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The ground-state wave function for the electrons in a narrow s band is investigated for arbitrary density
of electrons and arbitrary strength of interaction. An approximation is proposed which limits all the calcula-
tions to counting certain types of con6gurations and attaching the proper weights. The expectation values
of the one-particle and two-particle density matrix are computed for the ferromagnetic and for the non-
ferromagnetic case. The ground-state energy is obtained under the assumption that only the intra-atomic
Coulomb interaction is of importance. Ferromagnetism is found to occur if the density of states is large at
the band edges rather than in the center, and if the intra-atomic Coulomb repulsion is suKciently strong.
The relation of this approximation to certain exact results for one-dimensional models is discussed.

INTRODUCTION paper, the main argument in favor of this claim comes
from an exact result about the occupation probabilities
in reciprocal space for the wave function of GI. This
result states that for very strong interaction the occupa-
tion probability is constant inside the Fermi surface and
depends only on the total number of electrons of op-
posite spin. A very simple approximate treatment of
this result is given, in addition to the exact derivation,
in the Appendix, and is generalized to the case of intra-
atomic Coulomb repulsion of arbitrary strength. The
computation of any specific expectation value depends
then directly on the number of contributing conigura-
tions and their relative weights.

Section 1 states the problem and deines the terms.
Section 2 discusses the manner in which various con-
figurations in the lattice contribute to the various
density functions, in order to show the reasonableness of
our main proposition. Section 3 gives precise rules for
calculating the various expectation values for arbitrary
numbers of electrons and arbitrary strength of inter-
action. These rules are illustrated on some examples.
Section 4 applies the method to the computation of the
energy and goes on to And a criterion for the occurrence
of ferromagnetism. The Anal section is devoted to a dis-
cussion of the present results in the light of some exact
results in one dimension.

' 'N order to understand transition metals as well as
&- certain insulating crystals with un6lled d shells a
ground-state wave function has to be found for the situa-
tion which was described particularly by Van Vleck. ' Its
main feature is the localization of the 3d wave functions
around the nuclei. The Hamiltonian becomes, therefore,
diferent from the one commonly used for metals. The
single-particle terms correspond more closely to a tight-
binding picture and the two-particle terms describe a
very short-range interaction rather than the long-range
Coulomb interaction which is studied in the ordinary
theory of electron correlation in metals. The discussion
of such a Hamiltonian has been taken up recently by a
number of authors, ' each using a diferent approach and
obtaining qualitatively different results. These results are
mainly concerned with the occupation probabilities for
the electrons in reciprocal space, and with a comparison
of the ground. -state energies for a ferromagnetic and for
a paramagnetic ground state.

The present work attempts to break away from the
limitation of low particle density which was inherent in
the diagrammatic analysis of GI and GII, ' although the
wave function which was proposed therein is believed to
be a good approximation at all densities. The success of
the present attempt depends on a relatively simple
proposition to which this paper is dedicated and which
seems to hold at least in the case of a narrow s band with
a strong intra-atomic Coulomb repulsion (cf. GI and
HI). This proposition states the following: The main
features of the behavior of spin-up electrons, such as
their occupation probability in reciprocal space, can be
understood qualitatively if it is assumed that the spin-
down electrons occupy a band of zero width; and vice
versa.

Unfortunately, it is not clear to what extent this
proposition is true, except that the domain of validity is
larger than one might expect at erst. In the present

1. GENERAL WAVE FUNCTION FOR
THE NARROW s BAND

The case of one narrow s band is described exactly as
in GI. There are L lattice sites numbered by a small latin
index f, g, h, or j.To each site there belongs, for a given
spin, only one orbital p(x —g) of the Wannier type, i.e.,

q *(x f)y(x h)dr=—bf p,
—

Bloch waves Ps(x), with wave vectors called 0 or /, are
constructed by forming' J. H. Van Vleck, Rev. Mod. Phys. 25, 220 (1953).

& Martin C. Gutzwiller, Phys. Rev. Letters 10, 159 (1963); and
Phys. Rev. 134, A923 (1964), to be referred to as GI and GII;
J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963};277, 238
(1964), to be referred to as HI and III; J. Kanamori, Pro r.
Theoret. Phys. (Kyoto) 30, 275 (1963).

A(*)=L '"2 exP(s&g)9(~—g)

Each of these wave functions is to be multiplied by a
A 1726
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spin-wave function, indicated by an arrow, 1' or &, as
index. Corresponding to y(x —g), there is a Fermion
creation operator u,~, in the usual manner; and corre-
sponding to f~(x), there is a Fermion creation operator
a~t, with the relation (2) now becoming

aIt L'"——g exp(ikg)e, t. (3)

where Co is the vacuum state. The correlated state + is
expressed in terms of the amplitudes A zp by the
expansion

(5)+=+ ~eraser,
gr

where the summation goes over all different sets G
and F.

