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An in6nite system of electrons in its ground state, subject to a very slowly varying external potential, has
slowly varying properties, and can be described by a gradient expansion theory. However, when, in addition,
either (1) there is a spatially rapidly varying perturbing potential, or (2) there are regions in which the
electron density drops to zero (e.g. , electrons in an oscillator potential), the density and other properties of
the system exhibit additional spatial oscillations, which we call quantum oscillations. An example are the
Friedel oscillations in metals. In the present paper we develop a general theory of these oscillations for one-
dimensional, noninteracting electrons. Illustrations are worked out which show that when the quantum
oscillations are superposed on the smooth "semiclassical" results, one can obtain very accurate approxima-
tions to the exact densities.

I. INTRODUCTION %e are hopeful that when the quantum oscillations
are superposed on the results of a semiclassical calcu-
lation, one will obtain a rather accurate theory of the
electronic structure of a wide class of physical systems.
This approach should be especially useful in situations
which bear little resemblance to the homogeneous
electron gas, and which are therefore not easily amen-
able to those conventional many-body theories in which
translational invariance and, relatedly, the momentum
operator play a central role. Examples are atoms, whose
shell structure appears in the present context as a
manifestation of quantum oscillations, and metallic
alloys.

In the present paper we limit ourselves to a study of
a one-dimensional, noninteracting electron gas, which
already exhibits all the key features to which we have
drawn attention. As is usual, we have available for
these one dimensional systems special methods which
facilitate the calculations. The harmonic oscillator and
Coulomb potentials are worked out as examples, and
agreement with the exact solutions is very close. We
plan in the near future to extend this work to three
dimensions and to interacting electrons.

HIS paper deals with some general features of
systems of electrons in their ground state.

Our starting point is an in6nite electron gas, subject
to a sufficiently slowly varying external potential, v(r).
Such a situation is adequately governed by a theory
in which the energy is expressed. as a functional ELrt (r))
of the density n(r), and this functional is expanded in a
series involving derivatives of the density. ' From such
a theory one derives a density distribution n(r) whose
spatial variation parallels that of the external potential.
Thus, the smoother this potential, the smoother the
corresponding density. The same is true for all other
position-dependent properties of the gas. This type of
approach may be regarded as a systematic extension
of the semiclassical Thomas-Fermi method.

However, the gradient expansion for ELrtj breaks
down when: (1) in addition to a smooth potential,
e'(r), there is present a spatially rapidly varying
potential e'(r); or (2) there are regions in which the
electron density drops to zero, as is for example the
case for an atom at large distances from the nucleus.
In such cases, the electronic density rt(r), as well as
other properties, exhibits additional spatial oscillations
which are no longer determined solely by the behavior
of the potential in the neighborhood of r. Such oscil-
lations, which are not obtainable from the semi-
classicaP gradient expansion for Ecstj, taken to any
6nite order, we call quantum density oscillations. A
well-known example is the Friedel oscillations' set up
by an impurity potential in an otherwise homogeneous
electron gas. These oscillations have a wave number of
about 2ks (ks ——Fermi momentum) and extend into
the region of constant potential.

1. Generalities

All physical properties of a system of non-interacting
electrons are derivable from the one-particle Green's
function G(x,x'; E), which satisffes the differential
equation

(—(d'jdx')+e(x) —E)G(x,x') = —ll(x—x'), (l.1)

and the appropriate boundary conditions.
We shall assume that the single-particle energy levels

are discrete (if necessary, we confine the electrons to a
large box of length 2L), and denote the normalized,
real eigenfunctions by l((x,E ), in terms of which the
Green's function can be written as

*Supported in part by the U. S. Once of Naval Research.
'P. Hohenberg and W. Kohn, Phys. Rev. 136, 3864 (1964).

See in particular Eqs. (15), (64), and (65). Exchange and corre-
lation e6ects can be included in each order of this gradient
expansion.

'In this paper "semiclassical" denotes a situation with a
sufBciently slowly varying potential, which may be described
by a gradient expansion (cf. Ref. 1, Part III).The Pauli principle
and, in the case of interacting systems, exchange and correlati
eGects are meant to be included.

