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Lx(i~R)jso are no longer equal, and in general both
even and odd, zero wave-vector irreducible represen-
tations occur in the reduction (see for example the
reduction of the symmetrized Kronecker squares of
6', A.', X', , X4, 5", and 8" in diamond as gives
by Birman').

The fraction of wave vectors which lie on symmetry

lines or points in the Brillouin zone is of order F—'~',

where X is the number of unit cells in the crystal sample.
Thus the selection rule forbidding participation of
overtone states in absorption which we have proved
for phonons of general wave vector can, for all practical
purposes, be assumed to apply to phonons of all wave

vectors.
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Stimulated Raman and Brillouin scattering can be described as the interaction of several light waves
with optical and acoustic-phonon waves, respectively. The coupling parameters can be derived both classi-
cally and quantum mechanically. A prototype solution is given for the coupling of in6nite plane Stokes and
anti-Stokes waves satisfying appropriate boundary conditions on a plane-parallel Raman cell, in which the
laser intensity is assumed a constant parameter. Saturation effects, generation of higher order Raman
radiation, and the effect of mode structure in the laser beam are treated in a more approximate and qualita-
tive fashion. The theory can explain at least qualitatively most of the experimental findings, including the
directional properties of the Raman radiation. Ideal experiments for clarifying the mechanism of the Raman
effect are suggested.

I. INTRODVCTION

l
'HE coherent part of the interaction between light

and matter can be described by linear and non-
linear susceptibilities. The nuclear motion modihes the
scattering of light by electrons. This leads to Raman and
Brillouin scattered light with a characteristic frequency
shift. Brillouin' studied the behavior of the interaction
of light with acoustic waves. The Raman effect' can
be described as the interaction of light with optical
phonons. The spontaneous Raman scattering has long
become an important tool for studying the vibronic
structure of molecules and crystals.

Recently, Woodbury and Ng' found accidentally that
a ruby laser, Q switched with a nitrobenzene Kerr cell,
emitted. a strong radiation at 7670 A, in addition to the
normal ruby laser light at 6943 A. It was soon recognized

by Eckhardt et a/. 4 as the stimulated Stokes radiation
from the nitrobenzene. When different liquids are
inserted in the laser resonator, different frequencies are
emitted. . They are displaced from the ruby frequency by
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an amount corresponding to a vibrational frequency of
the liquids. In addition, the displaced radiation has the
following characteristics. (1) Only the frequencies be-

longing to the sharpest and the most intense spontane-
ous Raman lines show up. (2) It has a definite threshold
of excitation. (3) It is highly directional. (4) The line-
width is much, narrower than that of the spontaneous
line. (5) Higher order Stokes radiations occur at exact
harmonics of the 6rst vibrational transition. The stimu-
lated Raman spectra of many liquids, '' solids, ' and
gases' have been reported. Terhune' put the cell outside
the laser resonator and was able to detect th, e anti-
Stokes radiation emitted forward in a characteristic ring
pattern. Higher order Stokes and anti-Stokes absorption
and emission rings have also been observed. ' "More
recently, the detection of stimulated Brillouin scattering
was reported by Chiao et al."
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Th,e theory of stimulated Raman eGect has been dis-
cussed by many authors, '*" "both from the classical
and from the quantum-mechanical points of view. The
existence of a threshold for stimulated radiation is well
explained. Although a qualitative explanation of many
features has been given, there are still a number of
important experimental observations" which have re-
ceived no detailed explanation. In a recent communica-
tion, "a description of the stimulated Raman efI'ect was
given in terms of a coupling between vibrational and
light waves. The coupled wave approach in nonlinear
optics was introduced by Armstrong e] ul. 22

In this paper a more detailed account of the coupled
wave theory is presented. Nevertheless, it should be
emphasized that a number of simplifying assumptions
must be made in the theory, which thus far have not
been met under the actual experimental conditions. In
particular, the mode structure and nonuniformity of the
laser beam are not in agreement with the assumption of
uniform plane waves of infinite lateral extent. Depletion
of the laser power implies that the laser field may not
be treated as a fixed constant parameter. Transient
eKects may cause deviations from a steady-state
description.

In Sec. II a classical discussion on the coupling of
vibrational waves and light waves via a molecular
system is given. If there are many photons in the radia-
tion field it can properly be described by classical
waves. "' The same is true for vibrational fields. In the
treatment of coupled-wave problems, the classical de-
scription is even more appropriate since then the decay
or amplification of the waves depends on the relative
phases among them. If in the quantum description, the
number of quanta is prescribed, the phases will be com-
pletely undetermined as required by the uncertainty
principle. The quantum analog of the classical treatment
is obtained from the so-called coherent states of the
field, which have recently been investigated in much
detail by Glauber. '4 In Sec. II, the equations of motion
(or the wave equations) for the coupled-wave problem
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are derived from the Lagrangian density. The coupling
parameters are given by the properties of the medium.
They can be derived from the classical model of
Placzek" in the case of Raman scattering, and from the
photoelastic coupling model in the case of Brillouin
scattering. Except for the difference in vibrational fre-
quencies and dispersion, the Brillouin scattering is
formally identical to the Rarnan scattering. All the
discussions on Raman scattering therefore apply to
Brillouin scattering with only slight modification. Sec-
tion III gives a quantum-mechancial derivation of the
coupling parameters. A microscopic expression of the
Raman susceptibility is obtained and compared with the
classical expression. The coupled wave equations are
solved in Secs. IV and V. It is shown how in the limit
of high damping on the vibrational waves, the solution
leads to the stimulated Raman emission. In principle,
the amplification of the Stokes waves is very similar to
that of a parametric-down converter. If one of the two
low-frequency component waves is highly damped, the
other will be amplified. The solution of the coupled
Stokes and anti-Stokes wave equations shows that there
can be no amplification for either wave in the direction
of linear momentum matching condition. The Stokes and
anti-Stokes waves are coupled most strongly near the
momentum matching direction. In other directions, they
are also coupled, although rather weakly. In conse-
quence, for each Stokes wave generated or amplified in
the medium, there is always a corresponding anti-Stokes
wave dragging along. The angular distribution of the
anti-Stokes intensity shows a maximum at a slightly
greater angle than the exact phase-matched direction.
As the interaction length is increased, the laser power
will eventually be depleted, and the Stokes and anti-
Stokes intensity will level off to their maxima. The
Stokes and anti-Stokes radiation can, in turn, become a
pump source to generate second-order Raman radiation
and so on. This saturation effect is discussed in Sec.VI.
The total laser power is not completely depleted only
because the beam is multimoded, nonhomogeneous, and
finite in cross section. In the real experiments, the multi-
mode structure of the laser beam makes the problem
very complex. Waves in different modes may interact
to generate new frequencies parametrically. These
parametric processes are responsible for the experimental
observation of Stokes and anti-Stokes rings of many
orders. The generation of higher order radiation and the
eGect of the multimode structure are discussed in Secs.
VII and VIII. Owing to the complexity of the problem,
only a qualitative discussion is given. Because of the
close coupling of many modes, the Raman signal will

show fiuctuations and will depend in a sensitive way on
the detailed geometry. In Sec. IX the theoretical results
are shown to be in qualitative, or sometimes quantita-
tive, agreement with the experimental results. New

2' G. Placzek, Afar@ Bandbuch der Radiologic, edited by E. Marx
(Academische Verlagsgesellschaft, Leipzig, Germany, 1934), 2nd
ed. , Vol. VI, Part II, p. 209-374.
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experiments are however suggested. to test the details of
the theory.

L b= 'Q '—--'too'Q '+-'P(VQ )'
I,;.,=iVnEE.

(2)

Here Q„=R(2p)'"is the normal coordinate, R is the
relative displacement of the nuclear positions, p is the
reduced mass density, and 0. is the optical polarizability
tensor of the molecule. In the Placzek model, " e is
written as a linear function of Q, .

II. THE CLASSICAL DESCRIPTION

The wave equations can be derived from the La-
grangian density of the system. Let us assume a dilute,
isotropic medium. The Lagrangian density is given by

I= Irad+ivib+iint, s

where L„d=ts(E' —8'), assuming tranvserse waves. For
the Raman eBect, optical phonon waves are involved.
%'e have

Sec. V. The remaining Eqs. (5) and (6a) can now
be solved simultaneously. The solutions have the form
E, exp/i(k, r—co,t)j and Q„expLi(k, r—to, t)$ with
Es= Es expt i(ks r—cost)g and ks ——k,+k„.From Eq. (5),
we 6nd

Q, = —1V(Bn/B Q) p .. E&E,*/(os„'—coo'+P&.'+ i2to„l').

If the nonlinear coupling is small, then the wave vectors
can be obtained, in the 6rst approximation, from the
linear matching condition ks= k,'+k„,the change due
to nonlinear coupling being neglected. This approxirna-
tion can be justified in the case of highly damped
vibrational waves as will be discussed in detail in Sec.
IV. Substitution of the expression of Q„into Eq. (6a)
leads to

VX(VX E.)—(co,'/c') Le,+4srÃz Es Es*)E,=0, (2)

where the fourth-rank Raman susceptibility is defined as
sjmn tV p(Besj/BQ s) (Bnmn/BQ s) /Dsc

n =no+ (Be/BQ.)p Q. (3) with

or in tensorial notation n"=n "+(Bn"/BQ b)oQ, s. If
this is inserted into L; &, one obtains a coupling energy
between light and vibrational waves proportional to
Q.EE.The equation of motion for the vibrational wave
is now obtained from variations of L,

Q &+PVPQ &+oopsQ„&/2I'q, &=@(Bnsj/BQ &)pEsEi (4)

The damping term 2I'Q„is added phenomenologically.
For Q„exp(ik„r),the natural frequency of vibration
is oo '= Loop' —Pk ')'" The damping constant I' is then
clearly a function of k„.Note that the wave has a nega-
tive dispersion for P)0.

Assume the presence of only four waves, the vibra-
tional wave at co„andlight waves at ~~, co„andco, with
co,—pot=est —tea=con. For Q, e—*""',we have

PVsQ„+(cops—co„s)Q,—i2os„l"Q,
=&(Bn/BQ)o' LEsE.*+E.Es*j (5)

The wave equations for E„E„andEs are

VX(vX E.)—(e,~,'/cs) E,
=(4srco, '/c')cV(Bn/BQ)o Q.*Et, (6a)

VX(VX E,)—( , e/cco ')sE.
= (4srco.'/c')E(Bn/BQ) p. Q„Es, (6b)

vX(VX Es) —(es~s'/c') Es
=(4 ~s'/c')X(Be/BQ)o. LQ.E,+Q.*E.) (6c)

Assume further that the depletion of laser power is
negligible, so that the amplitude of Es is a constant
parameter in the equations. The saturation eGect due
to depletion of laser power will be considered in Sec. VI.
Assume furthermore that E, is absent. These simplify-
ing conditions will illustrate the generation of stimulated
Stokes radiation. The complete solution of coupled
Stokes and anti-Stokes generation will be given in

D*=co,'—co,o 2—i2o)„F)
02 —

co 2 p$ 02

In this paper, the 6eld intensity and the polarization
are de6ned as"

E;(t)=Re(E;+ E;*)=Re( E,(os;) exp( —ice;t)

+ E;(—co;) exp(ios;t) ), (8)

P;(t) =Re(P~+ P;*)=Re(P, (&o~) exp( —ios,t)

+P;(—co;) exp(iso, t)) .
The real part of X~ changes the index of refraction at
a„whereas the imaginary part, being negative, leads
to arnplification at or, .

