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The description of anharmonic effects in solids involves generalized Griineisen parameters which measure
the strain dependence of the lattice vibrational frequencies. These parameters are here expressed in the
Debye approximation in terms of second- and third-order elastic coefficients for arbitrary crystal symmetry.
The general relations are also specialized to cubic point groups with a fourfold axis.

HE calculation of anharmonic effects in solids
such as thermal expansion or the interaction of
acoustic and thermal phonons involves generalized
Griineisen parameters, which describe the volume or
strain dependence of the lattice vibrational frequencies.
In the Debye model, these vibrations are replaced by
standing wave modes of a dispersionless elastic con-
tinuum. The generalized Griineisen parameters are
then no longer frequency-dependent, and they can be
expressed in terms of second- and third-order elastic
coefficients. These relations are here derived for arbi-
trary crystal symmetry and specialized to the cubic
point groups with a fourfold axis.
A generalized Griineisen parameter specifying the
isothermal strain dependence of a lattice frequency
wp(q) is defined by
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where p=1, 2, 3 is the polarization index, q the wave
vector, and 7 is the Lagrangian strain tensor. According
to the standing wave condition of the Debye model, the
frequencies are related for any state of strain to the
wave speed .S and the dimension L of the crystal by

wp(‘l)“SP(N)/Lz'Wp(N)/LO- (2)

The equality in (2) defines W as the wave speed

referred to the natural or unstrained dimension L,.

Since dispersion is neglected, S, and W, do not de-

pend on the magnitude of q, but only on its direction

specified by the unit vector N. Hence, Eq. (1) can now
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be written as
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with w=[poW?],—0, and where po is the density of the
unstrained crystal. po/#? in a homogeneously deformed
medium is given by?
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where summation over repeated indices is implied. ¢
represents the thermodynamic tension, and the ¢’s are

1R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604 (1964).

elastic stiffnesses. The bar over a symbol indicates that
the quantity is to be evaluated in the deformed state.
N gives the direction of propagation in the unstrained
state, and U is the unit vector along the material line,
which upon deformation, lies along the direction of
polarization appropriate to p. With the strain derivative
of Eq. (4) evaluated at zero strain, the Griineisen
parameter becomes
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The third-order stiffnesses in the last term of Eq. (6)
are those determined by ultrasonic experiments, namely
isothermal strain derivatives of isentropic second-order
stiffnesses.

The isothermal Griineisen parameters 47 defined
above are suitable for the evaluation of the equation of
state for general homogeneous strains. On the other
hand, the calculation of the attenuation of elastic waves
by phonon-phonon interaction?® involves isentropic pa-
rameters 5, in which po? has to be considered as a
function of an adiabatically applied strain. Equation
(6) is left unchanged, except that in the second and
third terms isentropic stiffnesses will appear.

As the equation of state of solids is usually considered
for volume changes produced by a hydrostatic stress P,
another type of generalized Griineisen parameter is
introduced?:
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To relate it to the coefficients defined above the volume
derivative is written as
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?W. P. Mason and T. B. Bateman, J. Acoust. Soc. Am. 36,
644 (1964).
3 The Griineisen parameter v is the average of the generalized
parameters of Eq. (8) weighted by the specific heat associated
with each mode. See, for example, J. C. Slater, Introduction to

gt;g;ical Plysics (McGraw-Hill Book Company, Inc., New York,
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For hydrostatic pressure P, the stresses 7 are
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and Eq. (9) becomes in the limit of zero pressure
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with kr the isothermal compressibility which can also
be written as k7 =SqassT. Hence
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Similarly for a uniaxial compressive stress of magnitude
P along a direction M
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For cubic crystals with point groups 432, 43m, or
(4/m)3(2/m), Eq. (6) becomes
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from which the other elements follow readily by cyclic
permutation of the indices. xy can be obtained either
directly from Eq. (12) or from Eq. (6a), using Eq. (11),
which gives for cubic crystals

HYeubic= 1/3 jiVoubic. (11a)

One obtains

5" (N)
= — (1/6W){2w+611T+2612T
+ (C1114+2C112) (N 2U P+ NR2U 2+ N2U )
+ (C144+2C155) [ (N2Us+N3U,)?
-+ (N3U1+N1Ua)2+ (N1U2+N2U1)2:|
+2(C123+2C110) (NN 3U U

+N3N1U3U1+N1N2U1U2)}. (12&)

In the equations for these cubic crystals w is given by
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