonons amplified is about q=10' cm '. The
upper limit to q is set by considerations of momentum
conservation. An electron can only absorb or emit a
phonon whose maximum momentum is twice that of
the electron. Since the maximum momentum of the
electrons is kp, phonons with q) 2k~ do not interact
directly with electrons.

The amplification of the optical lattice vibrations via
the electron-phonon interaction can be viewed as a
phonon maser process, ""at least as far as the quantum
treatment is concerned. As can be seen from (A1)—(A2)
and the discussion immediately following in Appendix
A, the externally induced drift field tends to invert the
electron population. When Vg exceeds the phase
velocity s= cc/q of an optical phonon mode, the electrons
are able to emit more phonons of this mode than they
absorb. The result is a net gain for those optical
phonon modes satisfying the condition V&)s. For the
modes not satisfying this condition, the electrons absorb
more phonons and the net result is a loss for thesemodes.

The quantum treatment gives a slightly different
picture of the amplification of optical lattice modes than
the phenomenological treatment. In the latter treat-
ment, only the longitudinal modes are amplihed, while

our treatment predicts the amplification of both longi-
tudinal and transverse modes. This is because in the
phenomenological treatment, the interaction is between
the lattice waves and space-charge waves induced by
longitudinal bunching of electrons. Since the space-
charge waves are longitudinal, the phonon modes which
are amplified will also be longitudinal. An exception to
the latter statement occurs when transverse lattice
modes are coupled by some mechanism to the space
charge waves. This is the case with acoustic lattice
modes when there is piezoelectric" or deformation
potential coupling" to the electrons. It would also be
the case for optical phonons if there exists an optical-
deformation potential. In the phonon-maser picture,

» A. S.Pippard, Phil. Mag. 8, 161 (1').
H. N. Spector, Phil. Mag. 9, 1057 (1964).

~~ D. White, J. Appl. Phys. BB, 2547 (1962).
'6 H. N. Spector, Phys. Rev. 127, 1084 (1962}.
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however, the emission of both longitudinal and trans-
verse optical phonons can occur if the electrons, whose
population is being inverted, couple to these phonons.
The coupling mechanism for both longitudinal and
transverse polarization is the electromagnetic fields
induced by the optical-lattice vibrations in crystals with
ionic character. As a result, both longitudinal and
transverse optical phonons can be amplified as long as
their frequencies and wave numbers are such that the
quantum treatment is applicable, i.e., ql) 1.

The arnplification of the longitudinal optical phonons
is greater than that of the transverse optical phonons.
This is because the electromagnetic fields generated by
the transverse optical modes of interest are much weaker
than those generated by the longitudinal modes. Those
transverse optical modes which generate strong electro-
magnetic fields have wave numbers too small to be
amplified directly by this mechanism at reasonable
drift fields. The longitudinal mode of wave number q= qq
has the maximum interaction with the electrons. For
q«qz, the electromagnetic fields generated by the
optical lattice vibrations are screened by those generated
by the electronic current. W'hen q))q&, the screening
breaks down and the amplification coefBcient decreases
rapidly with wave number. The transverse mode which
ha, s the maximum interaction with the electrons is that
with q=qp. For wave numbers less than qp, the tra, ns-
verse polarization fields are screened by the fields arising
from the electronic currents, while for wave numbers
greater than qp, the screening breaks down. The inter-
action is a maximum at these wave numbers, i.e.,
q=q~ for longitudinal modes and q=qp for transverse
modes, because the electrons are interacting collectively
with the optical phonons. For larger wave numbers, the
interaction is between individual electrons and phonons
and is weaker.

The electrons have been treated as forming a degen-
erate Fermi gas in the preceding calculations. How-
ever, considering the electrons to form a Maxwell-
Boltzmann gas of particles would not alter our main
conclusions. The arguments following (A1)—(A2) remain
valid as the form of the distribution function is not
specified. All that is required is that, in the absence of
the drift field, the distribution be such that states of
lower energy have a higher probability of being occupied
than states of high energy. This condition is satisfied
both for Fermi and for Maxwell-Boltzmann particles.
The main change is that there is no longer an upper
limit on the momentum of the phonon that can be
emitted or absorbed. However, the amplification
coeKcient falls oR exponentially for phonon wave
numbers q) 2k~, where ki = (2mk~T/k')'", kIi is
Boltzmann's constant and T is the absolute tempera-
ture. This effectively sets an upper limit to the wave
number of the phonons which interact with the elec-
trons. The only other changes, besides some numerical
factors of order unity, that the use of Maxwell-Boltz-

mann statistics makes in our results for the absorption
coefficient, (4.2) and (4.5) is the replacement of the
Fermi velocity vp by the mean thermal velocity ez
= (2kiiT/m)'~'. The. expressions for the components of
the conductivity tensor using Maxwell-Boltzmann
statistics are derived in Appendix B.

The use of degenerate statistics is valid for highly
doped semiconductors at low temperatures. As an
example, for GaAs, which has been doped to 10"cm ',
the use of degenerate statistics is valid at temperatures
below 27'K. However, for semiconductors at tempera-
tures near room temperature, one would have to use
Maxwell-Boltzmann statistics. At room temperature,
the thermal velocity of the electrons in GaAs is v&

——3
X10~ cm/sec. Since this is about the same as the Fermi
velocity of GaAs doped to 10" cm ' at temperatures
below the degeneracy temperature, the values of the
absorption coefBcient would be about the same as the
numerical estimates given at the end. of Sec. IV.

