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These bands may also be compared with the model of
Klick and Kabler by plotting the atomic energy levels
of Li’ against the difference in energy between the
various L bands and the F band. Such a plot, shown in
Fig. 3, gives a reasonable straight line. The curve indi-
cates that on the basis of this model, the atomic levels
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of Li® are compressed by about 459, in LiCl. This
compression is larger than has been found for the po-
tassium and rudibidum salts. Since the compression is
attributed to dielectric constant effects, a large value
of compression would be expected for LiCl in view of
its large dielectric constant.
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Making use of surface superconductivity measurements, it is possible to obtain relatively precise values
for the Ginzburg-Landau parameter « as a function of temperature in certain type-I materials. We have
measured the ac susceptibility to obtain H s, and the dc magnetization to obtain the bulk critical field, for
Ta and three dilute alloys of Bi in Pb. The data are sufficiently accurate to distinguish between the various
existing theories for «; the Ginzburg extension of the Ginzburg-Landau theory to low temperature predicts
k(£) =k(0)c-1.(14-#3)71, while Gorkov predicts () =x(0)c (1 —0.24£24-0.04#%), where ¢ is the reduced tempera-
ture T'/T.. We find that the data fall on smooth curves which lie between the two theoretical predictions.
Bardeen has used the two-fluid model to generate a temperature-dependent set of equations for the free
energy, which yields the Ginzburg-Landau equations in the limit of { — 1. Using the Bardeen two-fluid
formulation, we find «(f) =x(0)s(14-*)"/2. We find that the data fit the two-fluid temperature dependence
more closely than they fit either the Gorkov or the Ginzburg relationship.

I. INTRODUCTION

PPLICATION of the ac susceptibility technique!

permits accurate experimental determination of
thes urface critical field H . in certain type-I and type-
IT superconductors. The theory of the surface critical
field of Saint-James and de Gennes? relates H,3 to the
Ginzburg-Landau® (G-L) parameter « and to the
thermodynamic critical field H,. In this paper, we
present experimental measurements on the tempera-
ture dependence of H,; and H, from which precise
values for the temperature dependence of x are ob-
tained. These values are then compared with several
theories which predict somewhat different temperature
dependencies of the magnetic properties. In order to
make a useful comparison of theory and experiment, it
is important to clarify the terminology used for the
parameters which determine the ratios of the upper
critical fields H., and H. to H,. A brief historical
summary of the G-L,* Gorkov,* and Bardeen® theories,
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and the pertinent parameters is presented followed by
the experimental details, the results, and a comparison
of the results with the theories.

II. THEORY

The phenomenological equations of Ginzburg and
Landau have given good descriptions of the behavior of
London-type superconductors in magnetic fields. In
particular, experiments have confirmed the Abrikosov®
relationship between the bulk upper critical field H.s,
and the thermodynamic critical field H, in type-II
superconductors. Recently, Saint-James and de Gennes?
have obtained a solution to the G-L equations, which
show that in certain classes of superconductors (notably
type II but including some type I) a superconducting
region can nucleate in a surface layer at values of the
applied external field appreciably greater than those
sufficient to quench the bulk superconductivity. Their
theory predicts a relationship between the surface
critical field H.s and the thermodynamic critical field
H,. The Saint-James-de Gennes relationship between
H.; and H. has been confirmed in appropriate type I
and type II superconductors.

Of central importance in both the G-L theory and in
the Saint-James-de Gennes solutions is the linearized
form of the equations and the fundamental parameter

5 A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957)
[English transl.: Soviet Phys.—JETP 5, 1174 (1957)].
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. The G-L equations and the parameter k were originally
justified only in the temperature region near the
critical temperature T'.. The apparent agreement be-
tween experiment and theory over a range of tempera-
tures, suggests that the G-L equations may be approxi-
mately valid over a wider range than was originally
expected. Ginzburg,” following an approach of Bardeen,’
arbitrarily introduced explicit temperature relation-
ships into various coefficients appearing in the G-L
equations, and arrived at an explicit form for the tem-
perature dependence of k. This temperature dependence
is found to agree exactly with that which is obtained,
by introducing into the original G-L definition of , the
experimentally observed temperature variations of H,
and the weak field-penetration depth 8, namely,

K(;-L(If)= (26*/hC)H¢52= 2(1+ ﬁ)_IKG_L(l). (1)

