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Generalized Griineisen Parameters in the Anisotroyic Debye Model
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The description of anharmonic effects in solids involves generalized Gruneisen parameters which measure
the strain dependence of the lattice vibrational frequencies. These parameters are here expressed in the
Debye approximation in terms of second- and third-order elastic coefficients for arbitrary crystal symmetry.
The general relations are also specialized to cubic point groups with a fourfold axis.

'HE calculation of anharmonic effects in solids
such as thermal expansion or the interaction of

acoustic and thermal phonons involves generalized
Gruneisen parameters, which describe the volume or
strain dependence of the lattice vibrational frequencies.
In the Debye model, these vibrations are replaced by
standing wave modes of a dispersionless elastic con-
tinuum. The generalized Gruneisen parameters are
then no longer frequency-dependent, and they can be
expressed in terms of second- and third-order elastic
coefficients. These relations are here derived for arbi-
trary crystal symmetry and specialized to the cubic
point groups with a fourfold axis.

A generalized Gruneisen parameter specifying the
isothermal strain dependence of a lattice frequency
&us(q) is defined by

1 -Bo~,(q)
;be.'(q) =—

~,(q) - ~n, b r„=p-
where p=1, 2, 3 is the polarization index, q the wave
vector, and q is the Lagrangian strain tensor. According
to the standing wave condition of the Debye model, the
frequencies are related for any state of strain to the
wave speed S and the dimension L of the crystal by

,(q) S,(N)/I. =W, (N)/I. o. (2)

The equality in (2) defines W as the wave speed
referred to the natural or unstrained dimension Lo.
Since dispersion is neglected, S„and 8'„do not de-
pend on the magnitude of g, but only on its direction
specified by the unit vector N. Hence, Eq. (1) can now
be written as

elastic stiGnesses. The bar over a symbol indicates that
the quantity is to be evaluated in the deformed state.
N gives the direction of propagation in the unstrained
state, and U is the unit vector along the material line,
which upon deformation, lies along the direction of
polarization appropriate to p. With the strain derivative
of Eq. (4) evaluated at zero strain, the Griineisen
parameter becomes

;by, r (N) = — L2w~(N) U, Ub
2io„(N)

with
+(c;b„„r+C;b,U„U„)X r'V,„7. (6)

~,(N) =.„„„„'cV„A„U„U„.
The third-order stiifnesses in the last term of Eq. (6)
are those determined by ultrasonic experiments, namely
isothermal strain derivatives of isentropic second-order
stiffnesses.

The isothermal Gruneisen parameters y~ defined
above are suitable for the evaluation of the equation of
state for general homogeneous strains. On the other
hand, the calculation of the attenuation of elastic waves
by phonon-phonon interaction involves isentropic pa-
rameters 7, in which p08"' has to be considered as a
function of an adiabatically applied strain. Equation
(6) is left unchanged, except that in the second and
third terms isentropic stiffnesses will appear.

As the equation of state of solids is usually considered
for volume changes produced by a hydrostatic stress I',
another type of generalized Gruneisen parameter is
introduced'.

,by„r(N) =— 1 8ps W„'(N)

2w, (N) Bti;„r, p

(3)

with
ppW„'(N) U„=w„.U„ (4)

w;th to= ppWp7, p, and where pp is the density of the
unstrained crystal. poS"' in a homogeneously deformed
medium is given by'

To relate it to the coefficients defined above the volume
derivative is written as

(d+ (OTab (dkpb ) (Bg&b
(9)

~BV r (BV r( BI' rEBr, bjr( d(p„

where summation over repeated indices is implied. l
represents the thermodynamic telision, and the c's are

tt'~~=9~~~~~+(&~~+28~M)~»M~~ 7+~~~'~& (5) 'W. P Mason and. T. 3. gateman, J. Acoust. soc Am. 36, .
644 (196&).

~ The Griineisen parameter y is the average of the generalized
parameters of Eq. (8) weighted by the specific heat associated
with each mode. See, for example, J. C. Slater, Introduction to
Chemical I'hysk s (McGraw-Hill Book Company, Inc. , Qew York,1 R. N. Thurston and K. Brugger, Phys. Rev. 133,A1604 {1964). 1939).
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For hydrostatic pressure I', the stresses v are

y b ———b,bP,

and Eq. (9) becomes in the limit of zero pressure

t'8 1 (8
vi =—s...,'I

(BU F LB/'k)T

(10

23V.'(N)
= —(1/w) (wU2U3+c44 cV2X3

+C144¹U1y 2U3+~ 3U2)

+Clbb)Z2X3 (U2 +U3 )+ (X2 +%3 )U2U3j

+C456P 2iV3U1 +¹U2U3

+¹Ui(1V2U3+X3U2)]), (6b)

with ~z the isothermal compressibility which can also
be written as ~~=s bb . Hence

~y, ~(N) = —L2Lsw„(N)P'} 1+s...P
X I2w„(N)U;Ub+C;b„„X X„U„U„}$. (12)

from which the other elements follow readily by cyclic
permutation of the indices. ~y can be obtained either
directly from Eq. (12) or from Eq. (6a), using Eq. (11),
which gives for cubic crystals

Similarly for a uniaxial compressive stress of magnitude
I' along a direction M

r b= —j/I MbI', One obtains

XI%cubic 1/~ j1"Ycubic ~ (11a)

f8) 1 (cj
VI I

= M.—M bs. b1'baal

(BV)F P 0F . =(Bv/'R)F =0

br', 2'(N) = —psrw, (N)$-'t'(N M)'

+M.Mbs. b;pI2w„(N)U;Ub+C;3 .,N &' U U, }).
For cubic crystals with point groups 432, 43m, or

(4/m)3(2/234), Eq. (6) becomes

in ~'(N)
= —(1/2w) (2w U12+ ciPcV12

+c12 (+2 +1V3 )+Clll¹Ui

+C112P 2 U2 +1V3 U3 +2iV1U1(iV2U2+ ~ 3~ 3))
+2C1231V2~ 3U2U3+C144(~ 2~ 3+~ 3U2)

+Cibb)(¹U2+iV2U1)'+ (¹U3+X3U1)'j}, (6a)

In the equations for these cubic crystals m is given by

w=c s($7 2U 2++ 2U 2++ 2U 2)

+c44 [(N2U3+N3U2) + (X3U1+¹U3)
+ (¹U2+iV2U1)'$+2ci2 (1V2X3U2U3

+1V3¹U3U1++1+2U1U2) ~ (7a)

Hvn'(N)
= —(1/6w) f 2w+ciir+2ciP()43

+ (C111+2C 112) (F1 Ui +iV2 U2 ++3 U3 )
+ (C144+2Ci33) } (&2U3+&3U2)'

+ (X3U1+E1U3) + (¹U2+X2U1)j
+2 (C123+2C112) (1V21V3U2U3

+X31V1U3U1+¹1V2U1U2)). (12a)


