
PHYSICAL REVIEW VOLUM E 137, NUM B ER 6A 15 MARCH 1965
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The coupling between longitudinal optical phonons and plasmons in degenerate polar semiconductors is
investigated. At the appropriate carrier density (10" to 10" in III-V compounds) the free-carrier plasma
frequency is comparable to the optical frequency, and the plasmons and phonons cease to be approximately
independent excitations of the system. Then the two new normal modes are strong admixtures of phonons
and plasmons. Several features of these modes are treated. In the long-wavelength limit the frequency and
phonon strength are expressed as functions of the carrier density. The phonon strength is a measure of the
amount of ionic motion present in a mode. The dispersion and the damping are discussed in a qualitative
manner. The modes exhibit a repulsion and avoid intersection. Some experiments are considered in which
these properties might be investigated. For example, the optical reflectivity gives the mode frequencies in
the long-wavelength limit. The calculated shift of the frequencies by the interaction can be of the order of
5 meV at commonly used carrier concentrations.

INTRODUCTION is less than 1, a bonus over the case of metals where r,
is in the range 2 to 5. The familiar self-consistent-field
(SCF) theory should be quite reliable. '

In Sec. 1 we find the dielectric response function of the
system consisting of polar optical phonons and de-
generate conduction electrons. The polarizabilities of
electrons and ions are additive in the self-consistent-
field (SCF) theory. This result is derived from the
equations of motion of Born and Huang and the
Poisson equation. The two normal mode branches of
the system are mixed phonons and plasmons. If only
the frequencies were of interest, the consideration of
the equations of motion would be superAuous. These
equations are necessary to obtain the phonon strength
of the modes, which is a measure of the amount of
ion motion.

In Sec. 2 the properties of the two normal modes are
given in the long-wavelength limit. The frequency and
phonon strength are functions of the carrier density.
Section 3 contains a qualitative discussion of the dis-
persion of the modes and the damping from decay into
electron-hole pairs. The modes "repel" each other to
avoid intersection.

Some observational consequences are treated in
Sec. 4. The optical reQectivity gives the mode fre-
quencies in the long-wavelength limit. Inelastic neutron
diffraction may give information on the dispersion of
the modes.

"~ N polar semiconductors the interaction between
- ~ carrier electrons and lattice vibrations is strongest
with the longitudinal optical modes. The transport
properties at low temperatures are determined by
impurity scattering and at higher temperatures by the
polar scattering. When electrons are present in the
conduction band, the screening effects modify both
the optical mode frequency and the electron-phonon
interaction. Treatments have been given previously
of effects which occur when the carrier distribution is
nondegenerate. Doniach' considered the case in which
the lattice frequency is weakly modified. The dynamic
electron space-charge polarization led to an enhanced
phonon scattering at low temperature and density.
Ehrenreich' found that the optical-phonon frequency
was raised for wavelengths longer than the thermal
wavelength of the electrons. The work of Woodruff'
on the interaction of waves of current and lattice
polarization showed that energy can be transferred from
the space charge waves traveling on carriers drifting
in an electric Geld to the optical vibrations.

If the carriers are degenerate, the frequencies of
charge density Quctuations are comparable to optical
phonon frequencies of about 5&10"sec '. The coupling
of the phonons to the plasmons then leads to important
changes in the nature of the collective modes. In the
III-V semiconductor compounds the electron density
ts in the degenerate case is of order 10"cm '. In metals
the density and the plasmon frequency are much higher,
and the effect of this coupling is negligible. The degen-
erate carriers in the III-IV compounds still form a
high-density electron gas, because of the small effective
mass and large dielectric constant. 4 The effective r,

1. DESCRIPTION OF MODEL

The equations of Born and Huang' describe the
optical motions of an ionic crystal with wavelengths
long compared to a lattice constant. In this limit the
ionic motions are described by a displacement Geld
w=(Miv, )'Is(u~ —n ) where n+ and n are the dis-
placements of ions + and —from their equilibrium
position, M is their reduced mass, and v the volume

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

$ Present address: Palmer Physical Laboratory, Princeton
University, Princeton, New Jersey.' S. Doniach, Proc. Phys. Soc. (London) 73, 849 (1959).' H. Ehrenreich, J. Phys. Chem. Solids 8, 130 (1959).' T. Woodruff, Phys. Rev. 132, 679 (1963).