Here «g-1.(1) is the value of kg.1.(f) at the reduced tem-
perature ¢=1, where {=7/T,. Thus, we may use the
Ginzburg modified form of the G-L equations or
(equivalently) the original form of the G-L equations
with the implicit temperature dependence of « to
arrive at temperature dependent relationships involv-
ing the critical fields. For example, the Abrikosov
relationship is then

Ho/H,=V2kg-1L(t). (2)
and the Saint-James—de Gennes relationship is
H.3/H =2.3%g-1(t). (3)

Gorkov has used the microscopic theory of super-
conductivity, and has justified the G-L equations in
the vicinity of ¢=1. He further derived a relationship
between H., and H. in the vicinity of {=0. By in-
terpolating the results over a range of temperatures,
Gorkov* finds

H oo/H . =V2[(1.25—0.3240.05t4)kq.1.(1) ]. 4@
=V2ka(t).

We have introduced «g(f) to denote the term in the
brackets. If we were only interested in comparing
H./H. in type-II superconductors, the identification
of the term in the brackets in Eq. (4) with g () would
be a matter of semantics. However, we shall be inter-
ested also in type-I superconductors and in comparing
measurements of H.s/H. with theory. As the Saint-
James—de Gennes relationship is based on the linearized
G-L equations we cannot rigorously compare the
Gorkov temperature-dependent relationship of Eq. (4)
with experiments at temperatures other than at ¢=1
where the Gorkov and G-L formulations yield identical

7V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 30, 593 (1956)
[English transl.: Soviet Phys.—JETP 3, 621 (1956)]; and
Dokl. Akad. Nauk SSSR 110, 368 (1956) [English transl.: Soviet
Phys.—Doklady 1, 541 (1956)].
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equations. We can only assume that the same coef-
ficient kg that appears in the microscopic relationship
for H./H, will likewise appear in a microscopic
treatment of the surface at all temperatures. There-
fore, we will assume that ke can simply replace xg-1
in Eq. (3). In the light of the rather weak justification
of the G-L equations at all temperatures, and hence of
the validity near t=0 of Eq. (3) based on the form of
the G-L equations, we have re-examined the Bardeen
two-fluid formulation. This alternative phenomenologi-
cal formulation generates a set of differential equations
equally valid at all temperatures. At ¢~1, the Bardeen
equations reduceto the G-L equations. By assuming that
the superconducting order parameter is small at fields
approaching the upper critical fields, the Bardeen two-
fluid formulation is found to yield high field equations
which at all temperatures have the form of the linearized
G-L equations. A relationship is derived for kg (¢), the
coefficient which would appear in all critical field
relationships such as that of Eq. (3). The Bardeen
formulation and Eq. (1) must of course be modified by
introducing 2e in place of e*, to take into account
Cooper pairing of the superconducting electrons.

III. BARDEEN TWO-FLUID FORMULATION

Bardeen has used the Gorter-Casimir two-fluid model
to obtain an expression for f, the difference in free
energy between the superconducting and normal phases.
The Bardeen expression is equally valid at all tempera-
tures, whereas the form of the G-L equations can only
be justified in the region ¢~1. The ensuing discussion
of the Bardeen two-fluid equations uses results which
are derived in detail in Bardeen’s review article.’
The notation as well as many of the equations are
taken directly from this article.

We restrict ourselves to the one-dimensional case
where the applied field is taken along the z direction.
Bardeen’s equation describing the variation in con-
centration of the superconducting electrons along the
x direction is

@U/d8= (kc-L()4r) RHA)™df/dU+VU. (5)
Here

U=y/Ye, E=x/8, d=my’ (476*2”01#62)’1 5
V=¢*48/% and e*=2e,
where #0|¢!?, and #¢|¢.|? are the concentration of
superconducting electrons with and without a field,
respectively, 7, is the concentration of superconducting
electrons at /=0, & is the London penetration depth, 4
is the vector potential, and the effective electronic
charge e*=2e¢. With ¢2=1—1 and H.,=H,(1—8),
Bardeen obtains the following relationships for the
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Fi1c. 1. Typical curves illustrating the precision with which the
upper critical field H; may be determined using the ac technique.
The real part (x’) and the imaginary part (x”) of the ac suscepti-
bility are shown for 0.085%, Bi in Pb. The peaks in x’’ are used to
determine H ..

free energy and its derivative:

(4r/HA) f(U)
= (1= -1-UyH"]-050%3),  (6)

and

— (4r/H>)(df/dU)
= (142 (1= [1—L(1—U22)2]U. (7)