3 J. Friedel, Phil. Mag. 43, 153 (1952).

G(x,x'; E)=Q„P(x,E g (x',E )/(E E). (1.2)—
In one dimension another useful form for the Green's

function exists. I.et fs and fs be two solutions of the
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Schrodinger equation

{—(d'/dx')+v(x) —Eg (x,E)=0, (1.3)

An example of the use of the Green's function is the
following expression for the particle density e(x),

~(x)= (1/2~i) dE G(g; E),
which satisfy the boundary condition on the left and C
on the right, respectively, and denote the Wronskian by where we use the abbreviated notation

(1.6)

II'(E)=it i(g,E)LgA(g E)/»5
—P, (x,E)Lggi(x, E)/Bx5. (1.4)

Then

G (g,g'; E) = Lfi(x,E)$2(x',E)5/W(E) 5, for x & x', (1.5)

=+~(x,E)gi(x',E)/W(E)5, for x~&x'.

XVe shall make extensive use of this form.

G(x; E)—=G(x,x; E) . (1.7)

C is a contour in the complex E plane which encloses
the lowest S eigenvalues, E, where Ã is the number of
electrons' (see Fig. 1). The correctness of (1.6) follows
immediately from the form (1.2) for G.

In the particular case of electrons moving in a
constant potential eo and confined to a box —L~&x~&L,
the form (1.5) leads to the following explicit expression:

Go(x,x'; E)= sin{ (E—vo)'"(x+5)} sin{ (E—vo)'"(x' —I)}
(E—vo)'" sin{2(E—vo)'I'I }

sin{ (E—vo)"'(x—1.)}sin{ (E—v, )'~'(g'+ I)}
(E—vo)'" sin{2 (E—v,)'~'I}

x&x',

x&x'.

Here we choose for (E—vo)'t' the branch which is
positive for (E,—vo) just above the positive real axis.
In spite of the appearance of the square roots, the
Green's function has no branch points, for finite L.
For L ~ ~, its poles become dense and form a branch
line extending along the real axis from vo to + ~. In
that limit

G (g x~. E) [1/2&(E vo)i/25&~le ~0)'"I* *'I —
(1 9)

Let us now consider the behavior of G for large
values of E, in the case of a general potential v(x). We
relate this to the free case just considered by means of
the integral equation'

G(x,x') =Go (x,x')+

)&G, (g,g"){v (x")—vo}G(g",g'), (1.10)

which may be seen to satisfy (1.1) and boundary
conditions. This equation may be solved by iteration
leading to a series which converges rapidly for su%-
ciently large values of E, except near the positive real
axis. In this asymptotic region the behavior of G is

adequately determined by the first iterate of (1.10).
For x= x', one finds after integrations by parts

i{v (x)—vo} 1 dv
G(x; E)=Go(x; E)—

+O(IE I-5t~). (1.11)
Note that for such E, G(x; E) is determined by the
local behavior of the potential. In fact, if for a given x
we choose the vo in GD as equal to v(x), then

G(x; E)=GO(x; E)+0(~E~ '). (1.12)

where

lt'= L2/(p(g E))'t'5 sing;(x, E), i= 1, 2 (1.13)

2. The Semiclassical Solution

In this section we construct the Green's function for
the case of a very slowly varying potential, which we
denote by v'(x). We shall require the corresponding G*
on the contour C shown in Fig. 1. We shall call the
point between E~ and E~+~ where C crosses the real
axis the Fermi energy, Ep. In this section we shall
assume that for all x, E~)v'(x) (see Fig. 2).

It is convenient to use the form (1.5) for G' in which
we take the WEB solutions for It t and it 2

FIG. 2. The con-
&+i tour C used in the

integral (1.6).

p(x,E) = (E—v'(x))'", (1.14)

4 We ignore the spin degree of freedom of the electrons.
~ For simplicity of writing, the dependence on E, in this and

some of the following equations, is not explicitly shown.

8j.= (E—v (t))'t'dt,

(E—v'(t) )'t'dt.

(1.15)
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the local wave number of these oscillations equals
twice the local Fermi-wave number (2p(x,Er)), but its
amplitude and phase depend on the entire functional
form of e between x' and x.

In Appendix 1 we work out an example of the density
disturbance produced by a 8-function perturbation in a
medium of slowly varying density and compare the
results with those for a uniform medium.

+ Cx" G'(x x")v(x")G(x",x'). (2.11)

Instead it is more convenient to use the form (1.5)
of G, and obtain (t i and P2 by matching WEB solutions
for the regioi) external to (a,b) with exact solutions
inside (a,b).