Similar arguments can be applied to the Brillouin
eGect, where acoustic waves are involved. The La-
grangian density has the terms,

I-;b ———,'p.A. '—-,'C.(VA) ', (9)
I.„.,=p(VA) EE,

where A is the displacement of nuclei, C is the linear
elastic modulus, y is the photoelastic tensor of the order
of unity, and p, is the mass density. The equation of
motion for the acoustic wave is

p.A—C,vsA+2I'p@ =pV(E E) . (IO)

A particular steady-state solution is again obtained by
treating E& as a 6xed parameter and considering only
two wave equations for the acoustic vibrational wave
at cg, and the Srillouin shifted light wave at ~& with
COg

—My= Ma

CaV A+con paA+$2MaVpaA= —pv(EsEs )
VX(VX Es) —(coo'eo/c')Eo ——(4sroso'/c')pEsVA*. (II)
"P. S. Pershan, Progress sN Optics, edited by E. Woif (North

Holland Publishing Company, Amsterdam, 1964).
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With the linear approximation on the wave vector k„
we find

VX (VX Eb) —(tdb2/c') [eb+4)r&)t El El*]Eb= 0,
where the fourth-rank 8rillouin susceptibility tensor is

itmn g„pijbpmnbp 2/P (ts)
2 (d 0 2 22(t) I') (12)

(s) 02=)s,'0 2 C /p

In the case where the acoustic wave is also driven by
an external source F,„with wave vector k„and fre-

quency co„the equation for 8& becomes

VX (VX Eb) —((s) b'/c') Leb+4)r~B El El ]Eh
= —(42rO)b'/C')iyk, E(F,„*/((s).2—(s),0 2 —22(t).I') .

This equation will give a solution of E~ whose amplitude
will grow both parametrically and exponentially.

More generally, the electromagnetic fields should

have an a,dditional component at the vibrational fre-

quency (s)„.The interaction Lagrangian I.;„tof Eq. (2)
has an additional term yQ„E.Consequently, the set of
coupled-wave equations (5) and (6) should be modified

accordingly, and joined by one more wave equation for
E„((t)„).Assuming

~

It t
~

constant, one still has four wave

equations to be solved simultaneously. In infrared-
inactive molecular crystals, the coupling parameter p is

small, so that E„(o)„)can usually be assumed absent. In
polar crystals, however, p is so large that one can solve
the problem approximately in two steps. First, one
assumes that the em wave a,nd the vibrational wave at

are coupled tightly together to form two waves of
mixed character. Each of the latter is then coupled to
the em waves at co, and co. to give the solution for
the Stokes and anti-Stokes genera, tion. We shall now

proceed to the quantum description and show its equiva-
lence to the classical description.

III. THE QUANTUM DESCRIPTION

The microscopic picture of the material system can
only be described fully by the quantum theory. It is

also possible to write the total Lagrangian density L or
the corresponding total Hamiltonian K in a completely
quantized form,

X=X,)„+K„ti+K,,b+$Q;
„

where the radiation and vibration felds are quantized
through the use of creation and annihilation operators
of photons and phonons. Loudon'4 has studied the
Raman scattering in this framework. He has used the
eigenstates with prescribed numbers of ph otons and
phonons. Then, since the uncertainty principle requires
the phases of the 6elds to be completely undetermined,
it would be impossible to describe amplification or
attenuation of the fields through their mutual coupling.
In order to regain the phase information in the quantum
description, coherent states" for the photon and the
phonon fields must be used. However, it has been shown

by Glauber that when the number of quanta is large, the

coherent states become an exact analog of the classical
waves.

In the semiclassical treatment, the photon and the
phonon felds a,re described by waves. Only the electronic
system is treated quantum mechanically. (The quantum
states of the nucleus are neglected. ) The Hamiltonian
of Eq. (13) now reduces to

with
~elec+3('. int t

~int= +e-r+ 3('.e-v t

We also assume

f.g(Q C tamt+—
Q «'Cinmt) (16)

The expectation values of the polarization p a,nd tbe
generalized force f can then be obtained from the
density matrix formalism. "The linear part of (f) is s
measure of the elastic property of the medium, whereas
the nonlinear part of (f), proportional to powers of E,
is a measure of the photoelastic property of the medium.
In this paper, we are particularly interested in the non-
linear part of (y) and (f).

We now consider the Raman scattering in a homo-
geneous medium with only f rst-order Stokes and anti-
Stokes frequencies involved. The wave equations (5)
and (6) are to be used with their right-hand sides re-
placed by 1V(fN ), (42r(t)s2/c')$(ys ), and (4trtga'/c')
X1V(y, ), respectively. Let us first assume a two-level
electronic system with the ground level (g~ occupied
and the excited level (tb~ empty. The density matrix
elements of various orders can be obtained using a
straightforward perturbation technique. Assume the
matrix elements y„„=ygg——0 and f„,=0 and the fre-
quencies

~
Mt s a—(s)ng ~, tt)„))linewidth. We find

p (0) (0)—1 p (0) (Q) —Q

Png ( (, t),ts)=ning "(o)t,s, a)/&(tdt, s,a 0)ng) s

Pgn (ts)t, s,a) = 3('ng (o)t, s,a)/~(o)t, s, a+o)ng) t

p ( )((0 ) =3(.'«((gt)L~„„ss( (0 ) 3(& sv( (0 )]/
&'((t).—(0-.) ((t) t

—(t);),
p (2)(tg ) p (2)((t)v)

= (—1/(t).) (3(',."(—(0,)se., "((dt)a„.
+~g "(—(s)t)K„g'"((g,)A„,),

s4-= & 2L(ts). (d.g)
' (0)t O)—.g)— —

+( .+ .,)- -( + .,)- ],
~ra= )2 'L((t)t —(s) )-'—((0 —O)n )-2

+((s)t+(0„,) '—((st.+(0.,)—'],

(17)

"N. Bloen)bergen ttnd Y. R. Shen, Phys. Rev. 133,A37 (t964).

where 3C, , and K, are the interaction Hamiltonians of
the electronic and radiation systems and of the electronic
and vibrational systems, respectively. We shall use the
electric-dipole approximation so that

= —y ~ Q(E c—ttsmt+E t'citsmt)
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where

$„,"k(m, =Cvi ar, )—=$„,"k(m„=COi
—a&,)

= (p.'):(p ')"(f-' f..')—~-/ .,

(..' k(~.=~i+~„)= (..k (~„=—~,+~.) (IS)
=(p'):(p') "(f-' f.') j—f-/ '

The symmetry relations between $'s can be easily seen
from a time-averaged energy expression, " the validity
of which has been justified by Bloembergen. 29 We have

{PNL) 2 Re Q{P
ijkF i*+ jQ k*

+p ijkp ip jnQ kn) (19)

which leads immediately to the symmetric relations

ijk $ ijk $ kji

ijk —
p

ijk ] kji (20)

If the electronic system has more than two energy
levels, then we need only to sum over the states in the
expressions for p,„and $,„,the sum over the ground
states being properly weighted by the population dis-
tribution. The symmetry relations of course remain
valid.

The microscopic expression for the Raman suscepti-
bility can now be derived. In the absence of E„wehave
(f,NL)= &»EiE,* replacing ((I(2/BQ)OE(E. * in Eq. (5).
The Raman susceptibility in Eq. (7) then becomes

ijmn 1)T2 P $ ijk( kmn/D'k (21)

and similar expressions for p,„(2)(cu,), j)„,(2)((d,), and

j .-")(~-).
To this second-order approximation, the expectation

values of the nonlinear part of p and f are given by

{p NL). Trp ip(2) ] ijkgq jQ k*

{p NL) .—Trp ip(2) —
p

ijkg~ jQ k

(f NL). ] ijkp jgq knyp ijkg jnp k

Xji"= i@2)2(2(2/100hi'. (23)

More generally, we should also find p('~. The calcula-
tion is straightforward, but the results are too compli-
cated to be reproduced here. They give terms propor-
tional to the third power of the wave amplitudes, but
with nonresonant frequency denominators in the ex-
pressions of {p,NL), {p NL), and {fNL). In keeping all
fields, except Ei, only to the first power, Eq. (18) is
generalized to the form

{p.N') =(,.«Q.+4.«Ei*E.+(,.«EiE.',
(p."L)= (.„E(Q.+(,.EiE(*E,+(,.EiEiE,*, (24)

{fnNL) = (-«E.*+(.n «*En+(..«Ei*Q. .

The term ),„EiEi*Q„is essentially a saturation term
and can often be neglected. We then have

Q, = NB„,E(E, —+$„,E&*E,l/D. (25)

Substitution of Q„into {p NL) and (p,NL) in Eq. (24)
leads to the equations

V X(VX E,)—(~ 2.,/c2) E,=(4~~ 2/c2)iV{p, NL)

V'X(V'X E,)—((d e,/c') E,= (42rcv 2/c')1V{p NL)

with

(26)

We notice that the factor )I=(f„„—f„)Q,/Ace, is a
measure of the perturbing strength of the vibrational
wave on the electronic system. It is about the ratio of
the deformation potential to the vibrational energy and
hence is of the order of g yp. The linear polarizability
of the system is given by

~(~)=Trpj ")(~)/I''(~)
=p.gpg *I:—I/I2(~ —~.2)+I/&(~+~-g) j (22)

Assuming ~„&&co( 2~„„wefind (p,)«(pi) n, 12A„, ni/10.
From the correspondence principle, we have 21K '~,2Q„2
=fua„. Equation (21) then gives a resonant Raman
susceptibilitv of the form

1' {p NL)=(i(; +g NR)E(E(+E y()(, +X, NR)E(E(E, 1)j{p NL)=(X,yX NR)E[E[En@+(X + X NR)E(E(2'E

1l)'2( g /D8 or X ijmn — jY2 P ( ijkg kmn/D2
lc

I(' NR —1'(
1))r2( g /Dw or X ijmn — 1I)'2 P $ i &kg kmn/D@

k
NR —jY(

1P(,„$„,/D*—
X,= 1(T2$,„$„,/D—

K,NR= Xg..

or

or

ijmn 1lr2 p p ijk( kmn/D
Ic

ijmn — jY2 P g ijkf kmn/D

' P. Pershan, Phys. Rev. 180, 919 (1963).
~ N. Bloembergen, Son/incur Optics (W. A. Benjamin, Inc. , New York, 1965}.
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FIG. 1. Raman process in a
model with the electronic system
alone quantized.