The amplitudes A Gp can be chosen arbitrarily, as real
or even complex numbers. In order to compute the
energy expectation values for 0, only the 6rst- and
second-order density functions, p& and p2, are needed.
But, quite generally, it is of interest to examine the
eth-order density function p„ in terms of its arguments,
which we now choose to be the lattice sites and the
spin directions, e.g.,

u-(h t, h &'f » f-I)
=(~!)-'(e!e,„tt" e,„tte»&" e,„t!e). (6)

The calculation of the diagonal elements of p, where
the set (hi, ~,h„) coincides with the set (fi, ~,f„),
involves only the absolute value of the amplitudes A op.
However, in computing the oG-diagonal elements of p„,
where the set (hi, ,h„) does not coincide with the set

(f,, ~,f„),it is necessary to know something about the
"relative phases between adjacent con6gurations. "This
expression refers to the complex number exp(ja') of
absolute value 1 by which the amplitudes of two con-
6gurations differ, if their sets 6 and F coincide, except
that one configuration contains (fi», f„t'), where the
other contains (hi], ,h t').

The requirement of antisymmetry imposes very
strong restrictions on the choice of the relative phases.
These restrictions are not easy to enforce. Therefore, it
is reasonable to take one particular set of relative phases
which has proven its value in a related problem and
stick to that set ' all through the development. The
domain of variation for the variational ansatz (5) is
thereby drastically reduced, but it is felt that it would
lead into too many complications to proceed differently.

The set of phases to be adopted arises from some
uncorrelated wave function C which is the antisym-

Let G=(gi, .
g ) denote a set of lattice sites to be

occupied by $ particles, and I'=(y&, ,y„) a set of
lattice sites to be occupied by J. particles; a configuration
C gp belongs to these two sets, namely,

C'er =II e,t' g e,~'4'0,
0 r

metrized product of Bloch functions. In the case of a
simple s band, let this uncorrelated function C be
given by

(7)

The set (k) is supposed to be the volume contained
inside some Fermi surface 5, and similarly the set (~) is
the inside of some Fermi surface Z in reciprocal space.
The coefficients in an expansion of the type (5) are given
by the product of two determinants':

r ky k
! L '~2g'~g !! L

g, g)l p, 7i
If the sets (k) and (~) are chosen in such a way as to
include always k and —k simultaneously, and similarly
with ~ and —~, each of the two determinants is easily
shown to be a real number times some 6xed power of i.
This power depends on the order in which k and
appear in the set (k~ k ) and on some other conven-
tions which are irrelevant to the further discussion.

The amplitudes Agp of the correlated wave function
are now written as

he k„)
gs' ' 'gmi

g~ '!xlL- "' "
I, (s)

l p, pi'
where s is the number of identical lattice sites among the
sets (gi, g ) and (y„~,y„). Ber is assumed to be
real and positive. The parameter q gives a weight to
each con6guration depending on the amount of crowd-
ing. Obviously, the uncorrelated wave function 4 is
obtained by setting 8= 1 and q = 1.The correlated wave
function 0 of GI is obtained by setting 8= 1 but g& 1.
By letting 8 differ from one, the diagonal and the off-
diagonal elements of p„can be given certain simple
properties, which may not follow from setting 8= 1~

2. CASE FOR INFINITELY HEAVY
SPIN-DOWN ELECTRONS

The probability for 6nding the electrons in a con-
6guration G and F is given by

, ,„r, „g".g-i
I der I

'= Ber'g'"! w(g' —g")
g 'gi

v' ' 'v~!
x! „(y'—y")

I (».p„i
'

3 Determinants are written, where possible, using the following
abbreviation:

' f(»x')f(», xn) "f(~~a )!
I' g( )

*" *" f(~,x~v(», x2) f(~2,s )
/

f(~-,x~)f(~-a2) i'(~,y.)
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io(h —f)= (1/L)Q exp(ihh i—hf),

cg(h f)—=I g exp(zKh 'iKf—) .
(a)

(10)

where w(g' —g") and co(y' —y") are the propagation
functions

with the expression for q=o, vis. ,

)t' hgn g )
pi(ht, ft) = 2 I

~(g' —g")
(»2 "gm) k fg2' ' 'g~l

f, „vi' ' 'v»&
X p &r«&) «I M(v' —v")

I (13)
i"Q(f'gh)

Apart from contributing a sign to A gp, the determinants
in (8) contribute to the absolute value of the amplitude
of the determinants appearing in (9).The latter describe
the eBect of the so-called exchange hole. Their value is
small if the sites (gi, ,g„) or (yi, ,y») are close to
one another.

The correlation tends to magnify this effect, if it is
not compensated by a judicious choice of the coe%cients
Bgr. For instance consider the case Bgr ——1 and g=o.
If Eq. (9) is summed over all sets I', it follows that(,'gi 'g'
2 I~«l'=

I
~(g' —g") '

x~ ~, ,-— (&'—v") I. (»)
gi" g-&

The second determinant gives simply the probability of
not finding any of the l particles in gi, ~, g„. This
probability shows exactly the same effect of the ex-

change hole, in that it is small for a set of sites (gi, ,g )
close to one another. The probability of finding

particles at (gi, ,g ) independently of the location of
the l particles, provided there is no crowding, shows

therefore an enhanced effect of the exchange hole.
As long as the Hamiltonian does not contain any

Coulomb interaction terms between atomic orbitals of
different lattice sites, as happens to be the case for (35),
there seems to be no reason u priori for reducing this
enhanced eGect of the exchange hole. Also, the enhanced

exchange hole has a simple explanation: Since a 1
particle cannot share a lattice site with a 1' particle, there
is a tendency to have unlike neighbors (1 and Q rather
than like ones (t' and &). Two spin-up electrons tend to

stay away from each other. This situation would change,
of course, if we introduce some terms into the Hamil-

tonian which tend to favor parallel alignment of spins
on neighboring atoms.