Inside (a,b) we deane two solutions, pi and 888, of the
Schrodinger equation (1.3), with the total potential
v(x), which directly outside of this interval have the
following functional form:

(x) = L'1/(p(a))i/8${e'&(~)(~N)+y e

x=a—0,
—

I ]/(p(b)))/2j{ tie~a(b) (*—b)) x= b+0 (2.12)

and

( 2(x) = I:1/(p(b))'"l{e '"'"" "+y2e'"'"'* ")
x=b+0,

=L1/(P(a))'/'g{t2e '8'( '(' ')) x= a—0. (2.13)

The 8;(E) and t, (E) are reflection and transmission
coeKcients for waves incident from the left and right.
They satisfy the relation

ty=4, (2.14)

which follows from the constancy of the Wronskian.
In addition, for E real, one also obtains

—~i4'= ~i~2*.

(2,15)

2. Isolated Disturbance of Arbitrary Magnitude

In the last section, we considered the perturbation
produced in a slowly varying medium by a small, but
otherwise unrestricted perturbing potential e'. We now
discuss the case where ~' is localized between two
definite limits, u and b, but has arbitrary strength.

Ke shall be interested in the density changes due
to v' outside the interval (a,b), say for x&b. For this
purpose we require G(x,x'), which in analogy to (1.10),
could be obtained from the exact solution of the integral
equation

G(x,x') =G (*,x')

Suppose we want G(x,x'), for b(x~&x'. Then by
elementary matching procedures one Ands

ki(x) =—~
—t,8(—L,a) —

g r2~i8(b, x)+ ei8(b, x)

2i(p(x))'/' t8
(2.16)

A(x') =
2i(p(x'))'/'

giving

(x) =88'(x)+88'(x), (2.18)

where rb' is given in Eq. (1.18) and

1
rb'(x) =——Re

2'

+" r2(E)
dE e288('~'~) (2.19)

p(x,E)

the last integral is evaluated along the upper line of the
branch cut. If x is near b, evaluation of (2.19) requires
a knowledge of r8(E) for all real E&Er. However, in
the asymptotic region, defined by

(x—b) p(x,E8)))1, (2.20)

the leading contribution of (2.19) can be obtained by
an integration by parts, giving

88'(x) =Im
r, (E/ )

~2i8(b, x; Ey')

2rrp(x, Er) r(b, x; Er)
(2.21)

We may note tha, t since Irml ~&1, the amplitude of
asymptotic quantum oscillations set up in a given
"medium" by a perturbing potential e' is limited by
the upper bound

I88'(x) I,„=)2rrp(x,Er)r(b, x; Er)$ ', (2.22)

characteristic of the medium, no matter how strong
is.

III. TURNING POINTS

1. A Single Turning Point

Quantum oscillations are produced not only by
rapidly varying perturbing potentials but also by
turning points corresponding to the energy EJ, i.e.,
points where E8 —v(x) =0. In this sec'tion, we consider
such a situation with a smooth potential v = v' as shown
in Fig. 4.

To construct G, by means of Eq. (1.5), we use the
general solution of the Schrodinger equation in the

G(x,x') =
I 1/2i(p(x) p(x'))'/'j

)(fe i8(—b, x)+y ei8(bs)5e, i8(bx') , (2 17)

Note that the first term is just G' of Eq. (1.16).
To obtain the density for x&b, we evaluate (1.6)

along the contour of Fig. 3. This gives
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Fxo. 4. A slowly varying potential with a single turning point.

Fig. 4). Writing u/ =u(E/) they are

d'V —1/3

Region I: x&us and ~x—us ~))—
dx g

dV dV
Region II:

dS dX ~f7~

(3.10)

(3.11)

8—=8(u(E),*;E)=
(E)

(E—2/(f))'/ E2t/; (3.2)

the turning point u(E) is defined by

2/(u(E)) =E, (3.3)

and A and p are arbitrary constants. The Bessel func-
tions J„have the following properties':

8 ~ 0 J (8) L1/I'(2+1) j(8/2)"
—+ ao ' J (8)~ I/(22r8) //[e ei[// v[w/&i [~/&4H- —

+e e—i[s—(vw/2i —(w/4ijg (3 4)
where

g —$2& f P+0/2) l 7['i

es ——e"["+['/'&i~' (2l—1)2r&arg8& (2l+1)2r (3.5)

g —g (2&+&) f1+0/2) l 7['iCy=

es=e" ["+['/"l~' 2hr&arg8& (2l+2)s .
We shall require the asymptotic forms of [[(x)
near E2, which by (3.5) are

p(x) (2A/p'/') cos/8+g —(2r/4)], x ~ +~, (3.6)

f(x) A( ~/e/p'/')(2 singe "+cosge "),
x -+ —~ . (3.7)

