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The Ginzburg-Landau-Gorkov theory of superconducting alloys is generalized to arbitrary temperatures
and magnitudes of the gap parameter A =

~
A ( exp i y H.owever, the theory is still based on the assumption

that the integral equation for the Green's function can be solved in powers of v, = (2eA —Vip)/2m and suc-
cessively higher space derivatives of

~
A

~
and v, . The averaging over the positions of the impurities is carried

out by means of the ladder-diagram technique developed by Abrikosov and Gorkov. The results are pre-
sented in terms of the free-energy functional. The form of this functional is found to be close to that proposed
by Ginzburg-Landau if

~
A ( is close to the 8CS gap Ance (T) and varies slowly in space. A comparison of the

magnitudes of the fourth- and second-order terms in the free-energy functional shows that the local theory
is valid if: (1) (tt ( and vs vary slowly over distances $; and (2) Xs=h/2mss) h. In the "dirty" limit (l & &$e)
the length f ranges from about (lpe)'~' to (T,/T) (lee)'~' as ) A j varies from Ance(T) to zero.

1. INTRODUCTION

'HE Gorkov version" of the Ginzburg-Landau
(GL) equations' is applicable only in a very

narrow temperature region near T,. since the derivation
is based on the assumptions that the static magnetic
field and the order parameter 6 vary slowly with posi-
tion, and further, that the energy gap ~d,

~
is small

compared to T,. The Ginzburg-Landau-Gorkov (GLG)
equations for the pure superconductor have been
generalized by Werthamer' and the author' to arbitrary
temperatures and values of ~A~ between Anos(T) and
zero, but the equations are still based on the assumption
that an expansion in powers of v, = (2eA —Vlt)/2nt
(where A is the vector potential and io the phase of 6)
and successively higher space derivatives of

~
6

~
and v,

converges rapidly. A criterion for the validity of the
generalized GLG theory has been obtained by com-
paring the magnitudes of the gauge-invariant fourth-
and second-order terms in the free-energy functional. '

The purpose of this work is to determine the way in
which the generalized GLG equations are modi6ed as
the mean free path l becomes 6nite. One expects that
the equations describing the alloy have a much wider
range of applicability than those for the pure super-
conductor, since for a suKciently short mean free path l
the electrodynamics is local over the whole temperature
range. Werthamer' has solved part of the problem by
relating one of the coefFicients in the free-energy func-
tional to the current expression obtained by Abrikosov
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and Gorkov' for superconducting alloys in the London
limit.

The calculation is performed in analogy with Gorkov's
derivation of the GL equations near T. in the presence
of dilute random impurity centers. ' The essence of the
method is to average the gap equation, and the current
expression, over the position of each impurity center.
The diagram technique of Abrikosov and Gorkov' is
used to calculate such an average of an expression con-
taining several Green's functions. The main diGerence
between Gorkov's and our problem is that the norma1-
state Green's functions are replaced by Nambu matrix
Green's functions, and accordingly, scalar vertex cor-
rections by matrix vertex corrections.

We calculate also the predominant gauge invariant
contributions of the fourth order to the free energy
functional, and by comparison with the second-order
contributions we obtain the conditions for the validity
of the local theory of superconducting alloys.

2. THE DIFFERENTIAL EQUATION FOR THE GAP

In this section we are concerned with the derivation
of the differential equation for A. From the results
obtained for the pure superconductor" it is clear that
it sufFices to determine the coefFicients of V'5, A', and
h. Then the contribution proportional to V'6 has to be
divided into two parts such that one part belongs to the
term (V 2ieA)'A—, and the other to the term (V'I 6 ~s)A.

Similarly, the contribution proportional to A' has to be
divided so that one part belongs to the first term cited
above, and the other to the term LVL(V —2ieA)rg'. In
the "clean" limit the coe%cients must reduce to the
results obtained previously.