We are interested in the form of the differential equa-
tions as the fields approach the upper critical fields
H or Hg, and hence, as the order parameter ap-
proaches zero. Substituting Eq. (7) in Eq. (5) and
taking the limit U%*<1, we find

#U/dg=[V?— (1+Fre-L()?/2]U, ®)

as the linearized two-fluid form of differential equation.
In the limit t— 1, Eq. (8) is identical to the one-
dimensional linearized G-L equation. Examining the
form of Eq. (8), it is apparent that we may make use
of all the relationships derived using the linearized
G-L equation, if we replace «* by (142)ke-1.(£)%/2 for
the two-fluid formulation. Therefore, we define

k(1) =[(1+8)/2]"%6-1(O) =V2(142)V%ka.L(1), (9)

and subsequently make use of the Saint-James-de
Gennes relationship with g replacing «g.1. in Eq. (3).
It might be noted that the form of the linearized dif-
ferential equations on the two-fluid model at all tem-
peratures is the same as the G-L equations at #=21.
The two-fluid formulation thus justifies the extension
of the G-L equations to all temperatures in the high
field limit.
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In the above derivation, the definition of « at tem-
peratures 71 follows in a natural way from the G-L
definition at =1, and « is seen to be the coefficient of a
term in a linear set of differential equations. With
this definition, the temperature dependence of the
coefficient « in each theory becomes apparent, and
ambiguities as to which parts of certain temperature-
dependent terms are to be ascribed to « are eliminated.

The question has recently been raised as to whether
the temperature dependence of « in turn depends on the
mean free path. In the two-fluid formulation, the mean
free path only enters in a phenomenological manner in
its effect on the bulk critical field and the penetration
depth. Although a mean-free-path dependence could be
introduced into such a phenomenological treatment if
the mean-free-path dependence of the free energy were
known, no attempt was made to do so in the light
of the conflicting results that have been observed
experimentally.8.9

IV. EXPERIMENTAL

Because the determination of H, in type-II super-
conductors is subject to considerable experimental
error we have concentrated upon those type-I super-
conductors exhibiting surface superconductivity. We
have determined H, from bulk magnetization measure-
ments and H.; from ac susceptibility measurements.
We discuss first the determination of H.s.

The surface layer predicted by the Saint-James-de
Gennes solutions to the G-L equations nucleates at
the surface of a superconductor in decreasing magnetic
fields. In increasing magnetic fields, a superconducting
surface layer remains until the field reaches the value
H,; at which point all superconductivity disappears.
In our measurement technique, we are able to ob-
tain values for both the real component x’ and the
imaginary component x'’ of the ac susceptibility.
In the superconducting state, the sample is diamagnetic,
and no power absorption exists. Hence x'=—1/4r
and x’=0. In the normal state and at the low fre-
quencies used in these experiments negligible power
absorption takes place in the sample, and both x’
and x” are approximately zero. In the superconduc-
ting-normal transition region, x’ changes smoothly from
—1/4r to zero, and simultaneously x’’ goes through
a maximum. The relationship between x’ and x’’ can
in principle yield information about the details of the
transition region. In the case of the Saint-James-de
Gennes surface layer, we may consider our samples
(long cylinders) to be insulators surrounded by a
superconducting sheath. The relationship between x’
and x” is derived in the Appendix, where it is found that
xX"=(—x'/4r—%"*), so that the maximum in " is
expected to occur when x'= — (1/2) (4xr)~1. This result

8S. Gygax and R. H. Kropshot, Phys. Letters 12, 7 (1964).

# C. K. Jones, J. K. Hulm, and B. S. Chandrasekhar, Rev. Mod.
Phys. 36, 74 (1964).
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is in contrast to that found in bulk materials,’® where
the maximum in x” occurs when x'=—0.39(4x)".
Although this difference permits one in principle to
distinguish between the surface and bulk effects, in
practice small phase shifts resulting from coupling of
the measuring coils into external apparatus, such as the
dc magnet (see below) preclude any conclusions on this
point.

The observation of a peak in x”/ provides a precise
method for identifying the external magnetic field
corresponding to H.;. Typical curves illustrating the
precision of the determination are presented in Fig. 1.
This type of determination may be compared to that
obtained from resistivity measurements in which extra-
polations are always required from finite measuring
currents to zero measuring current. Microwave surface-
impedance measurements also show broad transitions.!