Consequently, for E in the upper half-plane near

E/, wave functions pt and I[2, satisfying the boundary
conditions I[2(—L) =0=$2(+I), L-+ ~ are

A= (8/p)'"(Jt/2(8)+ J-2/2(8) }
(8/p)1/2(cia/2 Jt/3 (8)+e—iw/3 J t/2(8) } (3 8)

By Eq. (1.5) this gives, for x&x',

presence of a single turning point, ~

p(X) =2 (Ss-8/3p)'/2(COS('ss+g) Jr/2(8)
+cos( ss —g)J t/2(8)}, (3.1)

where

dV
—I/3

Region III: x)u/ and
~
x—us ~)) — (3.12)

dS ~g+ ~

Regions I and III are asymptotic in the sense that, for
E=Ep, the arguments of the Bessel functions are, in
absolute value, much larger than unity; and in region
II, s(x) can be adequately expressed as a linear function
of x. For a suKciently slowly varying v(x), region II
overlaps regions I and III.

For all three regions we shall evaluate 22(x), according
to Eq. (1.6), along the contour C of Fig. 5.

Region III: Here G(x; E) reduces to

G(x,E)= (I/2ip) —(e"'/2p), (3.13)

where
RS=ÃpS R S

tip(x) = (I/2r) p(x,Ep),

(3.14)

(3.15)

and writing E=E/+i(,
00 ~2i8

22'(x) =Re— d('—
2r 0 2P

cos28(us, x; E/p)

27rp(x, Ep)r(up, x; E/)

(3.16)

These are quantum density oscillations produced by
the turning point in the asymptotic region III. Their
forms are completely analogous to those produced by a
perturbing potentia, l Lcf. Eq. (2.21)j. Note that their

amplitudes are independent of the details of 2/(x) near
the turning point ag.

for E in the upper half plane near Ep.' We know from
the general discussion of Sec. I Lsee Eqs. (1.11) and
(1.12)$ that G(x; E) can differ appreciably from
G//(x, E) = (2ip) ' only on a small segment of the straight
line portion l, near E/; (see Fig. 5). Accordingly, we
have

~
/

8(x)8(x') y'/2

G(*,*)=—.I, I LJr/2(8(*))+J t/. (8(x))j
3jkp(x) p(x')/

Jl/2(8(x'))+e "2J-t/2(8(x'))). (3.9)

By means of this expression we shall now calculate
the density 22(x). We distinguish three regions (see

FIG. 5. The semi-
circular contour C
with radius tending
to in6nity.

EF

EN+I

' R. E. Langer, Phys. Rev. Sl, 669 (1937). 'Note that G(a, E) has the same form as if in place of the
G. N. Qlatson, A Treatise oe the Theory of Bessel Ii'Nr/lotion turning point, there were a perturbing potential with reQecti»

(Cambridge University Press, New York, 1922). coeiiicient, r= sLcf. Zq. (2.—17)j.
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v(x) which can be integrated explicitly' giving the density as

«"'[(Jz/z(8~)+ J ~l p(8~))'

0F

I

Fb

Region I:Corresponding to (3.13), we have here

FIG. 6. A slowly varying potential with two turning points.

+(Jp/z(8&) J-z/3(8&)) 1~

1 3 dv '/3

6 2'
+(1»z(18~I)—I-»z(le~I))'j

(3.22)

In this region

G(x,E) = (1/4p) (e "'—2i—) .

zzp(x) =0,

(3.17) where ep denotes the value of 8 evaluated at Ep.
Combination of the above results enables us to find

the density at all points.

and
exp( —2

I
8(a/. ,x; Ez) I)

zz'(x) =
4zrl p(x,E/)r(az, x; EF)

I

(3.19)

9 2dx
8'/'[e~~»J '(8)

We see the anticipated exponential decay in the classic-
ally forbidden region.

Region II: In this region we write, in view of the
linear dependence of v on x,

3 d~
8(a(E),x; E)= —— [E—v(x)gz/'. (3.20)

2 t4 ~g~

We now change the variable of integration from 8 to 8.
The integrand corresponding to the upper half of /

near Ep is given by

O(E/) =Xzr. (3.24)

2, Two Turning Poin. ts

Another common situation involves two turning
points a and b, such as shown in Fig. 6. In the vicinity
of each, the density is quite well described by the single
turning point theory of the last section. However, it is
quite straightforward to develop a formalism which
describes the simultaneous effect of both turning points
over the entire x axis.