In addition to the eRect of the electron-phonon
interaction on the amplification coefficient, (3.7)-(3.8)
give the effect of the interaction on the optical-phonon
dispersion relations. For q«qq, the longitudinal optical-
phonon frequency is changed from co& to cop. This occurs
because the electrons screen out the electromagnetic
fields so that the ions see only the short range forces
which are lumped together in the coefficient b~~.

3M~ co

Rep „= — dk, ki$ fp(pp) fp(pp+Acop)—j (A1)
8(qVp)' m

3pi„' ( 5
Re~,=

16(oqVpP k m
dk, k, 'Pfp(pp)

fp(pp+fuoIJ, )7,—(A2)

where px= (AE)'/2m+ (Aki)'/2m, and E=——',q+mcop/
Aq. In obtaining (A1) and (A2), our variable of integra-
tion was changed from k to k mVq/k From—(A1) an. d
(A2), the real part of the conductivity tensor is positive
when p,)0, and becomes negative when p(0. The first
term in the brackets inside the integral gives the number
of electrons of that energy which can absorb a phonon
of frequency co and wave number q while the second
term gives the number that can emit this phonon. When

APPENDIX A

In this appendix, we evaluate the O„and 0.~ compo-
nents of the conductivity tensor. The sign of the
absorption coeKcient can be seen to depend on the
sign of the real part of the conductivity tensor. There-
fore, we will calculate the real and imaginary parts
of O„and o-& separately.

We first change from a summation to an integration
over k. Performing the integration over k, , and using
(2.14), we have
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p(0, the number of electrons that can emit phonons
exceeds the number that can absorb phonons.

For a degenerate Fermi gas, we get from (A1) and

(A2)

we obtain

7ICO~M 8$ ) kjyT

!Rer„=
4q' 2vrkoT) 5

(AE)'
exp—

2mkgT

~ a+' —a ' a (1,

3co~ MkpVJ;, 1—a a++1& a—(1
Reo„=

16(qVp)' —(1—a+') a+(1, a )1 (A3)

»2k, r
Reo-~=

4orq 2mk& T

&Mph
1—exp—,82

k,T)
'

(A,E)'
exp—

2mkgT

30)y kp
Reer~=

64') 'q

(1—a ')'

(1 a 2)2

a+)1, a (1
a+(1, a &1

(1—a ')' —(1—a ')' a a (1.
(A4)

For the imaginary parts of 0.,„.- and 0-&, we obtain for a
degenerate Fermi gas

3co~oce k o' Ep+lq —(nz(up/hq)
Imo „= — dk~k~ ln

g(qVp)'m p Ep ,'q+(met—/—bq)

korpi
X 1—exp — . 83

koTi

From (B2) and (B3),we see that the general conclusions
concerning the sign of the real part of the conductivity
as a function of the sign of p hold for classical statistics
as well as for degenerate statistics.

For the imaginary parts of 0-„and 0-~, we obtain for
a classical electron gas

co~0)f tl$ I keT skip q

2g'(2kT 5 Skag 2k&)

ln

Imo.&=
4M

Gdy
2

1—3/(4qkFo)

Ep+lq+(m(op/Aq)
(AS)

Ep—~~q —(m(up, /Aq)

Eo+oq —(~t'/kq)
ln

Ep ——,'q+(ma)p/hq)

-F ', 84

Ep+ ,'q+(nuop/kq)-
In (A6)

Ep—lq —(ms)p/kq)

where"

F(x)=2(gm. )e " dte". (B6)

APPENDIX 8

In this appendix, we evaluate the O„and 0~ compo-
nents of the conductivity tensor for Maxwell-Boltzmann
statistics. As in Appendix A, we calculate the real and
imaginary parts of O.„and o-& separately.

To evaluate the real part of the conductivity tensors,
we use the distribution function for Maxwell-8oltzmann
statistics

(Ak)'(
fo(&)=I Noexp-

E2+mkgT& 2mk+T

in (A1) and (A2). Performing the integration over k, ,

where Ep !:kr'—k~ )'" Th'e ——integrals in (AS)—(A6)
can easily be evaluated by changing the variable of
integration from k& to Ep. The results (2.15) are then
obtained.

When the conditions q/2k~&1, ~p/qp~&1, and Q"~
«keT hold, then using (B2)—(BS) for the conductivity
tensor gives the same result as (4.2) and (4.S) except
for a numerical factor of order unity with the thermal
velocity ez replacing the Fermi velocity vz. When the
first two conditions above are not satisfied, then the
absorption coeKcient goes exponentially to zero as
exp —(E/kr)'. Therefore, the basic form of the absorp-
tion coefficient is the same for both degenerate and
classical electron gases.

1Vote added in proof After this r.nanuscript had been
submitted for publication, we discovered a paper by I.
Vokota )Phys. Rev. Letters 10, 27 (1964)j in which he
obtained results similar to ours for the longitudinal
optical phonons.

' H. N. Spector~ Ph&s Rcv 125 1880 (1962).