4 P. Wo18, Phys. Rev. 126, 405 (1962).

5 J. I.indhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, 8 (1954).

M. Born and K. Huang, The Dynamica/ Theory of Crysta/
Lattices (Clarendon Press, Oxford, 1956), 1st ed, , p. 82.
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Pr.——bsrw+ bssE (2)

consists of a part from the ionic displacements and a
part from the polarizability of an ion charge distribu-
tion by the local field. The frequency-dependent
dielectric function er, (or) of the lattice, which relates
the lattice polarization to the field for a vibration with
frequency or, follows from Eqs. (1) and (2). We have

Pi,——(4rr)
—

'Per, (or) —1jE. (3)

The spatial dispersion is neglected since only long-
wavelength motions are of interest, as discussed later.

er. (or) = 1+4rrb» —4rrbrsbsl/(b11+or )=.+(o-.)/L1 —(/. )'3. (4)

~0 is the static dielectric constant. e„ is the high-
frequency dielectric constant which is measured at
frequencies high compared to 'ionic motions but low
compared to electronic motions in an interband
transition. coo is measured as the absorption frequency of
a thin film of the crystal. The longitudinal mode
frequency is~griven by the root of er, at or&

——(ep/e )'t'orp.

From studies of the reQectance in the infrared region,
the optical mode parameters have been found for
some III-V semiconductor compounds. '

%hen electrons are introduced into the conduction
band by doping of the semiconductor, the longitudinal
phonon will be a normal mode no longer, since the
longitudinal electric field which accompanies such a
phonon must couple strongly to the charge density
fluctuations of the electron gas. This effect is most
important when the plasma frequency is close to «.'

The polarization of the coupled system Pr is the sum
of the electronic part P, and the ionic part Pz, . In
Appendix A it is shown that it is accurate to take the
response of the coupled system in a macroscopic electric
field E to be the sum of the electron and the ion response
taken separately. In other words, the relation of
P.(P&) to E is not affected by the presence of ions
(electrons). Such additivity is easily shown using a
SCF' treatment. The electrons are characterized by
a screening length large compared to a lattice constant,

' G. Picus, E.Burstein, B.Hemvis, and M. Hass, J.Phys. Chem.
Solids 8, 282 (1959).

8 S. Engelsberg and B. Varga, Phys. Rev. 136, A1582 (1964).' H. Ehrenreich and M. Cohen, Phys. Rev. 115, 786 (1959l.

of the unit cell. The equation of motion is

(it'/itt') w = biiw+ b&s E. (1)

The first term on the right is the elastic restoring force;
the second term is the .force due to the local electric
field on the ion, which is proportional to its effective
charge &se. In Eq. (1) the fields are macroscopic, the
average of the microscopic fields over several unit cells,
so that the coefficient b~2 contains the relation of K
to the local field.

The lattice polarization

S„(k)= [(mf qr, , r, JO)i'. (7)

The symbols have the following significance:
I 0) is the

exact ground state,
~
rn) a one-quantum excited state of

mode nt of wave vector k, q p, i=be, r+b r„r,t and bp, i
is the phonon destruction operator for wave vector k
and polarization X which is chosen as longitudinal.

To obtain the phonon strength it is useful to consider
the phonon Green's function, defined as

D(k, t)= —s(O'er(pp(t)qr, t(0)) i0),

where z is the time-ordering symbol. In the frequency
representation,

1
D(k, or) =P S„(k)i —

i
. (9)

m (or or +r',04—or+or,„—iO+rt

The residue at the pole of D at ~=co is 5 .
From Eqs. (1), (2), and the vanishing of the total

displacement field E+4rr(P, +Pl), the equation of

V. Amhegaokar and W. Kohn, Phys. Rev. 117, 423 (1960)."R J. Glauber, Phys. Rev. 98, 1692 (1955).

and therefore respond only to the macroscopic field.
The field of the displaced electrons is then macroscopic,
so there is no local field correction for the ions which
would change Eqs. (1) and (2). The corrections to the
SCF approach should be small for these doped semi-
conductors for two reasons. First, the electrons form a
degenerate Fermi gas at typical densities of about
10"cm ', and the effective r, is small so the Lindhard'
dielectric function e, (q,or) is an accurate approximation.
For example in GaSb at m=1.25&(10' cm ' the value
of r,*=(3/4n)'t (rn*e'/ept't') is 0.34 because of the large
static dielectric constant &0=17 and the small effective
mass m*= 0.052m, . Second, the ions move slowly
compared to the electrons, so they respond to the
average potential.