In this case, in which the number of electrons E
remains finite, the Green's function has discrete poles
given by

(3.23)

The contour C, of Fig. 1, may cross the real E axis at
any point E+ between the ATth and (%+1)th pole.
The most convenient choice of Ep is

+J»3(8)J—»3(8)+e ' "J»3'(8)$, (3.21) The Green's function for this case is given by

zr 8(a,X)8(a,X')-»'
G(x)x') E)=— [J»p(8(a)x))+J g/z(e(a)x))g[v3(Jpz(8(a, x'))—J»z(8(o,x'))}

6 p(x)p(x') —tanO(E)(J»p(8(a, x'))+J»3(8(u,x'))}], for x&x', (3.23)

8],=8(a(E),x; E) &
ez=—8(*,b(E) ) E). (3.28)

We begin by evaluating the contribution of the first
term in (3.27). As one moves upward from Ep on line f
(Fig. 5), tanO~ rapidly approaches its limiting value i.
We therefore expand O~ in powers of l (=ImE),

(3.26)
de —'/'

lx—b, l»—

or by a similar expression with 8(u, x) and 8(a,x') where
replaced, respectively, by 8(x,b) and 8(x',b).

With the choice (3.24) for E/, zz(x) is given exactly
by the expressions of the last section, except in the
"asymptotic" region III between cF and bF (see Fig. 6),
in which

In this region one finds

G(x; E) = —(1/2p) [tanO+ (cos(8~—ez)/cosO) $, (3.27)

where

(3.29)

(3.30)
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This gives
1 ee Tf'—teeO iz—e, (e)=Re — I—1)" teett —t)id(

27lz 0 - 2P 22rp(x, Ep) p 2
(3.31)

Turning now to the second term in (3.27) we write

8,=8;,p+i(r; p/2)f+ ~, j=1, 2,

where the subscript Ii implies E=E~ and

&l, p= T(+F'x'' +P) T2, F T(x bP ' Jt P) .

For the upper half of I, we rewrite the contour integral by changing the variable f to

s=e—~t
7

giving us

cos(81—82) (—1))I
di' tet(8I, P—82, P) (&(T+n, p rp, P/2T) —1/1—+&)d&

coso

(3.32)

(3.33)

(3.34)

Hence, the quantum density oscillations are given by

1 cos (81—82)
82'(x) =- dA'

2n.i c 2p cos(O')

+e (8 ep—281, F) (g( T7+, 2FT t/p2T) —
,1/1+8)dz (3 35)

( T+r, p —rp, p T+rl, p rp,p—
2T 2T

Cos(81, p —82, p) 1
( 1)tv+1

rrp(xtE&p) T+r, , p r, p—
T+rp, p rl,p—) T+T2, F rl, F

2T
'1+ +T&2, F rl, p

2T

where 2Fj denotes a hypergeometric function. "
The results of this section have been applied to two

examples. The first is the oscillator potential with
X=2 and 11. In both cases, the present theory re-
produces the exact density, including the quantum
density oscillations, within a few per cent (Appendix 2).

The other example is a system of non-interacting
electrons in a three-dimensional unscreened Coulomb
potential with quantum numbers corresponding to

. barium. By means of a transformation of variables'
the radial equations are transformed to problems with
two turning points which can then be treated by the
methods of this section (Appendix 3).

82(x) =82'(x)+)ta(o, x), (A1.2)

o (O, x)
0.05

O.OI

0.0
-O.OI

with c=0.05 and 'A infinitesimal. Eg was chosen as 1.0.
The corresponding density is by Eq. (2.1),

APPENDIX l. DISTURBANCE IN A
SLOWLY VARYING MEDIUM

As an illustration of the methods developed in Sec.
II.1, we have worked out the density changes produced
by an in6nitesimal b-function potential, perturbing an
electron gas in a slowly varying linear potential. The
total potential of our system was taken as

-0.05—

0.10—

t)(x') =cx+)18(x), (A1.1)
-IO 0

X

'0 Bateman 3fanuscript Project, edited by H. Erdelyi (McGraw-
Hill Book Company, Inc. , New York, 1953), Vol. 1, p. 20.