) %(d1/
I

9

the superscripts NR signifying the nonresonance nature
of the corresponding susceptibilities. We notice that
there is a complex symmetry relation

Xa~(M~= 2Ml Ma) Xas (cea= 2Ml tea) (27)

"R.D. Maker, R. W. Terhune, and C. W. Savage, Phys. Rev.
Letters 12, 507, (1964).

or in tensorial notation,

jinn(~ —2'~ ~ )—X nmjP(~ 2~—~ ) (28)

This is an illustration of the following rule which holds
when the damping occurs in only one denominator of x.
When the interchange in frequencies involves a change
of sign in the frequency combination which happens to
be near resonance, the Hermitian conjugate of x should
be taken. In X„(&v,=2tet —cv,), the near-resonance fre-
quency appears as ar&

—a&„whereas in X„(~= 2&v&
—te,),

the near-resonance frequency is re&—ce, = —
(re& —te,).

Therefore, Eq. (28) follows. This symmetry relation is
actually an application of Onsager's relationships, which

may be based on the existence of a dissipation function,
describing the steady-state loss. Pershan" has shown
that the pure electric dipole susceptibilities are real in
the nondissipative case. Their imaginary part describes
loss. A symmetry relation, as in Eq. (28) represents
therefore a connection between the free energy and the
dissipation function. For the linear susceptibility, the
connection between the real and the imaginary parts is
embedded in the Kramers-Kronig relations. Our re-
striction that those nonlinear susceptibilities have only
one complex denominator implies that they obey the
same Kramers-Kronig relation as in the linear case. The
complex permutation symmetry relation Eq. (28) is
therefore similar to that in the linear case.

The imaginary part of X, and X in Eq. (27) describes
the Raman processes shown in Fig. 1. The real part of
X, (or X,) describes a parametric process, the simul-
taneous scattering (in the loose sense)" of quanta at re&

and c0, (or co,). The interference of these scattering
processes in a homogeneous medium leads to a change
in index of refraction at ar, proportional to Et E~~ and
vice versa 'o

The real part of X„corresponds to a parametric
process in which two quanta at co& scatter into a quantum
at co, and one at co, or vice versa. This leads to a para—

metric generation of or, and co, by the laser beam, or
vice versa. The imaginary part of X„canbe described
as th, e interference of the two Raman processes shown in
Fig. 1.This interference may either enhance the genera-
tion of co, and the absorption of co„ordecrease the
generation of co, and the absorption of ~,. The relative
phases of E~, E„and E determine which situation
applies. This shows that in order to see amplification or
attenuation, the correct description is in terms of waves
or coherent wave packets of oscillator states.

The terms x come from the third-order density
matrix p(". They involve only pure electric-dipole
matrix elements with no resonance denominator, and
are therefore real. The ratio of

~

xNa( to ~X~"
(

is about
1/10 to 1. This is estimated as follows. The magnitude
of X~" gains a factor of (M~

—ce„,)/I' over XN through
its resonance frequency denominator, but loses a factor
of p' on the matrix elements. Moreover, pN~ may have
100 times more terms than Xg", These x terms give
additional contributions to the parametric processes
discussed before. The dispersion in these nonresonant
susceptibilities may be ignored if the spacing to the
excited electronic levels is much larger than the separa-
tion co,—co,. A single real y will suKce to describe
this part of the nonlinear polarizations. A typical curve
of (X,+X,Na) versus frequency near resonance is shown
ln Fig. 2.

The usual quantum-mechanical description of Raman
scattering is the process in which the material system
absorbs a photon at co~, emits a photon at ~2, and, makes
a transition to some excited state at /s(tet —o&s). The
Raman susceptibility for the general two-level and
three-level systems has been studied by the authors. '~

For Raman scattering in a molecular system, the final
state in the process is usually a vibrational (and/or
rotational) level. This model, in which the nuclear co-
ordinates are also quantized, is related to the previous
discussion in the following manner.

Consider (5t'.,&„+X;b)in Eq. (12) as a quantum
system with the eigenstates represented by (mp

~

where
v designates the vibrational quantum number. ln this
sense, the vibrational waves appear as a fixed quantum
state in the molecular system. The interaction Hamil-

I I

~S+~NR

txNR
0

FIG. 2. Variation of Raman susceptibility with frequency
u,+5 near resonance (Ace 0}.Note that the Stokes frequency
a, =co~—co, increases from right to left. The Kramers-Kronig
relations are obeyed.
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tonian X., acts as a perturbation in mixing diferent
states (»,e I

and (n', e' I, and BC„asa radiation perturba-
tion on the system. In analogy to the two-level electronic
system, we now assume a system with two pairs of levels,
each electronic state (» I being associated with two vibra-
tional states (e I

and. (e'
I
.With the same assumptions on

the matrix elements and frequencies, the susceptibilities
can again be derived by using the density-matrix formu-
lation. Since co —cvg=co~ —~,=or„„=co,„„wekeep
in p(') only the terms with a resonant denominator. The
Raman susceptibility obtained from p(') for the pure
Stokes generation is given by

&gs'I p I »e&&»e I p~ I ge) &g~ I p* I
»"&(»»'I P~ I ge)

co) Gl cog g bF l nv-gv ~l ~nv'- gv

&g" I p~lne)&»el p lge) &gal pal»"&(»" I p I ge) '
(29)

~s+~nv-gv ~s+~ssv'-gs

with (gelpl»q)=(ge'Ipl»v')=p, „.Taking into account the 6rst-order perturbation of X„,we have

(ge'I pl»)= —ps-I (&-)---—(~ )"-"7/~ = ~pg

&ge I p I
ne')=P. -L(&-)--- —(~-)"-"3!~ = ~p.-

(30)

where we assume that the only nonvanishing matrix
elements are

&ge'I ac,.Ige&W(»e'Ix, .l»e),

&v= 2&nv'-nv I gv'-gv J &nv'-nv ~gv'-gv ~

Substitution of Eq. (30) into Eq. (29) with the identity
2Q„'~,'1V—' = h~„,leads to a Raman susceptibility identi-
cal to X& given in Eq. (21).The other susceptibilities in
Eq. (27) can be derived in a similar manner. Here, the
nonresonant terms in p(2' will lead to the nonresonant,
susceptibilities x . The details of the derivation are
given in the book on nonlinear optics by Bloembergen. "

With this model it is clear that at elevated tempera-
tures, when the excited state (g,e'

I
is also populated, the

Raman susceptibilities should be multiplied by the
population diRerence

(Pgv, gv Pvv'. gv' )ITrP .

This factor arises only because of the existence of an-
harmonicity in the molecular vibration which is sufIIi-

ciently large to cause transitions between higher vibra-
tional states to be off resonance. For strictly harmonic
oscillators, all vibrational transitions contribute and the
temperature-dependent population factor would not
occur in the susceptibility. This is just the case for the
Brillouin effect, where the anharmonicity of acoustic
vibration is negligible.

It is easy to generalize the discussion to include the
rotational part of the molecular system. We can simply
incorporate it into the electronic system, so that the
combined system has rotation-electronic eigenstates.
For the sake of simplicity, we shall omit the rotational
part in our discussion.

To complete the quantum description, a few words
should be said about the quantum nature of the damp-
ing constant F. In the linearized theory the inverse of F

represents the lifetime of a phonon. The evaluation of F
has long been a well-known problem of dissipation in
lattice. The phonon decays through the processes of
phonon-phonon scattering, phonon-impurity scattering,
and phonon-wall collision. In the case of long-wave-
length optical phonons, the most important source of
damping is the three- and four-phonon scattering proc-
esses via the anharmonic lattice potential. An optical
phonon decays, during the process, into two or three
phonons with lower energies. For the three-phonon
process, Brout" wrote down the general formulas for F
as well as for the associated phonon frequency shift.
Kleinman32 has calculated F for a simple ionic lattice
with cubic anharmonic potential. In evaluating F, the
most difficult part is to And the densities of states for
the phonons involved. This is particularly true for a
lattice with complicated molecules. In the latter case, a
detailed quantitative calculation of F is quite difficult.
Since the wavelength of light is much longer than the
lattice constant, phonons with wave number k~+k, and
k~ —k, appear close to each other on the optical phonon
branch. We would then expect that I"(k~+k,) and
I'(k& —k,) are nearly equal.

IV. STIMULATED RAMAN AND
BRILLOUIN SCATTERING

We have described stimulated Raman and Brillouin
scattering as parametric processes resulting from cou-
pling of light waves with vibrational waves. The coupled
wave equations for the pure Stokes generation have
been solved approximately in Sec. II.Actually, the wave
vectors are functions of the nonlinear coupling and
therefore cannot be prescribed. Here, we shall give a
more rigorous solution to the problem.

For the Raman effect, the coupling between a Stokes
» R. eront, Phys. Rev. 107, M4 (1957).
ss D. A. Kleinmen, Phys. Rev. 178, 118 (1960).
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Fyo. 3. The dispersion of the electromagnetic waves, an optical
phonon branch, and an acoustic phonon branch, for long wave-
lengths, X)&a, the lattice constant. {The figure is not to scale. )

wave at co, and an optical vibrational wave at a„is
produced by a pump field at toi ——co,+to„.The coupled
wave equations can be written as

P&2Q *+(co '—co 2+i2co„l')Q„*=XEi*E,
V'X (V'X E,)—(s.t0,2/C2) E,= (42rto. '/c')0 Q„*Ei, (31)

where Et hi expLi(lr——i r—toit)], X=)V(8n/BQ)0 We.
notice that the optical phonon wave has a negative dis-

persion, so that the wave propagates and attenuates in a
direction opposite to its wave vector. For simplicity we
assume Ei, E„andQ„alllinearly polarized. Then, the
tensor X becomes just a, scalar. The solution of Eq. (31)
takes the form

k„o—
I

k 02 (k 2+k 2)]t/2

k„0=ki—k, o

0
Lk (k 2+k 2)]1 2

AK= k„—t' „o=k„o—k„.

(34)

The corresponding vector relations are shown in Fig. 4.
Equation (28) then becomes

[2k„0(AK)+(AK) '—i2k„on,]
X $ 2k„,o(DK)+—(AK)2+D*/P]

+ (4zrto, 2/czit)its
I
2,

I

'= 0, (35)

for very strong photon-phonon coupling. There, the
dispersive eRects are much more pronounced, and the
momentum matching in the forward direction is not
possible in cubic or isotropic materials, but forward
scattering in anisotropic crystals is still possible. We
shall con6ne our discussion to the case with negligible
photon-phonon coupling. This is to be associated with
molecular vibrations having very narrow linewidths.
The stimulated Raman eRect has so far only been ob-
served for these vibrational Inodes, presumably because
they have less damping, and hence lower threshold.