The complex ac susceptibility of the samples was
measured by placing the samples in a coil system
which formed one arm of a mutual inductance bridge.
The primary coil of the cryostat mutual inductance
applied a sensing field of about 0.03 Oe (peak-to-peak)
at the sample. The basic features of the bridge are
similar to the instrument described by Pillinger,
Jastram, and Daunt.!? The output of the bridge
secondary circuit was fed into a low-level amplifier
which could be tuned to discrete frequencies of 1.5,
5, 18, 35, 100, and 250 cps. The output from the low-
level amplifier was then fed into a Princeton Applied
Research lock-in amplifier, which could be tuned to
either the in-phase or out-of-phase component of the
bridge imbalance voltage.

The cryostat mutual inductance also was composed
of two bucking secondary coils, one of which contained
the sample. A change in the real part of the sample sus-
ceptibility caused a change in the real part of the
mutual inductance containing the sample, which then
appeared as an in-phase bridge imbalance voltage. A
similar explanation applies for the imaginary part of
the sample susceptibility.

Magnetization curves of the samples were obtained
by connecting the mutual inductance bridge secondary
circuit to a sensitive fluxmeter galvanometer, and then
moving the sample from coil to coil. The electric
charge, and therefore the galvanometer deflection are
proportional to the sample magnetization.

The dc magnetic fields used in these experiments
were obtained by using a copper solenoid immersed in
liquid nitrogen. It is worth pointing out that the
magnet couples into the ac bridge circuit owing to
currents induced in the magnet from the bridge primary.
These currents in the magnet circuit produce alternat-
ing fields at the bridge frequency, which cause induced

( 10 E) Maxwell and M. Strongin, Phys. Rev. Letters 10, 212
1963).
11 B. Rosenblum and M. Cardona, Phys. Letters 9, 220 (1964).
2W. L. Pillinger, P. S. Jastram, and J. G. Daunt, Rev. Sci.
Instr. 29, 159 (1958).
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Fic. 2. Temperature dependence of the Ginzburg-Landau
coefficient (defined as 77.3/2.39 H,) in type-I superconductors, Ta,
and three percentages of Biin Pb (0.03%, Bi, 0.085 9%, Biand 0.49%,
Bi). The upper critical field H.s is obtained from ac susceptibility
measurements while the bulk critical field H, is determined by

bt}lk magnetization measurements. The reduced temperature ¢ is
T/T..

voltages sensed by the amplifiers. This effect was re-
duced to a negligible value by inserting a large im-
pedance in the magnet circuit, which lowered the
induced ac currents.

V. RESULTS

We wish to compare measurements of « (as defined by
the relation k= (1/2.39) H.3/H,, where H,; and H, are
determined from ac susceptibility and magnetization
measurements made on the same sample) with the
theoretical calculations discussed in part II. The usual
technique for such comparisons involves plots of
experimental values of x versus 7" and theoretical plots
of the same quantities. Such plots are always normalized
to agree at a reduced temperature ¢=7/T.=1 where
all theories are in agreement. In Fig. 2, plots of the
Ginzburg-Landau parameter « obtained as described
above are presented for four type-I superconductors
exhibiting surface superconductivity: Ta and the
percentages 0.03%, 0.085%, and 0.49%, Bi in Pb.

The procedure discussed above suffers certain draw-
backs when experimental data are considered, for in
practice it is difficult to extend the experiments suf-
ficiently close to ¢=1. We have therefore chosen an
additional, somewhat different, method of displaying
our results which is not open to this objection, and
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Fi1c. 3. Temperature dependence of the reduced Ginzburg-
Landau coefficient Hcs/(2.39H .g (¢)) for Ta. A normalized form is
used in which the same data is plotted for three different theories.
Agreement with a particular theory is signified by the data falling
on a horizontal line. H3/2.39H, is taken from the data for Fig. 2
and the forms of g(#) relevant to the Ginzburg-Landau, Bardeen,
and Gorkov theories are given in the text.

hence provides a more sensitive and critical technique
for testing theoretical models.

In our method, we use a normalized plotting system
in order to compare our experimental results with the
theories given [e.g., Eq. (3)]. At each reduced tempera-
ture ¢ we have divided our experimental values of «
by the x values predicted by the various theories. That
is, we plot (H,.3/2.39g(¢)H.), where g(f) takes on the
forms (1427, (1—0.2424-0.04¢4), and (14-#)712 for
the Ginzburg model, for the Gorkov model and for the
Bardeen models, respectively. With this method of
plotting, agreement with a particular theory is signified
by the reduced data lying on a horizontal line. Devia-
tions between experiment and a particular theory are
signified by failure of the data to lie on a horizontal line.

In our measurements the accuracy of the tempera-
ture determinations is about 29, and the relative values
of H.3/H, are accurate to about 19.