The wave vector and frequency-dependent total
dielectric function of the system is

'&(r7ror) = p~(Vror)+ e~ 1+('p e~)/I 1—(or/orp)'3 (3)

For long wavelengths the longitudinal and transverse
dielectric function are equal for an isotropic solid. "
The frequencies of the longitudinal modes are given by
the roots of er(r7, or). The frequencies of transverse
modes are given by

or'= e'q'/sr (q,or) .

The longitudinal modes involve collective ion and
electron motion. An external probe such as a neutron
interacts only with the ions. The coupling strength of
the neutron to a normal mode is proportional to the
amount of ionic motion in the mode. For example, in
inelastic neutron scattering with the emission of one
quantum, the squared matrix element is proportional
to the phonon strength"
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motion of w is

(8/BP)w=lllw $47fl512521/(es+4'ss) jw)1 (10)

where e, is a matrix in space time. Since q I, is propor-
tional to ms, the equation of motion of D(k, t) is"

(a'/Bt')D(k, t) = —2&oi8(t)

+tbtt —4~btsbst/(e, +4~bss)]D(k&'). (11)

The b's may be found from (4), and on taking the
Fourier time transform of Eq. (11)

D-'(k, ")= (2"i)—'L( '—,'—,'
X( o

—„)/(.(k, )+ „—1)$. (12)

At zero wave vector,

e, (O,co) =1—4+me'/m*(o'.

m* is the mass in the central minimum. Note that no
screening eGect of the ions on the valence electrons, as
represented by a background dielectric constant, has
been included in (17). The above expression is valid
when the central valley energy is parabolic and the
periodic part of the Bloch function is independent of
the electron wave vector in the valley. In InSb the
nonparabolic energy" requires a modification of the
formulas.

The total dielectric function is
Expand D 'near&u=&v and compare with Eq. (9) to get

~o—e 4' N8

ci (0,(v) = e„+
1—(~/(us)' no*(vs

L1—(~ /"s)']' "o' 'e.
S= =—+ — (u &. (1&)

Mi 2(Es e-) &van el&
The roots are at &o= &o,. We define n= es/e„, g=w, '/cuP,

A sum rule on the phonon strength can be derived by and )=co„s/&vis, where a&~=(4vrme'/m*e„)"' is the
using the retarded commutator Green's function plasma frequency when the electron interactions are

screened by the high-frequency dielectric constant of
the lattice. Note that ] is proportional to m. Then

f'l
l

—ID"(»1=0+)= —s(OI
ERI Bf

~=--:(1+&)+-:(1+2$L1—2 -'1+P)'". (19)

The phonon strength 5 is given by

aDg(k, a)da)/2~. (15)

The contour of cv is to be closed downwards. " The
spectral representation" of D~ is obtained by putting
+iO+ in both places in Eq. (9), so that the cut lies
entirely below the real axis. On performing the integra-
tion in (15) we obtain

30

20

l0

(1—qn)' P
g—i —"1/2+

n(n 1) ri'"— (20)

Q(o S„(k)=cvi ;16)

for each k. In the absence of free carriers, for each k
there is only one longitudinal mode

l m) of frequency co~

and unit phonon strength.

2. THE LONG-WAVELENGTH LIMIT

The systems in which we are interested are the III-V
compounds. The band structure for example in GaSb"
consists of a central minimum with isotropic effective
mass 0.052 (in units of the free electron mass), and
subsidiary minima lie in the $111) directions with
density of states eftective mass 17.3. %e take the
density and the temperature low enough so that all
electrons are in the central valley, and forego a descrip-
tion of the interesting eGects which arise when the
carriers are thermally excited into the $111]va.lleys. "
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"The details of Eq. (11) are discussed in Appendix 3."V. L. Bonch-3ruevich and S. V. Tyablikov, The Green
I&'unction 3fethod in Statistical 3XIechaeics (North-Holland Pub-
lishing Company, Amsterdam, 1962), pp. 18, 21.