Substitution of Eq. (32) into Eq. (31) leads to the
characteristic equation

(k 2 k 02 zoo 20 /C2)

L(ki —lr, ) + (t0„2—(002—&2&„l')/p)
+(4~~ '/c'P)~'I@I'=o (33)

k 02 0 to 2/c2

With the tangential component (k„'+k,„')'' and the
frequency or, prescribed, we dehne

E,= 8, expI z(k. .r—to,t)] k, =k,'+ik, ",
(32)Q„=Q,, expLi(k„r—co„t)7 k„=k„'+ik„",

where
rrg=MB ea /2c kg@

D*=co,'—(u„''—i2o),F,
it, ' and k„'satisfying the momentum matching condition

ki ——k, '+k„'.Since Ik, I
is of the order of the wave

number of light, k„«22r/lattice constant, the frequency
to„is essentially independent of k„asp is small. There-
fore, a matching momentum k„ofthe optical phonon
wave can always be found regardless of the direction in
which the Stokes wave travels. The dispersive behavior
of the em waves and the phonon waves is shown in

Fig. 3. Owing to the photon-phonon coupling, the vibra-
tional curve and the em curve do not cross. There is a

gap corresponding to very strong absorption of the em

wave at the vibrational frequency. The gap is extremely
narrow, if the photon-phonon coupling is weak, as in the
case of a nonpolar medium. The dotted line in the
picture indicates linear momentum matching for the

Stokes wave in the forward direction as given by

ki —kg —ei My/c= (kg )min with el )0 ((og) ~

For Stokes radiation in other directions, optical phonon
waves with matching momenta larger than (k„');„can
obviously be found. Loudon'4 has discussed the situation

ksz kv'z

FIG. 4. General relationship between the wave vectors of Stokes,
vibrational, and laser waves as stated in Eq. (34).

02 —0 2 Pk02

There are two roots of AE near —2k„',corresponding
to backward traveling waves. The other two roots for
forward traveling waves are small and can be obtained
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to a very good approximation by dropping (AE)' in
the brackets,

(36)

1(r'n, +De) 1 jn, —De s 4soi 2&s~Ei~ 2

~E=-/
2 k 2Pk. ,' 3 2 2k„.'P c'Pk, .'k..'

The corresponding waves are given by'3

E,=C,+ e xpfi(k„'+BE+) s5

+C. expLi(k. .'+DE )s7, (37)

g„e=c„+expL —i(k..'—~E+)s$
+C„exp/—i(k..'—4E )s$,

where the time factors exp(+ion() are omitted,

C.g/C„~= (2rroi, '/c'k, .')XEi/(i hEp+n, ) . (38)

For forward traveling Stokes waves, the boundary con-
dition are E.(s=0)= 8, and Q„(s=0)=0. We find

C,+ ((~E —s,)/(Z —Z ~E+)jr„(39)
C, = ((AE~ in, )/(AE+ —hE )jh, . — (40)

"N. M. Kroll, J. Appl. Phys. (to be published).

In general, the quartic characteristic equation (33) or
(35) leads to four composite Stokes-vibrational waves
propagating in the Raman medium, two traveling
forward and two backward. Each composite wave con-
sists of a Stokes and a vibrational component with their
amplitude ratio fixed. A more rigorous way of describing
the problem is as follows. The Raman medium is a slab
of length L bounded by diR'erent media on the two sides,
and is made active by the laser beam propa, gating across
the medium. A pure Stokes wave and a pure vibrational
wave incident on the medium give rise to a pure Stokes
and a pure vibrational waves rejected from the first
boundary surface, two forward-traveling composite waves
a,nd two backward-traveling composite waves in the me-

dium, and a pure Stokes and a pure vibrational wave trans-
mitted from the second boundary surface. The ampli-
tudes of all these waves can be found in terms of the
amplitudes of the incident waves through two boundary
conditions for the Stokes waves and two boundary con-
ditions for the vibrational waves at each boundary. The
problem is then completely solved. The reAection and
transmission coefficients for the Stokes and vibrational
waves at the boundaries can be calculated. They are
different from those obtained when either the Stokes or
the vibrational wave alone is present because of the
coupling between the two waves. However, in cases
where the vibrational wave in th, e Raman medium is
heavily damped, the composite waves are either almost
purely Stokes or almost purely vibrational. One would
then find that the reaction and transmission coe%cients
are not far from those for the pure wave case. When the
reaction coeKcients at the boundaries in the Raman
medium are so small that the Barkhausen condition for

where g, = 2s to.9.'
~
Ei

~

'/c'k, .soi„l'.This corresponds to a
vibrational wave of large damping. The square root in
Eq. (36) may be expanded to give roots. One root is
AE ~De/2k. .'P, whose corresponding wave has almost
pure vibrational character but is highly damped. We
note that for P +0, -the wave has infinite attenuation.
This is the case of isolated molecules whose vibration
cannot be propagated. The other root is

AEg in, ',ig, ( —i2—te,I'/—D*)
+ 2g, 'pk. .'Gi. 'r'/D*'. (41)

The corresponding wave has almost pure electromag-
netic character. When o., is suKciently small, this gives
amplification to the Stokes wave since Im(d E~)(0.

In this approximation, we have
)
AE ~))

~
4E+

~
)n, .

For the forward-traveling Stokes wave, since
Im(AE ))0 and Im(AE+)(0, we have essentially

E,=h, exp(i(k„o+~E+)s5 (42)

at a distance s))1/Im(AE ). Similarly, for the back-
ward-traveling Stokes wave, we have, with k„',o.,&0,

E,~h, expLi(k„'+DE+)(s L)j—
at a distance

~

s—L ~))1/Im(EE ).

(43)

If only the first-order term in Eq. (41) is taken, we
see immediately that hE+ agrees with the Raman sus-
ceptibility in Eq. (2). This proves that the approxima-
tion in Sec. II is valid if the vibrational wave is highly
damped. To this approximation, the backward-traveling
wave has exactly the same gain constant as the forward-
traveling wave if the k, dependence in 1 can be neglected.
However, on the basis of a general consideration of the
available volume in the momentum space for the 6nal
phonon state, one would expect I'(k„)= I'e+Ck, ' with
C)0. A phonon with a wave vector ki+k, is slightly
more damped than a phonon with kz —k, . A difference
of a few percent in the gain should be sufhcient to give
a large forward-backward ratio of intensities since the
total power amplification usually observed is of the
order of e" e".This forward-backward ratio depends
exponentially on the laser intensity. If the second-order
term in Eq. (41) is taken into account, the forward-
traveling wave has an additional gain per centimeter of

sustained oscillation is not reached, one can normally
treat the forward and backward waves in the medium
separately. Here, in the text, we assume that the re-
Qection coeKcients are very small so that the feedback
can be neglected. The calculation can be extended to
the case of multiple reQections in the manner indicated.

Assume

~

D*/2k„g'p['))(47rcd 9~'~E[~'/c'pk 'k ')

or at resonance

I'»(g./k. *')(2Pk-"/~ )
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g, 'P(k„,') f/4oo I'f and the backward traveling wave has
an additional attenuation of g,2P(k»o) b/44o„l'b. This also
leads to a forward-backward asymmetry depending ex-

ponentially on the square of the laser intensity. The
ratio of this second-order gain to the first-order gain is

g,P(k„,o)b/24o„l', which is of the order of g,/(k„,')b if
P(k„,')b2 24o„l'. This would be too small to give

any appreciable forward-backward asymmetry if

g,«(k„,o) b/100
I.et ho be the amplitude of the incoming wave at ~„

and T and T' be the transmitting coefficients of the
Stokes wave from the surrounding into the medium and
from the medium into the surrounding, respectively.
Then, if the medium has a length L with L))4o„i'/Pk„,o,

we have a Stokes amplitude of SoTT' exp[1m(AE+)t]
emerging from the medium after a single traversal acrcss
the medium. In the absence of an incoming wave, the
Stokes intensity is built up from noise or the zero-point
Ructuations. The noise photon density per steradian in
Lb= c cps at X= 6943 A is 10' photons /cm'. I» th. e case
of Raman lasers, the oscillation will start from noise
when the Barkhausen condition is satisfied.

R,R, exp[i2k, .'+i(AE —&R'b) $d = 1, (44)

where E~ and R2 are complex reflection coefficients of
the two mirrors, d is the length of the cell, and AEf and
d,Eb are given in Eq. (37) for forward and backward
traveling Stokes waves. The real and imaginary parts
of Eq. (44) determine the threshold value for

I
Ei

I

' and

the frequency of oscillation. For the rather broad
natural Raman lines, the frequency is essentially deter-
mined by the mirror separation d. If the Raman cavity
is inside the cavity of the laser, then two oscillation con-

ditions, for co& and ~„respectively, should be satisfied
simultaneously. The phase of the Stokes wave is not
known a priori. As the wave builds up, and is fed back

by refl.ection, a definite but unknown phase is estab-
lished. Through multiple reflections in the cavity, the
Stokes wave will finally deplete the laser power and

reach th, e point of saturation.
The large damping of the vibrational wave leads to

the Raman susceptibility of Eqs. (7) or (21).In general,

Xa, ,„
is a tensor. For isotropic media, however, it has

only two independent elements. The nonlinear polariza-
tion at the Stokes frequency takes the form

(P NL) .—Z(p NL) —X...,(Pie) .(p,) (Qi)

x",,(&4*)'(~.) (~4)t (45)

The first term imposes no restriction on the polarization
of E„butthe second term requires E, parallel to Ei.
Experiments"" have shown that the Stokes wave is

almost completely polarized in the direction of polariza-
tion of Ei. This suggests that X,,;; must be smaller than

X;@;.Even a difference of 50% or less between them can

'4 R. W. Terhune (to be published)."G. Bret and G. Mayerz Compt. Rend. 258, 3265 (1964).

cause complete polarization of the experimentally ob-
served intensity, since the p's occur in the exponent of
the gain factor.

The Brillouin scattering is closely analogous to the
Raman scattering except that the dispersion of the
acoustic waves which take over the role of optical
phonon waves in the Raman effect, is normal. The
coupled wave equations take the form

c.v2A~+(oi 'p —i24o.pl') A*=+2 Ete Eb,
V)&(V)& Eb) —( ebro'b/ 'c) Eb=(42»4ob /c')X*EiA*, (46)

where
x=ik y,

Et ——8i exp[i(ki r—4oit) j,
4Oi = 4O b+4O~ ~

The solution is again obtained in the form of waves,

Eb ——Sb exp[i(kb r—4obt)7, kb=kb'+ikb"

A= g exp[i(k. r—4o.t)j, k.=k.'+ik.". (47)

Ei, Eb, and A being all linearly polarized and k, ' and
kb' satisfying the matching condition k, '+kb' ——ki. Since
the acoustic frequency is very small compared to the
light frequency,

I
kb'I =

I
ki I. This leads to the Brillouin

relation for light scattered at an angle 0 with the wave
vector ki.