Figure 3 presents such plots for Ta for the above
mentioned three theories. The temperature dependence
derived from the Bardeen theory is seen to offer a
significantly better fit to the data than either of the
other two theories. Figure 4 shows typical data for
0.085%, Bi in Pb. While none of the theories are
entirely satisfactory for the Bi-Pb system, the Bardeen
theory is the best of the three.
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Rosenblum and Cardona* have determined the
ratio of H, to H, for 19, Tl in Pb for 0.2<¢<1. Their
data has been similarly treated to check which theory
best accounts for the temperature dependence of this
alloy. The ratio H.3/H, to the three theoretical predic-
tions is plotted against ¢ in Fig. 5. Here too, the data
fit the two-fluid temperature dependence more closely
than either the Gorkov or Ginzburg relationships.

Rosenblum and Cardona®® recently have observed
that the temperature dependence differs in super-
conductors with weak and strong coupling, with Hg
and Pb being the examples of strongly coupled super-
conductors. It is interesting to note that both Hg and
Pb deviate from the Tuyn relationship® H,=Hy(1—#)
in an opposite manner from Sn, In, V and Ta. Devia-
tions from Tuyn’s relationship basic to the two-fluid
calculation would affect the temperature dependence of
. The advantage of the two-fluid model is its simplicity,
and we have not attempted to refine the two-fluid model
to include such small effeets.

VI. CONCLUSIONS

The prediction of surface superconductivity by Saint-
James and de Gennes and its subsequent verification
have lead to a new and precise technique for determin- .
ing the temperature dependence of the coefficient «(¢). A
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Fic. 4. A plot similar to that of Fig. 3 for 0.085% Bi in Ph.

13 B. Rosenblum and M. Cardona (to be published).

4 J. Bardeen and J. R. Schrieffer, Progress in Low Temperature
Physics, edited by C. J. Gorter (North-Holland Publishing
Company, Amsterdam, 1961), Vol. III, p. 170.
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number of measurements utilizing this technique are
presented and compared to theoretical temperature
dependence of x based on the formulations of G-L,
Gorkov, and Bardeen. A derivation of the temperature
dependence of « based on the Bardeen two-fluid
formulation is outlined in order to indicate precisely
the relationship between x and the experimentally
measured parameters, and to demonstrate the origin
of the temperature-dependent terms in this theory. It
is found, in all cases, that the temperature dependence
derived from the Bardeen two-fluid formulation offers
the best agreement with experiment of the three
theories. However, in alloy systems deviations exist
even from the Bardeen theory, and it appears that no
entirely satisfactory theory of the temperature de-
pendence of the coefficient «(¢) has been given.
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APPENDIX

We consider here the relationship between the real
part x’ and the imaginary part x” of the ac suscepti-
bility"x=x'+ 7x’’ for an annular superconducting film
of thickness d and radius ¢. The interior of the annulus
is assumed to have negligible conductivity. When an
external field H, is applied along the cylinder axis,
shielding currents are set up within the annular ring.
For complete shielding, the susceptibility is real and
equals —1/4r. As the penetration depth increases, or
as the ring develops resistance, this susceptibility rises
to zero. Accompanying the resistive transition is a
peak in the loss component x'’. In an external field ac
H, we have for the field inside the sample

Bac= Hac+47rMac= Hac"l"‘aiac )

where the ac magnetization M,, results from shield-
ing currents ¢ and a=4r/l for currents flowing in
a thin surface layer on a long cylinder of length I.
If the resistance around the surface layer is R, then
V, the induced ac voltage, is V=1iR=wa?dB,./dt.
In the ac measurements, H,.=H, exp(jwt), and
Bg.= By exp(jwt), and we find

Moo/ Hoo=x= (j/4r [[(R/woma®*)+7].
Separating real and imaginary components, we find
1 1
X=——,

47 (R/mowa?)?+1
1 (R/4mawa?)

" 4r (R/Amowa?y i1’
and finally

X"=—x/Ar—x".

As x’ varies from —1/4r to zero, x’’ shows a loss peak of
magnitude (1/2)(1/4x) with the peak occuring where
x” has experienced 1/2 of its total change, at x'= — (1/2)
X (1/4x). A bulk transition on the other hand shows
ax’ peak at x'= —0.39(1/4x), which has been discussed
by Maxwell and Strongin.® Thus, in principle the
resistive transition of a surface layer can be distin-
guished from that of a bulk superconductor by the
observed relationship of x” and x”’.