"H. Ehrenreich, J. Appl. Phys. 32, 2155 (1961)."J.E. Robinson and S. Rodriguez, Phys. Rev. 135, A779
(1964).

Fin. 1. The longitudinal normal modes g="'/"p of the system
in the long-wavelength limit, as a function of f=co'/cap. The
strong and weak coupling cases are a=1.1 and 2.44, respectively.

"E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
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FIG. 5. The refiectivity R as a function of y = (ca/2cao). The paratn-
eters are +=1.1, e =18 and (=0.96.

0
0 .2

FIG. 4. The phonon strength S of the modes c and
d as a function of g/kr.
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For the upper mode c near cutoff the second term in
the denomina, tor is negligible compared to the 6rst,
which has a logarithmic singularity on line e. The
numerator has the same kind of singularity, and the
intersection of c with e is tangential, as is that of a with
e. Equation (25) then becomes identical to the equation
of the plasmon line a, and c is a highly damped plasmon
to the right of e. For the lower mode d near line e,
Bet/B~ diverges near Me and therefore Ckv/dq is a small
quantity. The mode is Rat for q&0.2kJ, and only a
small imaginary part can build up from the imaginary
part of e, in the numerator of (25). At q=0.5k' the
ratio of imaginary part to real part is —7&10 ', and

tinuum of particle-hole excitations with the boundary e
at the cutoff q, =0.35k'. For q&q, the plasmon is
rapidly damped and ceases to be a well-defined. excita-
tion. In the coupled system, as the upper mode c
approaches the plasmon line near the cutoff, its phonon
strength shown in Fig. 4 drops to zero rapidly. The
phonon strength of the lower mode d is about 1 near
line e, and goes to a maximum of o.'"=1.05 at frequency
COO,

The damping of the modes c and d in our treatment
is due only to the process of decay into a single particle-
hole pair. In this approximation the modes are un-

damped to the left of e in Fig. 4.
The behavior of the modes can be discussed on the

basis of the differential equation they satisfy.

at q=kp it is —1.3X10 '. As remarked above, the
effect of logarithmic singularities requires d to cross e

tangentially, which indicates a sudden large change of
slope in d. The region of q over which the slope changes
is extremely small, of the order of 10 "'kz, and hence
unobservable. The phonon strength in this region also
drops to zero. The same phenomenon occurs on crossing
line f To the. right of f the single normal mode d
almost exhausts the phonon strength sum rule (16);
therefore, the effect on the optical phonon of the cou-
pling to the electron-hole pair excitations is very slight.
The large effect comes from the coupling with the
coherent electron plasma motion which leads to the
splitting of the modes u and b into c and d.

4. POSSIBLE OBSERVABLE CONSEQUENCES

%e now take up the question of the experimental
observation of the mode splitting and discuss a few
examples.

Information on the long-wavelength limit can be
obtained from reQectivity measurements. The optical
reAectivity Jl at normal incidence is given by

~

e ~ 1 ~'/
~

e'~'+ 1
~

' where e= er(0,co). In Fig. 5,
E is plotted against the frequency, There are two regions
where R falls rapidly from 1 to 0, while in the uniform
electron gas there is only one reaction edge at the
plasma frequency. The higher reAection edge is at the
frequency of the upper normal mode of Fig. 1. The
lower region is bounded by two reQection edges, the
one below at the lower normal mode of Fig. 1, and the
one above at coo. The parameters of Fig. 5 correspond
to the following values in GaSb: e= 6)&10'~, r,*=0.43,
Fermi energy EJ =49 meV, co&=29 meV, and ~„=28
meV.

The widths of the reAecting and transmitting regions
of Fig. 5 can be varied by doping, or for suitable carrier
concentrations by changing the temperature, as
mentioned in Sec. 2. For example in GaSb with
ted=1.25X10—"cm ', co„' and the parameter $ of Fig. 1
decrease by 4% on going from 1 to 20'K, because of
the excitation of carriers into the $111$ minima. "
Over the larger temperature range from 90 to 300'K
with m=1.6X10", co„' was found experimentally to
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decrease by about 25%.is If $ is of the appropriate
size in Fig. 1, such a variation would lead to an observ-
able change in both the upper and lower reQection
edges.