2ki sin(0/2) =k.
or

4o, = 2ooi(n/c) sin(e/2),

where (r/c) is the ratio of the phase velocities of sound
and light in the medium. Therefore, the maximum fre-
quency shift in the Brillouin scattering is in the back-
ward direction.

The wave equations can be solved in complete analogy
to the case of Raman scattering. We simply make the
following correspondence between Eqs. (31) and (46):

P ~ Q /p
' k 0 2 —

(4o
2

4o
0 2)/P ~ k 0 2 4o 0 2 p/C

Q ~ p '~ oo I ~4o I and )4'~l)zl'ip'"

When the acoustic wave is highly damped such that
r»[4~~b'I) I'IEil'/copk»ok ojin the gain per unit
length of the Brillouin scattered wave at resonance is, to
the first order,

I
AK

I
2p»4okbI—Ei

I

'/4o„I'c'kbz p cxb,

which is in complete agreement with the Brillouin sus-
ceptibility in Eq. (11).The amplitude ratio

I
Eb/A

I
is

2oo,pI'/Eipke In crystalzs and fluids at room tempera. —

ture, the acoustic damping is much larger than the
damping of light waves e~ in a transparent medium. A
typical attenuation coeKcient for an ultrasonic wave at
300'K is 0, =400 cm ' at 10" cps. e increases as the
square of the frequency. The light attenuation is
+~&&0.1 cm . One may thus expect the above approxi-
mation to be valid. However, as the temperature is
lowered, n, may gradually reduce to a small value com-
parable to nb. Then the exact solution of Eq. (46)
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must be used.

aZ =+-', i( n, —
2k„'C/

pD* ) 4s~ 'p'k ')Eg)2-'/'

2 E 2k„'C,) c'C.k . kg,"
D*=co,'—(C,/p)k, "—i2a), I"

(49)

which corresponds to waves with mixed light and
acoustic character.

The stimulated Brillouin eRect has been observed by
Chiao, Townes, and StoicheR" in quartz and sapphire.
The backward scattered light, which has the maximum
frequency shift and probably the lowest threshold be-
cause of the longer path length of interaction with the
laser beam, was detected. A fraction of &o,/Mg of the
laser power is converted into ultrasonic power and then
into heat by a damping mechanism. Immediately above
threshold, the laser power is depleted and converted to
the Brillouin shifted frequency (see Sec. VI). This limits
other processes with higher threshold. The nonlinear
nature of the problem is such that only a few processes
with the lowest threshold will go. The Brillouin scatter-
ing is in competition with the Raman scattering. It is
noteworthy in this respect that quartz and sapphire
have not shown the stimulated Raman effect, while
calcite which exhibits the latter eRect does not show
stimulated Brillouin scattering. However, it is also
possible that stimulated Raman and Brillouin eRects
appear simultaneously because of the multimode struc-
ture of the laser beam.

The stimulated Raman and Brillouin eRects are in
close analogy to the process of parametric down con-
version. In the latter case, the phonon wave equation is
replaced by another em wave equation. The pump field
is at cog. The two coupled waves are at the signal fre-
quency co, and at the idler frequency ~;, with cot=&a,+co;,
and kt ——k,'+k . With proper substitution of the
physical quantities, all formulas remain vaBd in this
case. In particular, when the damping of the idler wave
is much larger than that of the signal wave, and if the
latter is suKciently small, there will always be gain in
the signal wave, even though the other wave is strongly
attenuated. The amplified wave has almost pure co,

character. A wave at ~; with much smaller amplitude
is however dragged along.

V. COUPLING BETWEEN STOKES AND
ANTE-STOKES WAVES

In the last section, we have deliberately assumed the
absence of anti-Stokes waves. The real situation is how-
ever that the anti-Stokes wave is always present and
coupled to the Stokes and vibrational waves. Even in a
Raman laser, a small amount of anti-Stokes wave is
always dragged along with the Stokes wave in the

6g 8 4x' 8
V'E.—— E,= ——{(x,+x—Na)

~
E/ (

'E,
c2 /f2 c2 A)2

+p(x, x *)'/ +x ]E,'E *),
8 4x'

V'E *— E*=———{L(x *x )»'+x„aj
c2 f32 c2 c)P

XEl E +(x +xNa) ~E$~ E j (50)

where the laser field is assumed to be constant and
described by E&= 8& expLi(k&. r—co&t)j.

The plane boundary at a= 0 requires the solution to
be in the form of plane waves with constant amplitudes
in planes parallel to the boundary.

E,= 8, exp(ik„x+ik,„y)exp(ik„s'—i&a,t),
(51)E.= 8.exp(ik. ,x+ik.„y)e px(i .k,s i(o.t), —

with k,+k,=2k' and ~,+co,= 2&v/. Substitution of these
expressions into the wave equations reduces the problem
to an eigenvalue equation, which is quartic in k„,if
k„,k,„,and co, are prescribed. The problem is to deter-
mine how the gain, signified by k„",varies as a function
of the frequency co„and the direction of the outgoing
wave, determined by (k„'+k,„')'/'.

Introduce the new notation

(k ')'=
(k o)2—

68 008 C

6~ CO~ C

(k 02 k 2 k 2)l/2

(k 02 k 2 k 2)1/2

= {k~' '—(2k/, —k8,)'—(2k) —k8 )')'" (52)

2k),—&,. —&.. «&...
(o,'e," 2/'cd
(o 'e."/2c'k. ,~.

forward direction. For certain directions, the coupling
between these waves appears to be very strong, and the
assumption of the absence of anti-Stokes waves breaks
down. In general, one would think that waves at the
vibrational frequency co„the laser frequency ~&, and
combination frequencies co~~eco„should be all coupled
together. Under certain conditions discussed in the next
section, these higher order Stokes and anti-Stokes waves
may be omitted. The problem can be further simplified
by assuming highly damped phonon waves. The ap-
proximation in Sec. II can be used and the wave equa-
tion at ~, can thus be eliminated.

The generation or amplification of waves at co, and
~, is obtained from the solution of wave equations (26).
We assume that the medium is isotropic and that all
waves are polarized in the same direction. The non-
resonant susceptibilities are now taken into account, but
their dispersion may be ignored. The coupled-wave
equations can be written in the form,



A 1798 Y. R. SHEN AND N. BLOEMBERGEN

The geometric relations of the vectors are shown in Fig. 5. The following quartic equation results

2k„"(AK—in,)+(hK)' —(4n (v '/c')(X, +X„R)I E,
I
', —(4'~, '/c') [(X,X *)' '+X„a]EP

, =0. (53)—(47rMg2/c )[(X X *) ~ yXNa]Ei* 2k ~(»—AKyja )+.(»—DK) (4irM—/c )(X *+XNR)
I
E/I

We are interested in the solution I AKI«k„.For this purpose, we can drop the terms (AK)' and (Ak AK—)'~

and reduce the above determinant into a quadratic equation. It is then equivalent to writing the amplitude
equations. "

dE, '/ds+n, E,'=i(2m) /c'k ){(X+XNalhi'I'E '+[(X X *) '+XNa]Fi' E,'+e'&~ "~'},

dE, '*/dh+e, E,'*=—i(2~&v '/c'k ){[(XX *)' '+XN@]Ei'*'E,'e '&~"&'+(X +XNa) IEi'I 'E '*} (54)

where
E,'= h, exp[i(AK)s],

E.'*= h.*exp[i(AK)s —Z(»)s],

ksx

FyG. 5. General relationship between the wave vectors of Stokes,
anti-Stokes, and laser waves, as stated in Eq. (52).

36 The degeneracy will be lifted if the dispersions in cx and p are
not neglected.

The two roots of the quadratic equation can of course be
written down explicitly. The situation where n, n, =o.,
and where the Raman dispersion effects may b ignored,
X,u, '/k„~X,ar '/k„, gives some simplification. The
two roots are then

AK = -,'»+in, .a {4(»)' —(2'(o, '/c'k„)
x(x +x») IEil'»}'" (55)

I et us hrst consider the case Ak =0, i.e., the waves are
in the linear matching direction. The two roots are
degenerate, DE=in„."The amplitudes of the waves
are given byi6

E.'= [h.o+l~(h«+ h.o*)s) exp( —n,.s),
L',*=[h,o*—X(h,o+ h,o*)z] exp( —n, s), (56)

) =Z(2~co, '/c~k„")(XNa) I
Ei

I
2,

the constants 8,0 and 8,0* being the boundary values
at a=0. This is the usual parametric generation of a
combination frequency, if two light waves are incident
on a nonlinear medium. Equations (56) show that E,
initially increases with s, in a parametric fashion, but
eventually decreases. This intensity growth of the anti-
Stokes wave, initially quadratic in s, is quite weak com-
pared to the observed exponential gain that will be
shown to exist for Ak/0. This exponential process will

always dominate in the amplification of anti-Stokes

radiation. It should be noted that Eqs. (56) do not
describe correctly the generation of anti-Stokes radia-
tion from noise, since E,, cannot decrease below the noise
level. A scattering mechanism wouM be necessary to
provide a value of E, above the noise level. The com-
bination of scattering of E, and parametric generation
of E, is too weak to account for the observed anti-Stokes
intensity. This unexpected result comes about because
the positive work done on one part of the normal mode
near or, is exactly compensated by the negative work
done on the other part near co,. This situation is well
known in parametric ampli6er theory, where no gain
can be obtained at co, =co~—co, if the other side band at
~i+a&, is not suppressed. The observed intensity can be
explained by a process with exponential gain at the
anti-Stokes frequency which occurs for 6k@0.

If »))(2~co,'/c'k„~)x.
I
Ei

I
', Eq. (55) becomes

hK, = in..+ (2m', '/c'k„)(X,+XN„)
I
E,

I
'+

AK =in„+6k (2m'), %'k„—)
x(X.+XNa) I«I'+" . (57)

The 6rst root AK, corresponds to a wave with almost
pure Stokes character, the amplitude ratio being
given by

I
E /E

I

= (2~~ '/"k-")
I

x +x»
I I « I

'/»«1
The imaginary part of AE, is previsely the Stokes gain
obtained previously. The other root hE, corresponds to
an almost pure anti-Stokes wave which is always
attenuated.