It would seem, however, that this enhanced exchange
hole eBect has a bad inhuence on the kinetic energy and

crystal potential terms which are determined by
p, (hg, f f). To make this more evident, compare the ex-

pression for g=1 and Bgr= i., viz. ,

p (ht, ft) = 2 ~(g' —g")
(g2" gm) fg2' ' 'g~~

(12)

where the summation over F includes only such sets of
lattices sites p&, . , p„which do not coincide with any
of the sites f, g2, , g„, h. First, observe that the sum

/L m 1—— I.—m
over I' has

~
~

terms when h& f, and

when h= f The . value of pi(fl, ft') is fixed by the
normalization to m/L, =u(f f) Th—e va. lue of pi(hf, ft')
will usually be smaller than io(h f), i—f

hfdf,

because
the sum over I' has fewer terms, namely, by a factor
(L m p)/—(L —m), as—a consequence of )1=0. The
correlation affects the transfer of electrons between
lattice sites more than their chance of being at any
particular lattice site. Second, note that the sum over
I' in (13) has the least harmful effect on pi if it does not
depend on G, because then the sum over G approximates
most closely the formula (12). The coefficients Bor
should, therefore, be chosen so as to compensate at
least partially the exchange hole effect which is inherent
in the last determinant of (13). In this manner, the
particular features of the spin-down electrons are com-
pletely smeared out in the sum over F, and the specific
choice of the coe%cients Bgr does not have to be de-
scribed in detail in order to obtain a reasonable result
for the summation over I'. (For additional discussion
of the best values for B«, cf. Sec. 5.)

It is then conceivable that pi(h&, ff) becomes largely
independent of the particular choice of the wave vectors
~ appearing in co, i.e., independent of the region in
reciprocal space occupied by spin-down electrons, and
that a typical value of p, (hf, fl') is obtained by putting

,(, „vi' v»2 ~

&orl'I ~h' —V")
Fgg yi ~ y»

(14)

L,—m —IJ.

&for&)or &(p' —p") = . (15)
FA(f gh) L —m

The Eqs. (14) and (15) may be considered, either
as giving the avera. ge over some sample of the quantity
on the left, or as imposing conditions to be satisfied by
the coefFicients Bgi. Clearly, in order to put any of these
two possibilities on a more secure basis, one has either
to specify the sample to be averaged over or to show that
Eqs. (14) and (15) can be solved. Since the author has
not been able to satisfy completely any such require-
ment, the reasonableness of (14) and (15) is confirmed
in two quite diferent ways.

Let us consider the consequences of (14) and (15).If
(14) and (15) are inserted into (13), one finds with the
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help of (12)

»(h1' ft) =~(h f—) for h= f,
= [(L m— v))/(L m—)5i()(h —f) for hW f (1.6)

By taking the Fourier transform of (16), we find the
occupation probability in reciprocal space:

~IG. &. Occupation
probabilities j.n re-
ciprocal space along
a particular direc-
tion.

Ngc

L(l.-m)

&»=2 e '"') i(rt, ot)=1—(i/L) for kg(k),

=pm/L(L —m) for kf(k). (17)

This piecewise constant function with a discontinuity
at the Fermi surface of the uncorrelated electron gas
corresponding to the state C of (7) is plotted in Fig. 1.

Equation (17) has been written under the assumption
that m+)(i(L. If one has m+ p) L, however, the whole

theory can be written in terms of holes rather than
particles, and the formula (17) gives then an expression
for the density of holes in reciprocal space where m and
p, are the total numbers of spin-up and spin-down holes
in the lattice.

Now, formula (17) is also obtained if we put
Bar= const in (13) and then average the last determi-
nant in (13) over all possible sets ()(). This means that
we do not try to compensate for the enhanced exchange
hole by letting Bzi vary with the configurations G and
I', but we average over all possible distributions ()() or
spin-down electrons in reciprocal space. Indeed, one
finds without diQiculty that

vi' ' '»)
2 ~(v' —v")
(s)

~

L-i P eir(y' y")
~

-1 (18)
„vi .»'))

where we have to divide by L!/(I.—!i)!p!,the number
of different sets ()(), in order to obtain the average. All

terms in the summation over I' in (13) are then the
same; there are (L—m)!/!i!(L—m —!i)! of them for
4= f, and (L m 1)! /i!i(—L —m !i 1)!—of —the—m for
h/f. The summation over I' in (13) gives there-
fore (const)'(L —m)!(L—!i)!/L!(L—m —)(i)! for h= f,
(const)'(L m 1)!—(L——p)!/L!(L—m —ii—1)!for h& f.
After fixing the constant by normalizing pi(ht', ht') to
m/L and after summing over all lattice sites gm, , g,
we find again (16). Thus, formula (17) is the correct
average over all possible sets of wave vectors ~ for the
spin-down electrons.