The photoconductivity of p-type GaSb and InSb
has recently been found to exhibit a periodic variation
with the photon energy. " The period corresponds to
the energy of the polar mode which couples strongly
to the excited carriers. With the proper p-type doping
one may be able to observe two sets of oscillations,
with periods given by the two normal modes. A com-
plicating factor is the existence of light and heavy hole
bands which may also give rise to two periods. "

The dispersion of the normal modes and the phonon
strength could, in principle, be determined by in-
elastic neutron scattering. The actual physical parame-
ters however tend to make such experiments impractical.

%hen neutrons pass through the crystal, they can
absorb a quantum of a thermally excited normal mode,
and thus pick up the energy and momentum of the
mode. The technique has been used to measure the
optical frequency in Ge."There are several difFiculties
with the technique in the present system. The mode
splitting occurs over a very small part of the total
phonon phase space, which makes the associated
inelastic scattering cross section very small. Since the
energy transfer to the neutron is large, but the momen-
tum transfer is small, the incident neutron must be
very fast (energy large compared to koro), and the
outgoing neutron will be too fast for its energy to be
measured accurately by the standard time-of-Qight
method. Also the scattering angle will be quite small.
The investigation of the normal modes over such a
small range of wave vectors (from q=0 to ki.) appears
to be an order of magnitude beyond present experimen-
tal sensitivity.
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APPENDIX A

If we treat the conduction electrons as external
changes of density p(x, t) then the Poisson, equation
for D= E+krPr, is

(A1)

The validity of Eqs. (1) and (2) depends on the
relation (contained in the constants b) of the local
Geld ELp at an ion to the macroscopic Geld. We argue

'8 M. Cardona, J. Phys. Chem. Solids 17, 336 (1960).' M. Habegger and H. Fan, Phys. Rev. Letters 12, 99 (1964)."S. Rodriguez (private communication)."I.Pelah, C. Eisenhauer, D. Hughes, and H. Palevsky, Phys.
Rev. 108, 1091 (1957).

that the correct relation is

xg ——xg o+ (—1)~gw, exp(i(q r—cot))+c.c.

has the Fourier component

(A3)

equal to

V(k) =0—' V(x) exp( —ik. x)d'x

V(k)= —iEQ '4rjk( 'k jw,bq+„,g, (A4)

where g is the number of ions, 0 the volume, and x
a reciprocal lattice vector. This is valid if w, jk~ (1,
otherwise V(k) is smaller because of interference effects.
Thus, the ionic field has Fourier components E(k)
with k=p+ic: which are approximately equal to the one
another up to a cutoff wave vector beyond which they
decrease to zero. The electrons in this vibrating field
will respond to the various field components by setting
up a field with components $e, '(k, cu) —1$E(k). Only
the long-wavelength induced field, with k=ti, is large.
For example, if the Fermi-Thomas approximation is
used, e,= 1+(ks T'/k') and the induced field is

(—ki-T'/(k'+kpT')$E(k) where kFT'=0 66r.*k»'. is the
Fermi-Thomas screening vector. Since kFT is less than
a percent of a zone edge vector, all components except
k= tl are negligible. The physical reason for this is that
the high Fourier components of the ionic Geld vary
rapidly over a unit cell, but the Fermi-Thomas screen-
ing distance, which is the smallest distance for a
reasonable electron response, is of the order of l00
lattice constants. Accordingly, the electrons contribute
only to the macroscopic Geld and do not require a local
field correction. Therefore, Eqs. (1) and (2), which were
originally derived on the basis of Eq. (A2) for the
perfect ionic crystal, "are valid here also.

The total dielectric function of the system, er(q, cv)

gives the polarization Pr=P,+Pi, induced by the
electric ffeld E expLi(q r—cot)1 via

Pi ——(4n)
—'Per (g,u)) —1)E.

"Reference 5, p. 104.

ELg= E,+Ei+ (4n/3)Pr, ——E+ (4m/3)Pr, ) (A2)

where K, and Kl. are the macroscopic fields due to the
electrons and the ions, respectively. The last two
terms of the second expression are evidently the con-
tribution to ELp due to ionic displacements. " The
equation then contains the assumption that the macro-
scopic field due to electrons is equal to their microscopic
field.