For small Ak, i.e., in the vicinity of the linear phase-
matched direction, the coupling between Stokes and
anti-Stokes waves becomes quite strong. The general
solution (55) must be used. . One root AKi signi6es gain,
while the other, 4E&, gives loss. The waves are given by

E,=Ci, exp[i(k„yhKi)s]+Cg, exp[i(k„™+AK2)s),
E,*=Ci, exp[—i(k„+»—AKi)s)

+C,.exp[ i(k.,"+» —AKg)s), (59—)
where

c,./c„=(i~K,+~,.—~)/~,
C,./C„=(ihK2+ u,.—X)/X,

C„=j[(ihKg+u, .—li) h, o
—Xh 0*]/(AKi —AK2),

c„=—i[(iaK,+~,.—x)h„—ah. ,*]/(~K,—nK, ) .
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8,0 and 8,0* being the boundary values of E, and
E * at a=0.

We are particularly interested in the part which shows
exponential gain for the waves. The gain coe%cient
Im(AE~) and the wave amplitudes iE, i

and iE,*~ are
functions of both the direction of the outgoing wave and
its frequency offset from exact resonance. The deviation
from the direction of linear momentum matching is
determined by Ak through the vector diagram in Fig. 5.
This quantity can be normalized by division by the
Stokes power gain per unit length g, =(4~~,'/c'k„)
&& iX,"[~E&~'. The frequency offset Aco=cu& —cu, —co.'
may be normalized by division by the damping constant
or the half-linewidth of the vibrational level I'. A choice
for the nonresonant part of the susceptibility is made
XNa ——0.&

i
X,"~, . A machine calculation then gives the

gain constant hE. For fixed her, a typical curve of
I, ~E, i' versus LS is shown in Fig. 6. It shows a dip
around 6k=0 and two peaks at the sides. The dip
corresponds to no generation or amplification of Stokes
and anti-Stokes waves in the momentum matching
direction. As A~ varies from positive to negative, the
left peak first increases, reaches a maximum at some
positive Ace, and then decreases rapidly to small values
as des becomes more and more negative. The right peak,
however, first increases rapidly, reaches the maximum at
some negative d,co, and then decreases rather slowly.
The two peaks are about at the same height when
a~/r=o. I.

The spectral distribution and the angular distribution
of the anti-Stokes intensity are obtained from partial
integration of iE, ~' over LB and her, respectively. They
can be seen roughly from Figs. 7 and 8. In Fig. 7 the
anti-Stokes intensity I, is plotted against Acr, the
momentum mismatch Ak being chosen to maximize I,
for each value of h~. In Fig. 8, the anti-Stokes intensity
I, is maximized by Ace for each value of Ak and plotted
against Ak. The corresponding curve of the gain coeffi-
cient

i
ImhE~

~

versus Ak is given in Fig. 9. Because of
the presence of XNH, , the curves appear to be asymmetric.
The optimum anti-Stokes intensity occurs at hk/g, =2
and —h~/I'=0. 25 —0.30 in our examples. The wave
direction corresponding to a given Ak is found from
Eq. (40) and Fig. 5. The deviation of the direction of
optimum gain from the direction 00 for perfect linear
momentum matching is thus determined. Corresponding
to this direction 00, the dip in the gain curve gives rise
to a dark ring in the directional intensity pattern of the
Stokes radiation. There should be a bright ring for the
anti-Stokes radiation in a direction with an offset from
the phase-matched direction. Within the sharp bright
ring, there should also be a dark ring corresponding to
to the dip at the linear phase-matched direction. This,
however, may not be seen in the real experiments be-
cause of the geometric limitation and the photographic
sensitivity.

A small fraction of the intensity in any direction

should be at the anti-Stokes frequency. The ratio of the
intensities of coupled Stokes and anti-Stokes radiation
is given in Eq. (59). It should be emphasized that these
results are derived for the condition that the laser field
can be considered as a constant parameter and is not
depleted. This condition is not satis6ed in the usual
experiments on coherent Raman generation. The satura-
tion effect will be dealt with in the following section. A
comparison with the experimental results is postponed
till Sec. IX.

We have simplified the problem by assuming that the
vibrational wave is highly damped. More rigorously, we
should have solved the three coupled wave equations
exactly, two for the light waves at ~, and co, and one
for the vibrational wave at ~,. In the case of polar
crystals treated by Loudon, '4 we have also wave equa-
tions for the em wave at ~, . Then the most rigorous way
of solving the problem is to solve all the coupled wave
equations together. The approximatiorn method, is how-
ever, to assume that the em wave and the vibrational
wave at ~, are tightly coupled and the resulting mixed
wave highly damped. Only the coupled wave equations
at ~, and co, are thus left to be solved.

The above discussion is not restricted to light waves
and acoustic waves. The interaction between light
waves and spin waves, and between electromagnetic
waves and electron density and velocity waves, could
be treated along similar lines. 37 3

80--

Power Gain in db

~

I(m)
~m)

XNR'0. 1lXsimgx

o, = a+t~'ik c') iEgi~

80--

10—

--40

I I l

-20 -$0 -5 0 5 $0 15 h, k/gs

Fzo. 6. A typical curve of anti-Stokes intensity versus the
momentum mismatch hk for axed frequency offset hem. All the
quantities are properly normalized.

"P.K. Tien and H. Suhl, Proc. IRK 46, /00 (1958).' I. R. Pierce, Travelling N'ave Tubes (D. Van Nostrand
Company, Princeton, New Jersey, 1950).
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form

where

dP1/ds = —X0P,1P1—p0P1,

dPsl/ds= &lPslP1 ltl PslPs2 PlPsl y

dPss/da= A2PslPs2 l12 Ps2Ps3 P2Ps2 1

y0 ——162r34012X,1"/csk1,

Xl = (40sl k 1/401 ks1) ~0 s

ltl = (40sl kl/ 4P0k ls)(~s2 /Xsl )4 ~

F12—(00s2 kl/40l ks2) (~s2 /~sl )~0 y

)„'=(40, 2'k&/001'k. 2)(X, 3 /X 1')&o, «c.

(60)
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FIG. /. Anti-Stokes intensity versus the frequency oGset Ace,
(normalized by the linewidth I'), the linear momentum mismatch
Ak being chosen to maximize the intensity for each value of Ace.

The asymmetry is due to the nonresonant part XNR=0. 1i X,"i

VI. THE SATURATION EFFECT

In the stimulated Raman e&ect, the laser pump field

is the energy source. Through nonlinear coupling among
waves, its energy is transferred to the Raman radiation
and the phonon wave. It is correct to say that the laser
field is approximately a constant only when the Raman
radiation is weak. The Raman radiation first increases
exponentially and the nonlinear coupling between the
waves increases proportionally. When the Raman in-

tensity is sufficiently high, the nonlinear coupling also
becomes so large that the laser power is now drained
into Raman radiation at an extremely fast rate, and
would be completely converted if the coupling always
existed.

The Raman radiation can in turn act as a source in

generating higher order Stokes and anti-Stokes radia-
tion. In principle, all waves at frequencies co&, or, and
or~&e~„are coupled at the same time. The complete
set of coupled-wave equations must be solved. The wave
equation at cv, can be eliminated because the wave is

highly damped, the energy of the optical phonon wave

being converted into heat through damping. In the
energy consideration, the anti-Stokes waves can also be
neglected, since they are highly directional. We are
therefore left with a set of coupled-wave equations at
the Stokes and laser frequencies only.

To the degree of approximation that the Stokes
waves are assumed all propagating in the s direction, the
set of coupled energy equations can be written in the

Power Gain in db

I
I(~a)

)

-320 0( ')
XNR = O.i!XSI

- -80

FIG. 8. Anti-StokeS
intensity versus the
linear momentum mis-
match nk (normaiized
by the Stokes power
gain g,) the frequency
offset Ace being chosen
to maximize the in-
tensity for each value
of Ak. The asymmetry
is due to

XNR=0 1 its imsx

I l I

- i5 -i0 -5 0
i 1
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X,&", X,2", X,3".. are the resonant Raman suscepti-
bilities for 6rst-order, second-order, third-order,
Stokes waves, respectively; P's and P's are the power
and loss coefficients for these waves.

We shall assume that the fifth and higher order Stokes
waves are suppressed, and that the Stokes waves are
built up from noise. The set of five equations is then
solved by machine calculation. The case of nitrobenzene
with boundary conditions P, l(0)/P&(0)=P, 2(0)/Pl(0)
=P.3(0)/P&(0) =P,4(0)/Pl(0) =3.6X10 " is chosen as
an example. The result is shown in Fig. 9, where the
powers P's are normalized by Pl(0), the loss coeKcient
p's normalized by l10P&(0), and the distance s is replaced
by the dimensionless one Z=X0P&(0)s.

The result of Fig. 10 is rather unexpected. At any
fixed distance s, there are at most two waves with ap-
preciable intensity. All the other waves are smaller by
several orders of magnitude. Except for some narrow
overlapping regions, there is essentially only one single
wave present. Had it not been for the presence of loss
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7r(uP/k ps)IELI

.1(Xmoxl

If (1/k, ')(B'q /Bz')«Bq, /Bz and (1/k, ')(B'p /Bz')
«Bq /Bs we can use the approximation method similar
to the WEB method. When the notation of Eq. (52)
is used, the determinantal equation (53) is obtained
with hk replaced by (Bq»/Bz) where Bq,/Bz=Bp, /Bz—k„.Since j Bp~/Bz j&&k,.", we get

I

-4
I

-2
MOMENTUM MISMATCH —hk/g

I
S
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FIG. 9. The Stokes power gain as a function of the normalized
linear momentum mismatch nk/g, in the s direction, the frequency
onset Ace being chosen to maxiinize the ain. The asymmetry is due
to the nonresonant part xNn=0. 1 (x," ~~.

factors P, the number of photons would always remain
constant. In the overlapping regions, the intensity of
one wave decreases rapidly, converting most of its power
to the next higher order Stokes wave and the remaining
part to phonons. Therefore, in the practical sense, we
can speak of the laser power as constant in a definite
region. Then as s increases further, it is suddenly de-
pleted completely, whereas the erst Stokes power builds
up to its maximum. The first Stokes power remains
constant for a certain distance and then converts again
to second Stokes power, and so on. Finally, if s is suK-
ciently large, most of the laser power would be con-
verted into phonons or heat.

This shows that our discussion in the last section is
approximately valid, as long as the laser power is not
depleted very much. In that case, the laser power can
be regarded as a constant and the higher order Raman
radiation as absent. %e have however assumed that the
laser beam has a single mode and a uniform intensity
over the whole cross section. In practice, the assumption
can hardly be fulfi11ed. This may complicate the problem
greatly, especially if the mode structure and the in-
tensity distribution of the laser beam are unknown. For
diferent modes with diferent intensities, the normalized
distance Z is diGerent, so that when the laser beam is
strong, Stokes waves of several orders can be generated
simultaneously at the same s. That the laser intensity
can only be uniform over a smal1. cross section also makes
our in6nite plane-wave analysis at most a crude approxi-
mation to the real experiments reported so far.