The other way of confirming the reasonableness of
(16) is based on a result which was mentioned in GI
without proof. This result is derived in the Appendix
and states the following. If all Bzr are equal, the first
part of (17), referring to k inside the Fermi surface, is
true whatever the set ()() for the spin-down electrons
may be; but there is seemingly no such simple conlrma-
tion for the second part of (17), referring to k outside the

Fermi surface. Obviously, the second part of (17) holds
only for the average over all sets ()(), whereas the first
part of (17) holds for each set ()() separately.

The author considers the result derived in the Ap-
pendix as very strong evidence for his claim that the
spin-up electrons behave in a way which is largely inde-
pendent of the way the spin-down electrons behave. In
particular, the spin-down electrons might just as well
be in6nitely heavy as far as the spin-up electrons are
concerned. The rest of this paper is then concerned with
the physical consequences if this principle is stretched
beyond the confirmation which has been presented.

3. METHOD FOR ESTIMATING VARIOUS DENSITY
FUNCTIONS IN THE PRESENCE OF

CORRELATION

Formulas (14) and (15) express the idea that the
coefficients can be chosen such as to give simple values
to the density functions p, the choice being limited by
the total number of conhgurations which contribute to a
given p„.It is believed that the properties of p„obtained
in this manner are typical for the correlated wave func-
tions of interest in the narrow-band problem. The pres-
ence of the spin-down electron merely restricts the
freedom of movement for the spin-up electrons without,
however, destroying the phase relations among thelatter.

In order to give the weighting factor ))" in (8) a well-
defined meaning, we assume that con6gurations with
diGerent values of v have the same average weight apart
from the factor q". Then it is postulated that

hi h„)
p (4), ' ',& ),f I, ',f ))=const(w(h —f)'

(19)

hi h„)!
p (h !, i,h $,fi$, ,f J)=const~ +(h f)—

~ ~ ~

where the constants depend on m, p, , g, and the number
of different lattice sites appearing in (h) and (f).Explicit
values for these constants are obtained by counting how
many conhgurations F or 6 contribute toward com-
puting the left-hand side of (19), and attaching the
proper weight g" to each contributing configuration.

Examp/e 1. e=m, hi= fi&
., h~= f . If there are

v doubly occupied sites, there is a total of m!(L—m)!/
v!(m—v)!(p—v)!(L m p+v)! configur—ation—s contrib-
uting to p~. The constant appearing in (19) is given
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apart from a normalization factor by

P g 'm!(L—m)!/v!(m —v)!(p,—v)!(L m —p+—v) .
v=Q

=(L m—)!F( m,——p, L—m —
p,+1; rj')/

p I(L m —~) I . (20)

If we had taken e(m, the constant appearing in (19)
would still have been the same, since according to (6)
we always have

p (&it, ».t; fit, f 1')

it, is immediately checked that (23) = (20) for &= 1.The
evaluation of q for the values of g between 0 and 1 can
be performed with the help of the formulas in the
Appendix B.These formulas are asymptotically correct
for very large L, m, and p, , which is our case of interest.

It goes without saying that a formula similar to (24)
is obtained for p&(hl, fl). The only necessary modifica-
tion is to exchange m and p in (20) and (23).

In order to be able to compute the expectation value
of the energy we have to know po(gt, gi;gtgJ). More
generally, we postulate formulas analogous to (19),
namely,

=m!/e!(m —e)!
gn+1 )

' ' '
) gnat

p.(h.t, ",h. t,g.+~t, ";
p.+~(hat, » T,gl; fit, ,f.t)gl)

fit, ,f-t,g-+it ) (21) ( hg h
=const~ w(h —f)

In particular, we obtain the normalization from

po=(+(+)= 2 p (git g ti g&t ' '
g 1')

p.+~(gt 41 ' ' ' ».l '
g 1',f~l, ,f l) (26)

hg .h)
=const ~ h-

~ ~ ~(= const P ~
w(g' —g")

~

= const,
go' 'gm& k gy' ' 'gm~

(22)
with the constants again determined by counting the
weighted configurations which contribute to the left-
hand side. The validity of (26) is examined in Sec. 5.
where we argue that Eq. (26) is better realized in three
dimensions than in one dimension.

Example 3. e=m, h~= f~Wg, .
, h„=f Wg The.

constant multiplying (26) is found to be

where the constant is just given by (20). All quantities
to be computed henceforth have, therefore, to be
divided by (20).

Examp/e Z. e=m, hiA fi, ho= fo, ' ' ', h~= fm There
are a number of possibilities to be distinguished which
lead to different contributions to the constant in (19).
The sites h~ and f~ can both be doubly occupied; one
but not the other can be doubly occupied; and, finally,
none of them may be doubly occupied. One obtains
therefore, a sum of expressions similar to (20):

(L—m —1) IF(—m, 1—p, L m p+1; g—')/—
(p —1)!(L—m —p)!, (27)

which has to be divided by (20) for normalization.
Example 4 a=m, h. ~

——f~ ——g, ho f ~go,
——, h =f ~g

gives for the constant in (26) the value(I.—m)!/p!(L —m —p)!
&& ((L—m —p)F(1—m, —p,' L—m —p; q')/(L m)—
+2pgF(1 m, 1—p, L m—p+1; g')/—(L —m)—
+p(p 1)q'F(1—m—, 2—p, I. m @+2;g')/— —

(L—m —@+1)). (23)