First we concentrate on the coeKcient of V'lL. For
simplicity we shall assume that 6 is real. Then we 6nd
with the help of the general method developed in Ref. 5
that this coe%cient is proportional to a quantity c which

8 For example, Chap. 7 of A. A. Abrikosov, L. P. Gorkov, and
I. E. Dzyaloshinski, IIIethods of Qnantnm Field Theory in Sta
tistical mechanics, translation by R. A. Silvermann (Prentice-Hall,
Inc. , Englewood Cliffs, New Jersey, 1963}.
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can be written as

c=+V,' d'p-', Tr(C(y —q)r&C(y+q)r&). I, p. (1)

equation

dsp/

I N(y —y') I'G(y' —q)
(2')'

Here C(y) denotes the Nambu matrix Green's function,
averaged over the positions of the impurities, i.e.,

g(p) = —(zp)+e„rs+hr )i/( o)+e„'+LE), (2)

where rp=o)r/, E=hr/, o)= (2n+1)7rP ', d is the gap
parameter at position r, r/= (1+L2r(o)'+6')'/s7 '), r is
the collision time, e„= (p'/2m) —/i, and r, are the Pauli
spin matrices. In the ladder approximation the average
of the product of two 6's occuring in Eq. (1) is deter-
mined by

XI r,+»~(y'; q)rs7C(p'+q). (4)

The quantity u(q) is the Fourier component of the
impurity potential, and e is the impurity concentration.
The matrix A is decomposed in Nambu space

A=A p1+Arri+Asrs (5)

(the rs component turns out to be zero), and accordingly
also Kq. (4). The integrations over e~' can be performed
easily in the resulting equations. One sees then im-
mediately that the equation for h.o goes over into the
equation for h.& if one sets

(C(p —q) riC(p+q)). - ~ (y q)=(~/~)/~ (p q) (6)
=g(y —q)Lri+r&(p; q)rs7C(p+q), (3)

In this way one obtains two coupled equations for h&

where the vertex correction h. satisfies the integral andh. 2 which are given by

Ai(p; q) =N1V(0)
«p'I N(y —y') I' y'«I

o)'+6'+
4r/(o)s+ 2 ') '/p my i

t'y «l—~'+ (~'+~')~i(p', q)+~l I/1s(p'; q), (7)
I mg)

/i, (p; q) =~+(o)
~Du'l~p -r') I' /v' a)'--'

'+~'+I
4~ (~s++2)1/2 &mg

(p q (~+~')fp qx
I

—
I

+ (y'; q)+( '+~')~, (p'; q) . (8)
) esp ~ keg

Here X(0) denotes the density of states at the Fermi surface, «p' is the solid angle element in the direction of
p', and p= p =p/. Inserting Kqs. (3) and (5) into Eq. (1) and carrying out the traces and integrations over e„,
one obtains

A (0)
c= PV,'

4m.

(p q)—~'+ (~'+~')/1i(p; q)+~l I/1p(p; q)
kmgi

ted=0 ~ (9)

If we carry out the differentiations with respect to q in
Eq. (9) we encounter the quantities (A.;), p, (V',A,), p,

and (7 'A.;)p p. These quantities can be determined
from Eqs. (7) and (8). In this way we obtain from Eq.
(9) the final result

2p p'1V (0)

(~2+g2) 3/2~

(10)
p (~2++2) s /2~

The quantity p&, di6ers from q in that v is replaced by
the transport collision time v&,. Note that r&, arises from
the vertex correction h.~r2 which takes into account
essentially the p-wave scattering by the impurity. In
the limit rt, ~ ~, or g&, ~ 1, the 6rst and second terms
in brackets reduce to the functions P'g and (s')d, 'P'g',
respectively, where g=g&'. The function g~ has been

introduced by Bardeen, ' and the primes denote deriva-
tives with respect to

I
DP I'.

Now we determine the coeKcient of A;A;. With the
help of the general method developed in Ref. 5 we find
that this coefFicient is proportional to a quantity a;;
which can be written as

~' =Z d'pl»(C(p) p.6(p)p 4"(p)ri)- (11)

In calculating the average of the product of three 6's
one has erst to take into account the vertex corrections
which arise from impurity interaction lines of the ladder
type "bridging" each vertex p; and p; separately, and
second to consider interaction lines "bridging" both
vertices p, and p; simultaneously. However, one recog-
nizes that the latter contribution is equivalent to a

' J. Bardeen, Rev. Mod. Phys. 34, 667 (1962l,
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p, 1 —+ p,[(1+ho)1—Airi), (12)

contribution due to interaction lines "bridging" the
vertex ri. The vertex correction at a vertex p, has been
calculated previously by Abrikosov and Gorkov. ' In
matrix notation the result is that the matrix p; 1 is
replaced by

g, (l »I') = 2
-=o [(~P)'+

I » I')'"~ ~

3 00 7r

f.(l»l') =—E—2.=
I ( e)'+ I»l')'"~"