We now discuss how the amp1ification of coupled
Stokes and anti-Stokes waves is changed when the laser
power is depleted. We can simplify the problem by
assuming that the laser intensity varies as

iEg['= ATE)(0) i', 0&s&sp,
= /Et(0) )' exp( —gz), z&zs. (61)

Then take the solution of Eq. (38) to be of the form

E,= h, exp(ik„x+ik,„y)exp| iy, (z)—iot, tj,
E.*=8,*exp( —ik.,x—ik.„y)expL —iz.*(z)+ior.tj.

E,=Ct, exp$ik„z+iq,+(z)j
+Cs, expLik„"z+iq, (s)],

E,*=Ct, exp) —ik„z+iqr+(z)—i(hk)zf
+Cs. expt —ik.,"z—i(hk)z+iy, (z)j.

(62)

Here, p&+ has a negative imaginary part which signifies
gain. It is readily seen that

( E, (
and

( E, (
will first in-

crease exponentially, and then level oG as the laser
power is depleted exponentially. We still have ~E, ~,

~
E,~, and y&(z) as functions of Ak and d,co. The optimum

intensity of ~E,
~

occurs at some smaller value of LB
than that found in the last section.

The Stokes and anti-Stokes waves can of course act
as sources in generating higher order Raman radiation
as we shall now discuss.

VII. HIGHER ORDER RAMAN RADIATION

Raman radiation of many orders can be coupled
together with the laser field through the nonlinear
coupling connected by the fourth-rank susceptibility
tensors. The latter can of course be derived either
macroscopically as in Sec. II or microscopically as in
Sec. III.

The problem of parametric generation of higher order
Raman radiation is very complicated, because there are
too many waves being coupled at the same time. If we

0 Pt ~pe(0)

.8-
Pslt'P((o)

.6-

.2-

I

20 40 80 l20 160 200 240 280 320 360 400

Z= ) 0Pf(o)z

Fn. 10. The saturation e8ect of a single-mode laser beam of
infinite extent. The intensities of the various orders of Stokes
waves are normalized by the incoming laser intensity. The distance
is also normalized to a dimensionless one Z=XsP~(0)s.

pr(z) = (-,'hk+iu, .)zw f-', (hk')
0

—(27rcu '/c'k, g™}(xg+xNn)
~
EE

~
'hk) '~'Cz

which can be integrated easily when the expression of
~E~ ~' is substituted. The solution now takes the form
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assume that the laser Geld has a single mode and uniform
intensity distribution over large cross section, the prob-
lem is somewhat simplified in principle. As the example
in Fig. 10 sh, ows, the nonlinear nature of the problem is
that two waves can be tightly coupled with high rate of
energy transfer between them only when both have
appreciable intensities. Moreover, the overlapping
regions of tight coupling are rather narrow. The first
approximation is therefore to regard these curves in
Fig. 10 as square blocks, e.g. ,

E,„=E,„'for s &s&s +g
=0 otherwise.

Th.is simplification suggests that we can solve the
problem in steps.

First, waves at co, and co a,re generated to saturation
with the laser power completely depeleted. Then, the
~, and co waves appear as sources to generate the
second-order Raman radiation co,2 and or,2, and the co~

wave in the scattered direction. The latter process is
described by the set of wave equations

V'E, o+ (e,ooo,o'/c') E,o

(«~—,oo/c') {&,Eg*E,E,+~oF,E(E.*

+&o(Z E.)(E E.*)E.o+~4E.E.E.,*},

V E,o@+(e,o+&o,o /c )E,o+

= —(4m'. o'/c') {X,R.'Eg*E,+KoE(E.*E.'
+~,R,*E,*E.,+&o(P E,)(g E.*)E.o*} (63)

and similar equations for E~'s. The linear momentum
matching conditions for the various terms are

k,o+k, o k o+.k o'

k.o+k, oo ——k,o+kP,
k,o+k,oo= k, '+k, oo',

k,oo+k, oo =k, '+k, ',
k, '+k.o' ——k.'+k(',
k('+k.o' ——k.'+k.',
k.oak.oo= l.'+ k.oo'.

(64)

As shown in Secs. IV and V, the nonlinear coupling
terms will change the wave vector k' to k, and the maxi-
mum gain may occur in a direction sligh. tly deviated
from the linear phase-matched direction. With E, and
E, highly directional, many sharp rings of E,2 and E 2

will be created.
In real experiments, the laser beam may contain

many modes, and not all the laser power is depleted.
Equation (63) will then describe the parametric genera-
tion of E,2 and E 2 through the interaction of the waves
at coE, ~„andco,. The laser beam is in the forward direc-
tion. The first-order Stokes wave is emitted in a rela-

tively narrow aperture around the forward-backward
direction, since there the interaction length for amplifi-
cation is maximum for a laser beam with a cross section
smaller than the cell length. The first-order anti-Stokes
wave is generated near the phase-matched direction as
we discussed earlier. If ~E.~&&~8, ~&&~X, ~, then to the
Grst-order approximation the X4, X7, and X~ terms in
Eq. (63) can be neglected. The xo term is responsible for
the forward-backward peaks in the second-order Stokes
intensity. The X& and X6 terms could only be phase
matched for a direction of E~ off axis. These processes
are clearly not likely to occur, since no initial laser pump
intensity is available off axis. No E& rings have ever been
observed. The X& term can also be phase matched by
E~ in the forward direction and E, in the off-axis direc-
tions. This would give rise to a diffuse, broad ring of
E,2 and would be hard to detect experimentally. Thus,
the conclusion of Terhune' and Garmire, Pardarese, and
Townes" is confirmed that the observed E,2 and E,2

rings arise from the X2 and X& terms, respectively.
When Raman components of many orders are simul-

taneously present with appreciable intensities, the situa-
tion becomes very complicated, since all waves are
tightly coupled together. While approximation methods
may be used to discuss the problem qualitatively, the
rigorous and quantitative solution can only be obtained
by solving the complete set of coupled wave equations.

VIII. MULTIMODE STRUCTURE AND
FLUCTUATION PHENOMENA

Nonlinear phenomena should be described in a sto-
chastic sense, as the incident laser field is usually com-
posed of many modes, whose amplitude and phases are
random variables. They are not necessarily statistically
independent. The nonlinear processes in the laser
medium may couple different modes and may establish
partial or complete correlation between them. For a
ruby laser, where different modes make use predomi-
nantly of different excited ions, the complex ampli-
tudes can be considered as statistically independent.
Ducuing and Bloembergen39 have considered the multi-
rnode and fluctuation effect in the second harmonic
generation.

In the case of Raman effect, the problem is much
more complicated. Each individual laser mode generates
a corresponding mode of Raman radiation. The many
Raman modes are also coupled together through the
Raman processes. As a result, the number of waves
involved in the coupling scheme is greatly increased.

Let us consider as an example the generation of pure
Stokes waves by a multimode laser beam. The highly
dampled vibrational wave with wave vector k, has the
folm

Q„*(k„)= (—z/2~„D*)P E.*(k„)E. ,(k. .), (63)
n, n'

J. Ducuing and N. Bloembergen, Phys. Rev, 133, A1493
(&9u4).
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XE„,*(k.,)E„-,(k.-,),
where k„,=k„.i+k.".—k i. For a large number of n,
the solution of Eq. (66) is quite dificult. We can how-
ever, from direct inspection of the equations, derive the
following general conclusions.

(1) If E„i'scan be taken as constants, the solution
of E, will have the form

R.,=+.4„„exp/i(k.'+ik„„"),r—ioi,t]. (67)

(2) The amplitudes
~
8„,

~

will have the same rate of
increase with distance, if all laser modes are of nearly
the same intensity. If some laser modes, say E &, are
much more intense, then the corresponding Stokes
modes E, will have much higher rate of increase in
intensity than the others and get saturated much earlier.
The Stokes modes corresponding to small E & may have
their intensities increase at a rate predominantly deter-
mined by the nonlinear coupling terms E„&E&*E, in
the equations for E„,.

(3) The detector to detect the Stokes waves will see a
signal proportional to"

1 T

T
fP E„,['dt,

T being the characteristic time of the detector. It is,
however, hard to estimate the fluctuations in the signal,
since both A and k„ in Eq. (67) depend strongly on
the randomness of E„i's.

(4) The generation and amplification of the Stokes
waves will deplete the power in laser modes. The laser
mode with the strongest intensity will usually be
depleted 6rst.

(5) When the power in stronger laser modes is de-
pleted, Eqs. (66) no longer represent the true situation.
The Stokes wave in one mode will interact strongly with
the laser wave in other modes to generate higher order
Raman radiation. This higher order Raman radiation
will then join the group of coupled waves. More
generally, the presence of anti-Stokes waves of many
modes will complicate the problem even more.

(6) Because of the nature of exponential gain, weak

where k,+k„„=k„i.The corresponding set of coupled
wave equations for m modes of laser and Stokes waves
is, neglecting dispersion,

V'R„,(k„,)+(te, 'e, /c') R,(k,)
= —4(s-u, '/c')X, P E„.,'(k„,,)

~l ~II ~1ll
t

X E.-,(k„",)E„-i(k. "i), (66)

~sR. ,(k-,)+(-, ei/") E. i(k. i)

= —(47roiis/c')X, * Q E -i(k„"i)

modes have far less ampli6cation than the strong ones.
The Raman radiation would apparently have fewer
modes,

IX. COMPARISON WITH EXPERIMENTS

The experiments reported so far were far from the
ideal situation. The ruby laser beams were focused, non-
uniform in intensity distribution, and of multimode
structure. Moreover, the characteristics of the beams
vary from shot to shot. It is therefore dificult to com-
pare quantitatively the theoretical results with the
experimental 6ndings except for some special cases.

The resonant Raman susceptibility is given in Eq.
(23). As a typical example, I'=4.75X10" sec ' (corre-
sponding to a half Ra,ma, n linewidth of 2.5 cm '),
%=10" cm ', ni ——10 " esu, a.nd rt=1/5, we find
Xg"=8&(10 "esu. For a dense medium with a refrac-
tive index of m=1.58, a Lorentz factor" I. = (ni'+2)'
X(rt, '+2)'/81~5 should be applied to Xa" which then
becomes 4& 10 "esu. McClung and YVeiner" measured
the Raman scattering cross section for the 992 cm '
benzene liquid line and. found (rt'n P/100) I,= (2.1&0.5)
&&10 "cm', the Lorentz factor L,. being 4.92."For a
half linewi. dth of 2.5 cm ', one would 6nd a Raman
susceptibility X&"——4.2)&10 "esu.