(L—m)!g'F(1 —m, 1—p, L m py2; g')/— —
(p —1)!(L—m —@+1)!, (28)

to be divided again by (20) for normahzations. The
consistency of this generalization is shown by checking
that~ith the help of (12) and (21) we now get for p~ the

expression
pi(ht, fT) =w(h —f) «»=f

=qw(h —f) for hA f, (24) 2 p +~(hit, » t,gl;fit, . ,f t,gl)

=pp (h~t, ' '» 1' fit, ' ' ',f T) (29)
where q is dered as the quotient (23)/(20), as a
generalization of (16). Formula (24) again leads to a
piecewise constant occupation probability in reciprocal
space, as in Fig. 1, with q+(1—q)m/L inside and
(1—q)m/L outside the Fermi surface. Since the hyper-
geometric function becomes 1 when its argument is
zero, the result (16) is recovered for g= 0. Also with the
help of the Gauss formula4

F(a,b; c; 1)= F(c)F(c—a—b)/F(c —a) F(c—b), (25)

4E. T. Whittaker and G. N. Watson, A Course o JIodern
Analysis (Cambridge University Press, New Yorl~, 192 ), p. 281.

As an application of the last formulas, we obtain

po(gT, gl; g1',gl) =
L(L—m —p+1)

F(1—m, 1—p; L m p+2; g')——
Xg' (3o)

F(—m, —p; L m @+1;g')——

It is satisfying that this formula is symmetric in m and
p, , although its derivation is not symmetric in spin-up
and spin-down electrons.
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Another formula of interest is obtained for
p2(gt', »; gf,yJ,), where gNy. Its derivation is somewhat
more tricky. We find that

(20)u~(g1', vl; gt,vl)

( ggm g~)= (27) 2 I
w(g' —g")

(v2' ' 'gm)H'Y ( gg
.

g

preted instead in the simplest imaginable way as the
direct consequence of the spin-down electrons which act
like inert obstructions, distributed at random, to the
movement of the spin-up electrons. In this view, it
would seem rather artificial to write a relation like

+(»), r.
,
(~(g' —g") )

= (mp/L') (20)+w(g —y)w(p —g) [(27)—(28)]. (31)

p2(@T,Vl, fT,Vl) = (I /L)c i(@T~fT)+(mv vL)—
&& [w(h —y)w(y —f)—I. 'w(h —f)]/m(L —m), (32)

and for 7=f/h as

I 2(ht, el; ft,vl) = (I /L)ui(h't, fl)

(~i)j q ( f)
33

g(m —v) [1+v/)1(m —v)j
[1— L v—+

where the relation between s and g as derived in Ap-
pendix 8 has to be inserted. The second terms in (32)
and (33) would give a hint as to the values of the mixed
density p&(h$, f&) for hW f and h= f, if we were to express
them as ui(hl; yl))oi(yl; fI)

It is now part of the main proposition of this paper to
rule out, at least in a first approximation, the use of such
a mixed first-order density function. The additional
terms which appear in (31), (32), and (33) are inter-

The difference (27)—(28) vanishes only for g=1. The
second term represents an increase over the purely
statistical value my/L'. Since the formula (31) is not
symmetric in spin-up and spin-down electrons, it might
be safer to claim its validity only in the case
w(g —y) =&u(g

—y), i.e., m= p
Formula (31) shows explicitly that it is quite errone-

ous to assume statistical independence among spin-up
and spin-down electrons at adjacent sites. Formula (31)
might suggest the possible usefulness of a mixed density
function, such as pi(gt'; p&) corresponding to an expecta-
tion value according to the definition (6), which one
might assume to vanish at first. Such a mixed density
function would describe a ground state in which con-
figurations of different Z components for the total spin
participate and have well-defined relative phases. Spin-
Aip excitations would be present in such a ground state,
indicating a tendency toward antiferromagnetism, which
is, of course, just described by formula (31).

The same phenomenon appears if we calcu1ate the
second-orcler density p2(hl, yl; fl,y&) with yW f/h/y
or with y= fWh The cal.culations are very tedious and
the results very lengthy, unless the simplifications of
Appendix 8 are used. The result can be written for
yA f/h/7 as

One might have thought of (34) as a possible representa-
tion of (30) through (33), but it turns out to be
unfeasible.

4. CALCULATION OF THE ENERGY
EXPECTATION VALUE

where ~ =m ' P ~» e), is the average energy of the elec-
trons without correlation. If we normalize P), e), ——0, we
have e(0. The factor q(1, which was defined in (24),
gives the discontinuity of the occupation probability in
reciprocal space at the Fermi surface. The number of
doubly occupied lattice sites is then obtained by mini-
mizing (H)~ with respect to v.

The condition for v becomes (with v= v/L and
m= m/L)

dq/dv= —C/2m'. (37)

If this relation is used to eliminate C from (36), the
energy expectation value (H)~ becomes

(H)))) ——2m~(q —vdq/dv) .