(20)

where

&o= [&'/(oo'+&' )][-(ri/rit, ) 1)—; ~i= (ioi/&)~o (13)

For the vertex vj we find that it is replaced by

where

ri~ (1—Ai')ri+Ao'1, (14)

If one inserts the corrected vertices into Eq. (11) and
carries out the traces and the integrations over e„, one
obtains the result

xA
~' =(p'p ) .~(0)

o~ (~2++2)o/2~

vrA' 1
I1+

I
. (16)

=o (io'+ 5')'i'g„k 2g„I

Here (p,p;)ir means the average of p;p; over the Fermi
surface. In the limit g„—+ 1 the erst and second terms
inside the brackets of Eq. (16) reduce to»'g and
6'P'g', respectively.

Finally, we remark that the coefFicient of 6 in the gap
equation is the same as for the pure superconductor
since the following equality holds

The function w in Eq. (18) can be obtained by a quad-
rature from the function gr (see Ref. 6). In the limit
ri,,—+ ~ the function g, reduces to g, and f, to g'.
However, in general, f, is different from g,'.

Requiring that the functional Ii be stationary with
respect to both d* and A leads to the gap and the Max-
well equations. Since the coeKcient of A in the latter
equation determines the London penetration depth P &

of weak fields at temperature T, the following relation
must hold:

~& '=2l'r 'I»l'g (I»l') I
&-o cs (21)

where Xr,= (4m./e'/ohio) '~'. In fact, this result agrees
with that obtained formerly by Abrikosov and Gorkov.
On the other hand, Werthamer' has used this relation-
ship to determine g, from Abrikosov and Gorkov's
expression.

In the limiting case l((Po, we can easily sum the series
over e in Eqs. (19) and (20). The results are

go.i.=-("/P)[«~(l I»I)/o I»I] (22)

3 3or ri,, (1 d tanhx
flirty g direr I

& i)~pl ' =(23)
2 64 P kxdx x

For applications of the free-energy functional it is
convenient to measure lengths in units Xz and to intro-
duce reduced variables

dop', Tr (Gri) =p dop', Tr (Gr i) . (17) ip= &/Aacs i h= H/v2&„a= A/vX) z&, . (24)

3. THE FREE-ENERGY FUNCTIONAL

The results obtained in the previous section for the
coefficients of V'6, A', and 6 suKce to construct the
complete differential equation for the gap parameter.
It is also possible to construct the corresponding free-
energy functional P(h, ho, A). This follows essentially
from the fact that the coeKcient of lV in the expression
for a;; [Eq. (16))is equal to the derivative, with respect
to 52, of the coeKcient of A. The result is

(H—H.)'
F= d'r +X(0) w(l » I')

Sm

+-'. ("a)'g,(l»l') I
(~-»eA)&l'

Inserting further the expressions (22) and (23) into
Eq. (18), and making use of the relation (21) and the
equality H o/8'= —X(0)w(lhscspl'), we obtain

H,2

~dirty =
4x

1 w(xo'
I 4 I')

d'r (h —h.)'—--
2 w(xo')

«nh(-,'xol Pl)+ I
(i~-'v —ia)ip I'

I f I
«»(-', xo)

4. TERMS OF THE FOURTH ORDER

t'1 d tanhx
-~.os~i(~ '&l0 I')',

64tanh(-', xo) Ex dx x

where ir=V22e) r'H, (T) and xo= Aacs(1')P.

+ (grp)o|9of (I»—l')(/IAI')'
36

(18) In Ref. 6 we have determined the complete set of
gauge-invariant contributions of the fourth order to the
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free-energy functional of a pure superconductor. In the
case of alloys we will restrict our attention to the
contributions of the types

l (V—2ieA)'6
l

' and

l
(V —2ieA)hl' The coefficients of these terms can be

determined most easily by making use of the relation

J; &&F/8A;+. . . and the fact that the coefficient of
the contribution to j; which is proportional to A;A&A&
is equal to (apart from a numerical factor)

d PoTr(GPA oGP«p') (26)

The first contribution to Eq. (26), denoted by d@»&i&,

can be calculated by replacing all four vertices p;, p;,
po, p&, by the corrected vertices given in Eqs. (12)
and (13).