The nonresonant part of the Raman susceptibility is
about an order of magnitude smaller than the resonant
part. Maker et u/. 3O measured intensity-dependent
indices of refraction at the ruby frequency in many
liquids. These are related to the fourth-rank suscepti-
bility tensor x(o&=te+&u —te), which should be of the
same order of magnitude as the nonresonant Raman
susceptibility. The values range from 8&&10—"esu for
water to 10 " esu for carbon disul6de with our ampli-
tude convention. Terhune" also measured the Stokes
susceptibility as a function of frequency in an organic
liquid by irradiating it with radiation from a Raman
laser, filled with different liquids with diferent vibra-
tional frequencies near the vibrational frequency of the
sample. He was able to reproduce a resonant curve for
X,"of the type shown in Fig. 2.

The power gain per cm of pure Stokes generation is
given by

g, =4 ~.X,"(Z,
~

/c~ (68)

For the previous example with a laser power of 100
MW/cm' corresponding to ~Ei~ =320 esu, we find

g, =0.27 cm '. Heltwarth et uL4i estimated a power gain
of 0.3 cm ' for nitrobenzene at a pump level of 100
MW/cm'.

The dispersion for the optical phonon waves in the
materials, where the stimulated Raman effect has been
observed, is very small. The difference in frequencies of
the forward and backward Stokes waves is certainly less

' F. J.McClung and R. Weiner {tobe published).
'R. W. Hellwarth, F. J. McClung, W. G. Wagner, and R.

Weiner, Bull. Am. Phys. Soc. 9, 490 {1964).
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than the linewidth. We have P(k„P)s'(2tp,I', and the
expansion of Eq. (41) is justified. The second-order term
in the equation is at least a factor g,/(k. ,p)s smaller
than the first-order term, and can be neglected. It
therefore cannot account for the forward-backward
asymmetry in the Stokes generation. This asymmetry
may be explained by the k, dependence in the damping
constant F. StoicheG' found a forward-backward in-
tensity ratio of 10:1~ Terhune" observed a ratio 2:1 in
his measurements on benzene. A difference of 5% in I'
for the two directions is enough to account for the effect,
assuming a forward gain of e20.

Apart from the dip near the phase-matched direction
with the anti-Stokes radiation, the Stokes gain would be
isotropic if the directional dependence of I' is neglected.
It is indeed possible to construct a Raman laser at an
off-angle. 4' Using a cylindrical lens to focus a laser beam,
Dennis and Tannenwald" have achieved Stokes oscilla-
tion in a cavity at right angles to the laser beam.

The Stokes oscillation in a cavity starts when the
Barkhausen condition Eq. (44) is satisfied. Assume
g~=2.7X10 s cm ' corresponding to a laser flux of
1 MW/cm'. Then, for a 10-cm Raman cell, the reflec-
tivity of the mirrors must be larger than 97.5% to
ensure oscillation. At high-power levels, e.g., an ampli-
6cation of e" in a single traversal across the cell, a
feedback of one part per billion will be sufhcient to start
the oscillation. The Raman laser action will deplete the
laser power and build up the Stokes intensity to
saturation.

The angular distribution of the 6rst-order anti-Stokes
intensity can be explained by the results of coupling-
wave analysis in Sec V. In any direction, the coupled
waves have some partial anti-Stokes character, which is
given by Eq. (59). In the forward direction, 6k=10'
cm ', the partial character ~E,/E, ~' would be 0.01%
for a power gain of 2 cm ' in nitrobenzene. Because of
the high intensity of the Stokes wave in the forward
direction, the corresponding anti-Stokes radiation is
strong enough to be detected. This has indeed been
observed by many workers. 44

Near the linear phase-matched direction, the gain
constant decreases (Fig. 8), but the partial anti-Stokes
character increases. Figure 7 shows that the anti-Stokes
intensity has an optimum for a momentum mismatch
hk =2g, . Consequently, there is a bright anti-Stokes
ring appearing at an angle very close to but slightly
larger th, an that of the exact phase-matched direction.
This has been observed by Terhune and others. ' '
Chiao and Stoiche6'0 have also reported a dark Stokes
emission ring near the phase-matched direction in
calcite. This is easily explained by the dip in the Stokes
gain as shown in Fig. 9.

42 H. Takuma and D. A. Jennings, Appl. Phys. Letters 4, 185
(1964).

4' J. H. Dermis and P. K. Tannenwald, Appl. Phys. Letters 5,
58 (1964).

~ G. H. Dieke and P. Lallemand (private communications).

The angular deviation of the anti-Stokes ring from the
linear phase-matched direction can be found from the
relations in Eq. (52), corresponding to d,k, = (k„—k„')
in the transverse momentum. We then And LB/Hp

=6k„/k„s=hk/2k,P tan'Hp. If the direction of maxi-
mum anti-Stokes intensity cocurs at Ak = 2g, for
g.=3 cm ' and Hp

——2.5', we get (6H) .„=0.03'. It
shows that to obtain good results, careful experimental
arrangements should be used.

Chiao and Stoiche6" have observed in calcite that
the experimental direction is very close to the direction
of momentum matching. The result is compatible with
our theory. Many other workers have reported different
angular patterns with deviation of 0.5' or more from
the phase-matched direction. It appears that the angular
pattern, as well as spectral distribution discussed above
is very sensitive to the distribution of the laser power
over various modes. Only very careful experimental
arrangements which approximate single mode operation,
could be used to test the theory in its present form.

For gases, the phase-matched direction is essentially
the forward direction k„'=0. The optimum anti-Stokes
intensity occurs at an angle H, = Ak, /k, P= (Ak/k, P)'~'.

For g, =4 cm ', and Ak= 2g, =8 cm ', the angle is
10 ' rad or 0.57'. The Stokes intensity should also have
a dip in the forward direction. This is presumably ob-
scured by scattering and by geometrical factors.

The saturation effect in the stimulated Raman radia-
tion is commonly observed. """ If the laser Aux

density is 1000 mW/cm', then, in a single traversal
across a 15-cm nitrobenzene cell, the Stokes gain vrould

be e4'. This means that a single photon wouM have
created 10' photons. This number is however larger
than the initial number of laser quanta in the pulse,
which is less than 10". The laser beam is exhausted
before it reaches the end of the cell. Usually, a gain of
10" will start the saturation. The first-order Raman
radiation can build up to serve as the pump for the
second-order Raman radiation, and so on. The output
power will spill over into more and more Raman com-

ponents of comparable intensities as the laser power is
increased. 4' Terhune" has repor ted measurements on
the intensities of Raman radiation of many orders. In
the real experiments, the laser power is never com-

pletely exhausted, because there are always parts of the
cross section with relatively low intensities. Th,e power
in these areas, which may often amount to more than
40%, is not converted. More than 60% of output power
at Stokes frequencies has been observed in a Raman
laser. This percentage should be higher, were it not for
the fact that the laser beam is far from a homogeneous
plane wave and has many modes. From the standpoint
of conversion, a ruby laser with a few very bright
61aments and a few very strong modes would be better
than a homogeneous cross section of many modes with

4~ H. Taituma (private communications).



THEQ RY QF STI M ULATE 0 B RI LLQUI N AN 0 RA MAN 8CATTE RI NG A 1805

the same total power. The variation of intensity of the
laser modes with time during the pulse is also important.

Higher order Stokes and anti-Stokes rings have been
observed. ' "Terhune' and Garmire et a/" have sug-
gested that these rings are generated successively. The
angular position is determined by the linear phase-
matching condition. For the eth anti-Stokes ring
k~+k, =k,+k,&„n and for the nth Stokes ring,
k&+k, &~ q&

=k,+k, .The comparison with experimental
results is beset by the same difFiculties and discrepancies
as were mentioned for the 6rst anti-Stokes case. As
pointed out in Sec. VII, the rigorous solution of the
problem should be obtained from the coupled-wave
approach, and the angular positions of the rings may
deviate slightly from the linear phase-matched direction.
The coupled-wave solution may give broadened Raman
spectra. Stoicheff20 has reported peculiar broadening of
the Stokes and anti-Stokes lines. Whenever the laser
spectrum was composed of two lines 0.8 cm ' apart, the
Raman spectra were asymmetrically broadened to as
much as 10 or 50 cm '. The broadened spectra consisted
of a series of maxima and minima with a period of about
0.8 cm '. The fact that the Stokes and anti-Stokes
waves are intense enough to couple and beat together
many times with the laser wave components may well
explain such a broadening effect. A detailed analysis has
however not yet been made. Many other workers have
observed broadened spectral distributions of the Stokes
and anti-Stokes components. They do not state whether
the spectral distribution in the laser pump is an im-
portant factor.

Experiments reported so far are not sufIiciently well
dered to provide a test of the theory, nor can they
unravel the various physical mechanisms in the stimu-
lated Raman effect. The behavior of a small signal
ampli6er rather than a high-level oscillator would be
more informative. Therefore, very thin Raman cells,
which are not capable of sustaining oscillation, should
be used. A small signal at co, or co, but large compared
to noise, is incident on the cell. The gain can be
measured, and kept below 3 dB, so that depletion of
laser power and creation of higher order Raman radia-
tion can be neglected. Ideally, one would like to have a
single-mode laser beam with uniform intensity over its
cross section. One would also like to control intensities,
polarizations, directions, and frequencies of the incident
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FIG. 11. Experimental arrangement for the measurement of
Raman susceptibilities. The Stokes gain can be determined as a
function of intensity, direction, and polarization of both laser
and Stokes beams, in a short sample call.

laser and Stokes beams independently. Such experi-
ments would then be capable of yielding reliable in-
formation on the characteristics of the Stokes and anti-
Stokes amplification. The values of Raman suscepti-
bilities could also be obtained. A possible experimental
arrangement is shown in Fig. 11.A powerful laser beam
passing through a mode selector is split, and one frac-
tion of it generates Stokes radiation in a Raman cell.
The laser light is altered out. The Stokes radiation is,
after suitable attenuation and polarization, recombined
with the other part of the laser beam in a variable direc-
tion. The two beams then traverse the thin sample cell.
The gain is measured as a function of direction, etc. The
amplification of anti-Stokes radiation near the phase-
matched direction can also be measured. Similar experi-
ments have already been carried out by Terhune, '4 and
by Bret and Mayer. "However, the laser beams used in
their experiments consisted still of many modes, and the
direction of laser and Stokes beams could not be con-
trolled independently; results are therefore subject to
large uncertainties.

X. CONCLUSION

A detailed account of the theory of stimulated Raman
and Brillouin effects is given. They are described classi-
cally as the results of coupling between the light waves
and the optical and acoustic vibrational waves. In this
framework, many of the experimental observations can
be explained at least qualitatively. However, the theory
is based on drastic simplification of the problem, and
therefore direct comparison of the theory with already
performed experiments is not possible. The details of
the theory can only be tested with further refinement of
the experiments.