The expectation value of the energy has been increased
from its value 2m&&0 without interaction by the factor
(q—vs/dv) (1.With the help of the curves for q(v) as
obtained in Appendix 8, we can now plot q

—vdq/dv as
a function of P. The slope at v=0 is still infinite, indi-
cating a very strong dependence of (H) on the number
of doubly occupied sites, but the slope at 9=m' is 6nite.
The initial value for f =0 is the same as for q, viz. ,
(1—2m)/(1 —m), as shown in Fig. 2. For a given v and

With the help of (24) and (30) we can compute the
expectation value of the energy for the Hamiltonian

H=g(a, tta„~+a,),'aa))e)+C P avttavgtaggagt. (35)
k g

This Hamiltonian was proposed in GI, and its physical
significance has been discussed in HI and GII. It repre-
sents, in a certain sense, the opposite of the Hamiltonian
which is usually investigated in the study of free elec-
trons with Coulomb repulsion, and it is believed to be a
good model for the situation in a d band.

If we eliminate the weighting factor g with the help
of (84), so as to express everything in terms of the
number u of doubly occupied sites, we obtain in the case
of m= p the formula (this case corresponds to the non-
ferromagnetic state and is indicated by the index A)

(H&~ ——2mqe+ vC,
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q -rdq/dr

l
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FIG. 2. Plot of q
—vs/dv, the reduction of the total energy from

its value without interaction, versus v, the density of doubly
occupied sites, for various values of N =p, the density of spin-up
and spin-down electrons. (The slopes at v =0 are infinite. )

«v(«(q vdq/dv), — (40)

where both e~ and e are negative in our normalization.
The domain of existence for a ferromagnetic ground

state can be obtained from (40), if we plot the ratio
«v/«as a function of m for a given band structure, viz. ,
a given density-of-states curve, and if we draw into the
same plot the function (1—2m)/(1 —m), i.e., the mini-
mum value of (q vdq/dv) —Wherever .«v/« is larger than

(q—vdq/dv), a ferromagnetic ground state exists for a
sufficiently large value of C, e.g., for a constant density
of states, we 6nd in terms of the total bandwidth 6 that
«v= —d, (1—2m)/2 and «=h(1 —m)/2. The condition
for a ferromagnetic ground state is just not satisfied,
because

~
«v~ is too sm~ll relative to l«( for all m, .

It is easy to see the following: If the density of states
is large at the band edges, the ratio «v/« tends to be
larger than (1—2m)/(1 —m), and ferromagnetism would

appear to be possible if the intra-atomic Coulomb repul-
sion is strong enough. If the density of states curve is
large at the center, its ratio «v/« is smaller than
(1—2m)/(1 —m), and a ferromagnetic ground state is
excluded. The former case arises in a one-dimensional
crystal, whereas the latter is typical of a three-dimen-
sional crystal, although some structures in three dimen-
sions, such as the fcc lattice, may present both aspects
(cf. GI).

m, the value of the interaction constant C may be ob-
tained by using (37) and Fig. 3.

The question of the possibility of a ferromagnetic
ground state can now be answered. A ferromagnetic
state has the expectation value of H given by

(H)v ——2m«v,

where && is the average energy of the 2m electrons if
they all have the same spin. The condition for a ferro-
magnetic ground state is therefore simply that ep be
smaller than the average energy (38) of the electrons in
the nonferromagnetic state, i.e.,

5. DISCUSSION

The remarks at the end of the preceding section show
that the present approximate theory may lead to a
ferromagnetic ground state in one dimension. Such a
result is in disagreement with a theorem of Lieb and
Mattis, ' according to which the ground state in a one-
dimensional system always has vanishing total spin
momentum. Although the arguments of Lich and Mattis
are not completely suited to the Hamiltonian (35), their
reasoning can be adapted to this simple model Hamil-
tonian (35). It is, therefore, worthwhile to examine at
which point our procedure fails, at least, in one dimen-
sion, and what may be done to correct this situation.
Also, some of the relevant statements may be true in
more than one dimension, and it is of interest to point
them out.

A sufFicient condition for the coefhcients Bor in (8)
to generate a wave function of vanishing total spin
momentum in any dimension is the following: The sets
(ki, ,k ) and (xi, ,x„) are identical, and the values
of Bg~ depend only on the set of occupied lattice sites
regardless of how this set has been divided up into the
subsets 6 and F. These conditions are a consequence of
the state (7) having zero total spin if the sets (ki. k )
and (xi «„) coincide, and of the fact that the total
spin momentum operator only shifts the individual
spins around the occupied lattice sites but does not
shift the electrons themselves.

Even after the coe%cients Bor have been restricted
in this manner in order to obtain a state of vanishing
total spin momentum, there are enough parameters
available to make the requirements (19) and (26) seem
reasonable, provided most of the lattice sites(hi, ,k„)
and (fi, . ,f„) coincide, as in the various examples of
Sec. 3. In particular, the occupation probabilities in
reciprocal space as given by (24) appear to be compatible
with the requirement of vanshing total spin momentum.