But in addition one has to consider the contributions
due to impurity interaction lines of the ladder type
which are "bridging" simultaneously either the vertices

p;, po, or po, p&. The expression for the first contribution,
denoted by d;;q~&'&, is given by

d,;oi"' = (p;pi) y(p;po) r»'(0)Z

Xi (1+~o)—» irifGL (1+»o)—»iri j}, (27)

d oyio Tr {GroA.r oG

where the vertex correction A. is determined by the
equation

do„{Gi (1+ho)—AirijG

F&o& = dorlV(0) —(vp'P)'{f yy,
i&o& (0;Ogd ) (OoO&A)*

12

+P'f*&oi"'(O*~)(Or~) (O.~)*(O&~)*), (29)

where 0= (V—2ieA), and (y=1,2)

X$(1+»o) Air& jG+Gr—oAroG) . (28)

The second contribution differs from Eq. (27) in that
(p;p&)y(p;po)y is replaced by (p;p;)y(pop&)y.

Again we express the results in terms of the cor-
responding contribution to the free-energy functional
which shall be denoted by F~4~. Ke 6nd

limit »~ 1, the functions f&o& and f&" reduce to the
results obtained in Ref. 6, while f&'& and f&'& go to zero.
However, in the limit l((to the latter functions become
predominant since they acquire one extra factor((o/l).
The results for these functions in the "dirty" limit are

fg;g,y&'&= 6(r—,y/P)'g fe, &'&= —4(7 /P)'g' (33)

The conditions for the validity of the local theory can
be obtained by comparing for instance the contribution
of the type l (V—2ieA)'hl' in Eq. (29) with the term

l
(V 2ieA)h—l' in Eq. (18).We shall denote the magni-

tude of the ratio of the coeScients of these two terms
by P. Then these conditions turn out to be (1)

g'v, v;lail(lgvlall(lal; (2) lgv, g;l(IQI; (3)
tlQl(1. Here Q=2eA —Vrp, and &o is the phase of 5.

In the limiting case l(&(o the quantity P becomes

(-:i~pi)
4;,iy'= (v y—«,Eo)

—lg(l ~p I')-, (34)
T) tanh(-',

i ~pi)

The function of
l ~ l

occuring on the right-hand side of
Eq. (34) is close to the constant co= L7$(3)/87r'$ for

l Lg[(&1, and tends to (4l ~l) ' for
l ~l))1.Thus the

length g@,oy ranges from about (l(o)'" to (T./T) (l)o)'"
as

l
hi varies from Asos(T) to zero.

S. DISCUSSION

The results of the local theory of superconducting
alloys are contained essentially in the expression Kq.
(18) for the free-energy functional. The stationary value
of this functional yields the Gibbs free-energy differ-
ence between the superconducting and normal phases.

The comparison of the fourth-order terms in Eq. (29)
with the second-order terms in Eq. (18) has led us to
the introduction of a characteristic length ], and of
gauge-invariant variables

l
6

l
and Q =2eA —V&o instead

of 6= id l exp(i&») and A. The meaning of Q becomes
clear if one expresses the current density j and the
kinetic energy density Fo i third term in Eq. (18)j in
terms of Q. Then one finds

j= —(e/rN)p, v., Eo———,'p, Lv, '+((V[6[)'/4m'l6l') j,
(35)

where

f; ki'"' = f'"'(~',4&+g,og; &+—t'&'&~;o)+-~;,4&f '"',
15 9 (30) and

v, = Q/2m = (2eA —V v&)/2m (36)

3 &o

f&'&(i~pl') =—E2-= L(-p)'+i~pl'j'" ' (31)

3 00 '7r (.-1)
f&'&(I ~pl') =—2 (32)2.~ l (~P)o+ lgPlo7»o», o

One obtains similar expressions for f&'& and f&'&, apart
from an additional factor —L(&op)'+ lupi') '. In the

p,/po =Xz, /&&,
'= 2

l DP l
'g ( l dP l (37)

Thus, we have to interpret p, and (po —p, ) as the super-
Auid and normal mass densities, ' and v, as the super-
Quid velocity. From the Maxwell equation we find that
X is the local penetration depth for v, .