Flo. '7. Polarizabilities in a uniform electron gas L—ap(0, z) l and
in a linear potential L:.—. ~ u(0,z)].
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where by Eq. (2.8),

W. KOHN AN D L. J. SHAM

APPENDIX 3. ELECTRON DENSITY IN
A COULOMB POTENTIAL

(E~ cx)six Epsls
n(0,x) =——

6& C(EI —cx)'" Er—'"5(Es—cx)'"Ep'"

x 4
X —Si (EIs—l' (Ep——cx)si')

2 -3c
(A1.3)

This quantity is plotted in Fig. /, where it is compared
with the polarizability ns(0, x) of a uniform gas (c=0).
It will be noticed that for positive x, where the back-
ground density e' is decreasing, the wavelength" and
amplitude of n(0,x) exceed those of ns(0, x), while for
negative x the opposite is the case.

This forms another illustration of Sec. III. Because
of the spherical symmetry of the Coulomb potential,
we can separate the Schrodinger equation for the wave
function and hence that for the Green's function and
consider only the "reduced" radial parts, R, (r,E) and
G&(r,r'; E), with angular momentum quantum number
l, satisfying, respectively, the equations,

P—(d'/dr')+(v(r)+[l(l+1)/r'j E)j-
XR~(r,E)=0, (A3.1)

L
—(&'/«')+(o(r)+ L~(~+ 1)/"l—E)7

XG~(r,r'; E)= b(r r'—), (—A3.2)

where v(r) is the Coulomb potential —(2/r). The radial
APPENDIX 2. ELECTRON DENSITY IN A HARMONIC density function& are given byOSCILLATOR POTENTIAL

This Appendix is an illustration of Sec. III. We con-
sider electrons described by the Schrodinger equation

(~/dx'—)+(x' E)g =0.— (A2. 1)

For this system all quantities needed in Eqs. (3.19),
(3.22) and (3.36) can be easily evaluated. The
resulting densities for 2 and 11 electrons are shown
in Fig. 8.

It will be seen that the Thomas-Fermi density,
n'(x) (without any gradient corrections'), corresponds
quite well to a smoothed average of the actual density.
When the quantum corrections e'(x), appropriate to
the various regions, are added, one obtains a remark-
ably close agreement with the exact density, even for
only two occupied levels. "

1
N((r) =P ~R((r,E„()~s= dE G((r; E), (A3.3)

27K C

r=e*, R(r) =e*l'q (x), (A3.4)

where E„t denote the eigenvalues of (A3.1) and C is
the contour in E plane enclosing occupied E„~ for a
particular l.

Although (A3.1) resembles a one-dimensional Schrod-
inger equation with an effective potential

o(r)+ D(~+1)/r'j,

we cannot apply the methods developed above to this
equation because of the singularity of o(r)+D(l+1)/r'j
at r=0. However, if a transformation due to Langer'
is applied, namely,

l.5

0.5

Fro. 8. Electron density in a har-
monic potential well. —— Exact.
————Thomas-Fermi approximation.
Xg Approximate formulas (3.19) and
(3.36) away from the turning points.
O Formula (3.22) near the turning
points.

"For references of earlier works relating to this example, see N. H. March, Advan. Phys. 6, 1 (1957l.
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0.6
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0.2
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FIG. 9.Electron densities for various
angular momenta in a Coulomb po-
tential. — Exact. )()( Approximate
formulas (3.19) and (3.36) away from
the turning points. s The turning
point regions.
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Eq. (A3.1) becomes

(d'(pi/dx')+ q P (x) p& ——0,
where

(A3.5)

qP (x) = (8 u(e*) )e" (—l+ sr)'. —(A3.6)

The function qi (x) is free of singularities. (A3.5) is not
exactly a Schrodinger-type equation; nevertheless
methods of Sec. III can be applied with turning points
now defined as the two values of x where qP (x) vanishes.

There are no difBculties except for the region near
the left turning point. For values of x in this region, the
Green's function along the straight line portion of the

contour C in Fig. 5 does not approach the asymptotic
value rapidly enough for the linear potential approxi-
mation (3.20) to be adequate. This trouble is most
pronounced for l=0 and diminishes rapidly as / in-
creases. Thus, for the computation of the density
ei(r) for l=0, we are forced to integrate the Green's
function numerically along the straight line portion of
C instead of using (3.22).

In Fig. 9, we present the approximate and exact
radial densities for singly occupied levels up to 6s, 5p,
and 4d, respectively. It will be seen that there is good
agreement,