C
d& H

5f

0 05 lo l5 20 25
Fro. 3. Plot of mdg/dv=C/2«, the ratio of the interact'on

strength C to twice the average energy per electron e in case of no
interact&on, versus 7, the density of doubly occupied sites. Given
the ratio C/2«, one can find v from this figure for a fixed value oftg. Figure 2 can then be used to Bnd the reduction of the average
energy per electron e due to the correlation.

s Elliott Lich and Daniel Mattis, Phys. Rev. 125, 164 (1g62).
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In one dimension, the coeScients Hop have an
additional important property. If the common set
(ki, ,k~) =(1(1, ,1(») consists of all wave vectors in-
side some segment in reciprocal space which is centered
at the origin, each determinant in (8) is positive if
0&g&&g2« g &L, 0&y, &y2« y„&L, and

&k . Therefore, the amplitude 3Oi is
positive. We can prove this statement exactly as the
statements made earlier in this section by simply re-
marking that the amplitudes Agi arise from the known
ground state in the case of no interaction. According to
Lieb and Mattis, the correlated state 0' seems to be a
good candidate for the ground state with interaction.

It is quite clear what causes the trouble in our approach
for the one-dimensional case. The difficulty comes from
the long tail of the occupation probability in reciprocal
space outside the Fermi surface. That tail goes clear out
to the zone boundary according to (24), which is particu-
larly serious in one dimension where the density of
states in the simple cases is large at the band edges
rather than in the center. If we could modify (24) so as
to make the occupation probability vanish at the zone
boundary, a lot could be gained in one dimension. This
could be achieved by a more careful choice of the
coeKcients 8 which appear in (13).

The sum over all configurations F of spin-down elec-
trons in (13) depends on the set of points (f,gi, ,g~, k),
i.e., the configuration of spin up electrons with the initial
site k and the final site f. For the discussion, we can
simplify this dependence by regarding the second line
in (13) as a product, the first factor being a function of
the set (g2, ,g ) of spin-up electrons which remain at
their sites, and the second factor being a function of the
initial site k and the Anal site f of the spin-up electron
being transferred. It turns out that the 6rst dependence
does not influence the constancy of the occupation
probability in reciprocal space outside the Fermi surface,
if there is no dependence on f and. k. We are, therefore,
led to consider the sum over I' in (13), primarily as it
depends on f and k, and to disregard its dependence on
(g1, ,g ). This dependence on f and k comes over and
above the main dependence of the second line in (13)
on whether or not f=k. Such an additional dependence,
e.g., on whether or not f and k are nearest neighbors

seems particularly indicated in one dimension, where
any pair of sites is not surrounded by many third sites
close by. This dependence on the exact relative positions
of f and k should be much stronger in one dimension
than in three.

The result in one dimension can only be improved if
one is willing to go through more involved calculations
which consist in evaluating sums over F, like the second
line in (13), at least approximately for certain more
speci6c assumptions about the coefFicients B. It may
be, however, that such improvements are not badly
needed in three dimensions, where the averaging in any
small neighborhood is likely to give better results than
in one dimension.
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APPENDIX A

In the case 8=1, g=0, we can write the correlated
wave function as

(A1)

where C is the independent electron wave function (7).
In order to obtain the first-order density function, we
have to evaluate (4'~ai, )ay)t~@), which becomes, for
fWh, simply equal to

(C
~
apt g(1—ii,te,g)art'~ C)

= (1/L) p e '~~+""(@it
~ g(1—tt, ie,g) ( c t) . (A2)

The index li' or kl on C indicates the addition of an elec-
tron of wave vector $ or k and spin-up to the state C. The
product over all lattice sites g is now expanded, and we
examine a particular term (Ci) ~e„)e„i e,„in,„i ~41ii).
If we expand the wave functions C~g and C~~ into con-
6gurations, this expectation value can be expressed as a
sum over products of determinants, one term for each
arrangement of the remaining m+1 —» spin-up electrons
at the sites g,+~ g +~ and the p —v spin-down electrons
at the sites y,~i y». The evaluation of this sum

lk, k ~ ( Ikk, . k„~
[] L—i~ie(i»

(»r+1'' »rm+1) E gi' ' 'grrr+il 1 gi' ' 'grrr+il

K '''K
X P ~

g live t--
(Yr+1' ' V») 5 gi gr

~, ~ . K„
J-1/2ei re (A3)

Jr+1' ' "Y»I k gi' ' 'gryr+1' ' 'y»

ls a simple exercise in determinant manipulation. After the summation over k and 3, one obtains

)((k—f) —)((k—gi) —x(h —hp)

ie(gi —gi)

ie(g2 —gi)

x(gi —f) ~(gi gi)—
(C

~
aisle„ie, ,i e,„iagi'~ C) =

x(gi —f) ie(g2 —gi)

~(gi gi) ~(gi —gm)
' ' '

"(gi—gi) ~(gi —g.), (A4)
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vr here
X(h —f)= bay —W(k —f)=L '—p exp(ikh —ikf).

The formula (A4) is correct even for k= f Bu. t in that case it is not always useful, because

(+I ezozz'I +)= (c I et II(1—~,z~.z)ez'I c), (A5)

so that only sets (gl g„) occur in the summation which do not contain the site f. There is no such restriction on
the sets (gi. g„) if f/h. Therefore, we obtain a term in addition to the sum over the expressions (A4), but this
term is restricted to f=k. In this manner, one finds that

—x(k—f) xP —gi) " ~(gi —gi) ~(gi —g2)(-1)
(+I~ft'o»IW 4i(+—I+)= XP —f)+—2 — 2 X(gi—f) ~(gi —gi) '' ~(g2—gi) ~(g2—g2)'"

P gl''

X(h f) —ie(Iz —gi) . . a (k —f) co(k —gi) .
(—1)"

+~if Z Z x(gi —f) ~(gl —gi) ~(gi f) ~(—gl —gi) . (A6)
P t gl'' gv

This expression can. be further simplihed, first, by separating out of the first sum everything that is multiplied
with the x(k f—) in th—e left-hand upper corner of the determinant, and remembering that

( 1) ie(gl gl) ie(gl g2) ' ' ~(gl gl) ~(gl g2) ' ' '

(+I+)=1+2
« "' ~(g2—gl) ~(g2 —g2)" ~(g2—g2) ~(g2 —g2)" .