Then the conditions for the validity of the local
theory can be stated as follows: (1) The gap l 6 l must
vary slowly over distances $. (2) The superQuid velocity
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v,, must vary slowly over distances $, or equivalently
X)$; one finds that in the "clean" and "dirty" limits
this condition is satisfied at all temperatures if Xr,)$s

and X»/, respectively, which is equivalent in both
cases to s) 1. (3) The superfluid velocity s, must be
sufficiently low, more precisely, ir/me, )$.

For the pure superconductor $ ra, nges from about the
BCS coherence distance $s to (T,/T)ps as IAI varies
between dues(T) and zero. In the limiting case l«)s
the length $ ranges from about (l/s)'" to (T,/T) (l(s)'Is
as

I Al varies between Anos(T) and zero. Thus we see
that even in the "dirty" limit the local theory can never
be applied in the high-field —low-temperature region
since the length $ becomes very large.

In Eq. (25) we have given the explicit expression of
the free-energy functional, in terms of reduced variables
ll and a and the GL parameter s, for the limiting case
l((Pp. As T —+ T, this functions, l reduces to the GL
functional. But also in the low temperature region the
form of the functional becomes close to that of GL,
provided that I pl is close to 1 and

I V l &is/sl (1.This
follows because an expansion of the second term inside
the brackets of Eq. (25) yields"

' This was pointed out by L. Neumann (private communica-
tion). /But note that the coefficient in the second term of Eq. (38)
is —,

' while this coeflicient is —,
' in the limit T -+ T,. j

where the dots denote higher powers of the devi-
ation (1—

I f I
'), and the coeflicients of the terms

I(» 'V —ia)pl' and (V il '/s)' become 1 and
respectively, in the limit f —+ 1. In many applications
of Eq. (25) one will obtain sufficient accuracy if one
expands all the functions about Igl'=1 in powers of

(1—I/I'), up to some low order.
The local theory may be used, for instance, to in-

vestigate the structure of the outer and intermediate
region of a vortex line. However, in the core region the
theory becomes invalid since

I
6

I
does not vary slowly

over distances $, and since w, becomes too large. We may
use the fourth-order terms (fourth-order in powers of
rI„

I
V

I 6l I, etc.) in Eq. (29) to test the validity of the
local theory, and to calculate corrections, as one
approaches the core region. Near the center of the line
where

I 6 I/T, ((1 a nonlocal theory like that developed

by Maki" becomes valid, provided that l(($p.
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The absorption and fluorescence spectrum of Dy~+ in the cubic hosts of CaF2, SrF2, and BaF2 was in-
vestigated. The crystal-6eld components of the 'Iv and 'I8 states were established and the cubic 6eld param-
eters for the three hosts were deduced. The laser transition in the CaF2. Dy'+ system was identified and
some of the laser characteristics were delineated. The 4f-4f transitions of Dy'+ were found to be of magnetic
dipole origin. The nonradiative processes in the above systems are discussed.

I. INTRODUCTION

' 'N recent years, rare earths were successfully reduced
~ to the divalent state in solid hosts not containing

oxygen by subjecting the trivalent rare-earth doped
crystals to x rays' or p irradiation. '-' This technique is
successful not only in reducing ions that are near the
half-filled or completely filled 4f shells, such as Sm'+,
Ku'+, and Yb'+, but all the other rare-earth ions that
have until recently only been studied in the trivalent

' W. Hayes and J. W. Twidell, J. Chem. Phys. BS, 1521 (1961),' D. S. McClure and Z. J. Kiss, J. Chem. Phys. 39, 3251 (1963).' Z. J. Kiss, Phys. Rev. 127, 718 (1962).

state. The CaF2 host is eminently suitable for photo-
reduction techniques, and divalent rare earths in this
host have been studied by a number of authors. ' '
Divalent rare earths occupying the divalent Ca site in
CaF2 are especially accessible for theoretical studies,
since the local symmetry about the impurity ions is

4A. A. Kaplanskii and P. P. Feo6lov, Opt. i Spektroskopia
(USSR) 13, 235 (1962) LEnglish transL: Opt. Spectry. (USSR) 13,
129 (1962)j.

'D. L. Wood and W. Kaiser, Phys. Rev. 126, 2079 (1962).
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'P. P. Sorokin, M. J. Stevenson, J. R. Lankard, and G. D.
Petit, Phys. Rev. 127, 503 (1962); J. D. Axe and P. P. Sorokin,
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