Suppose there is given an ionic displacement field of
long wavelength varying as exp(iq r). Take a simple
model of point ions in a cubic lattice with equilibrium
locations (ji,j2,j8)p=xJ, Q where the js are integers
and p is a lattice constant, the charge being (—1)~
where M= ji+j2+j3. The change in potential V due
to the displacement Geld
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APPENDIX B

The Hamiltonian K of the system is written on
p. 100 of Ref. 6. The part describing the free motion of
the longitudinal modes is

3Co=z Q(u~'t o+~P» o~), (81)

where ot, ——v et ——(2&et) 't'y„ is the plane-wave normal
mode coordinate (polarization index omitted) and

The ionic part PI. is given in Eq. (3). The electronic
part P, in the SCF treatment. ' is

P,= (47r)
—'Le, (I7,co) —1)E,

where e, is the Lindhard function' under the conditions
discussed at the beginning of Sec. 2.

This completes the discussion of Eq. (5).

pI„-t is the canonically conjugate momentum. The v's

(tt's) commute among themselves.
The phonon Green's function (7) gives

(B'/Bt') D(k&t)
= —s(0

~ f3'(t) [yt„yt tj+B(t)Py ./Bt, y..tj
+r(B'y, (t)/Bt') y„t)

i 0), (82)

where the phonon operators without time argument are
taken at time zero. The Q.rst commutator vanishes. In
the second commutator, we need the equation of motion
of (ptIt, .

s(By~/Bt) = Lyt)3Cj= Lytn3Col=s(2tot)"'tt~ (83)

The second equality holds since only v (not tt) appears
in the electron-phonon interaction in K. Thus the
second commutator of Eq. (82) is 2&et. The last term
in Eq. (82) is evaluated by substituting ys for w in
Eq. (10). The net result is Eq. (11).
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Perturbation Approach to the Polaron Self-Energy in the Intermediate Coupling Range
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By using a diagram technique, it is shown that the polaron energy can be expanded in electron-recoil
terms. Together with the common expansion in powers of the coupling constant, a double series is obtained
in which many cancellations occur. A subseries is isolated which gives the Lee-Low-Pines (L.L.P.) result in
the intermediate coupling range. This subseries can be seen to consist of partial contributions of a certain
class of perturbation diagrams. This answers the question put by Pines as to which perturbation diagrams
contribute to the L.L.P. result.

1. INTRODUCTION

'HE well-known intermediate coupling result of
the polaron has been derived by Lee, Low, and,

Pines' (L.L.P.) and independently by Gurari' and
Tiablikov. ' All three methods are essentially variational
methods. Pines' has asked which perturbation diagrams
have to be summed in order to obtain the intermediate
coupling result. In this article we shall present an
answer to his question. The answer may give us rn.ore
insight into the L.L.P. result.

First, we briefly review those aspects of the polaron
problem which are relevant for our purpose. In polar
crystals, one of the basic problems is to study the
interaction between electrons and the vibrations of the
lattice ions. The electrons are supposed to be free, with

' T. D. Lee, F. Low, and D. Pines, Phys. Rev. 90, 297 (1953).
~ M. Gurari, Phil. Mag. 44, 329 (1953).

S. V. Tiablilrov, Zh. Eksperim. i Teor. Fiz. 22, 325 (1952);
23, 381 (1954); 26, 545 (1954).

4 D. Pines, in Polaroes and I'.xcitons, edited by C. G. Kuper and
G. D. Whitjeld (Oliver and Boyd, Edinburgh, 1962), p. 169.

effective masses in which the eGect of the fixed periodic
lattice is taken into account. One diagonalizes the
Hamiltonian for the ionic motions in the harmonic
approximation and obtains the collective excitations,
called phonons. Now the electron is said to interact
with the phonons. The strength of the interaction is
measured in terms of a dimensionless coupling constant
n. Considering only interactions with what is termed
the optical branch, the problem is called the polaron
problem. The electron will be surrounded by a "polari-
zation cloud, " resulting in a heavier mass. One aim is
to determine this new mass. If n((1, this can certainly
be done by means of lowest order perturbation theory.
However, in real crystals one has n=2—6, in which

range simple perturbation theory fails for the polaron
mass. Lee, Low, Pines, ' Gurari, ' and Tiablikov' de-

veloped a method to find the self-mass in this o. range.
All three use variational techniques. L.L.P. take as an
ansatz for the polaron wave function a function in
which the electron is "dressed" with phonons, dis-
tributed. according to a Poisson distribution. A similar