(A7)

second, by inserting the definition of x into the second sum and then, instead of putting k= f, by writing
L ' P(f=k); third, by carrying out the summation over k as far as possible with the help of the simple relation

p l (Iz g)ld(g f)=—ld(k f—). —

This gives the final expression

(~l ~".I~)=C P f) ~.~.lLj(~-l~-)

(—1)"
+Z Z. x(gi —f)

Pf g1" g.
x(g2 —f)

xP —gi)

ie(gi —gi)

ie(g2 —gi)

x(k—g.)

~(gi —g2) " ~(gi gi) ~(g—i—g2)

~(g2.—gi) ~(gl —gl)
(A9)

where we have used the fact that &o(g—g) =zz/L.
Now, we can write the occupation probability in reciprocal space as

9 I ~» I +)=(1P-)&e'"" "'(+Iet'~» I +) (A10)

and insert (A9). The first term on the right-hand side of (A9) is trivial, since the summation over f and k applied
« ie(h f) gives 1 fo—r k inside and O for k outside the Fermi surface of the free spin-up electrons, whereas applied
to 8~f this summation gives 1 for all h. On the other hand, if 0 is outside the Fermi surface of the free spin-up
electrons, the first row in the first determinant is modified to (O,L, '~'el'«, ,L

—'z2e—z"g ) and the first column to
(O,I '"e' " L ' 'e' '") by the summation over k and f, whereas both the first row and the first column vanish,
if k is inside the Fermi surface. Therefore, the occupation probability eI,& for k inside the Fermi surface follows
entirely from the first term on the right-hand side of (A9), and it is given by the value established in (17), q.e.d.
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All the hypergeometric series of interest are of the form

~ (rr m—) ~ (n —m+v —1)(P—p) (P—p,+v —1)
F= (n —m, P—p, , I,—m —p+ 8; ii') = Q

(L m— p—+8) (L m I—J,+o—+v 1)v!—

Since yg and p are of the order of the number I. of lattice sites, it is sufhcient to evaluate the series by considering
only the largest terms. The biggest terms occur for the values of v, where

L(n —m+ v) (P—p+ v)/(v+ 1)(L—m —y+ 8+v)]ri'—1.
With the help of Stirling's formula, it follows in the standard manner that the sum is essentially equal to its largest
term. We can then approximate F(o.—m, P—ii', L m p+—o; ri'—) by

I'(m —n+ 1)1'(p,—P—1)F(L—m —ii+ 8)ri'"

)
1'(m —n —v+1)F(ii—P—v+ 1)1'(L—m —p+ 8+v) v!

(83)

p(gt, gl; gt'gl)=v, (83)

provided n, P, and 8 are of order 1, and v is obtained
from the condition

$(m —v) (p—v)/v(L —m —p+ v)]ri'= 1. (84)

The result for the hypergeometric function is correct
within a factor t 1+0(L ')$, provided one considers
always ratios of two hypergeometric functions. Since v

is independent of o., P, and 5, the quotient of two hyper-
geometric functions becomes a quotient of I' functions,
which is a rational function, if n, P, and 8 are integers.

As a first simple example we evaluate (30), and find
immediately that

with v given by (84). The quantity ri' plays, therefore,
the same role as the Boltzmann factor in the law of mass
action. Indeed, ns —v,and p —v are the average numbers
of dissociated spin-up and spin-down particles, whereas
v is the average number of "bound" spin pairs and
L m IJ+v is —the —average number of empty lattice
sites. The method presented in this paper can be com-
pared to the "quasichemical" method in the theory of
mixtures. 6 As g varies from 0 to 1, v varies from 0 to
mIJ/L, which is the number of crowded sites without
correlation.

In order to obtain the expectation value of the energy
(36), we calculate with the help of (83) the quotient

.9 .I6 .2025 .25

(m v) (L—m p—+v)— (p —v)ri
q= 1+

i
. (86)

m(L, m) —Z —m —p+ v)

In the important special case m=y, we have
.8-

.6-

~=fv(L 2m+ ))'"/(m —).
This leads to the expression

(87)

.2-

.05 .I5 .20

V

.25

g=(m —
v)L (L—2m —v)' '+(v)' 'j'/m(I. —m). (88)

The left-hand side is plotted as function of v=v/L for
various values of m= m/L( s in Fig. 4. Note the infinite
slope at 7 =0 and the vanishing slope at 7=m'. A re-
duction in P can, therefore, be achieved without losing
much of the kinetic and crystal potential energy.

FIG. 4. Plot of g, the occupation probability inside the Fermi
surface, versus v, the density of doubly occupied sites.

'E. A. Guggenheim, Ksxtmres (Oxford University Press, New
York, 1952), p. 38.


