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Stability of Traveling Waves in Lasers*
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Rational Bureau of Standards, Washington, D, C.

(Received 15 October 1964)

The equations of motion for a fully quantized system of atoms interacting with traveling waves is solved
to terms of fourth order in the 6eld strengths. Prom these, criteria are developed for the stability of traveling
waves in solid and gaseous media. Expressions are given for the power outputs for both traveling and stand-
ing waves. The results for the latter agree with those obtained by Lamb in his semiclassical treatment of
standing waves.

I. INTRODUCTION

ECENTLY Lamb has published a comprehensive
theory of the behavior of standing waves in

optical masers. ' Vfe wish here to add a brief note on
some of the additional properties to be expected for
individual traveling waves when they are not neces-
sarily constrained to form standing waves. Our con-
siderations apply to waves deQected by three or more
mirrors so a.s to pass through the amplifying medium
in the same direction on each traversal, rather than in
opposite directions on successive traversals as in the
usual laser configuration with just two mirrors.

In arriving at our results we proceed along a some-
what diferent route from Lamb. This serves to illus-
trate an alternative approach to the theory of optical
masers which, though computationally about as simple
as Lamb' s, puts a greater emphasis on quantum features
which must enter in future theories of noise fluctuations
and of feeble signals.

Lamb calculates the increase in amplitude of classical
waves contained in a laser in response to oscillations
in the atomic polarizations produced by these waves.
Wc prefer to ignore the polarizations, and calculate
rather the changes in the numbers of photons populating
the waves as the atoms make quantum hops down to
less highly excited states. Mathematically, our approach
emphasizes the diagonal elements of the density matrix
(populations) for the single quantum system consisting
of the atoms and radiation, whereas Lamb's focuses on
the off-diagonal elements (polarizations) of the smaller
density matrix for the atoms interacting with externa, l,
unquantized 6elds.

Traveling waves mean directed quanta of radiation.
It is natural to quantize the motions of the atoms in
units of the recoil they give to or receive from the fields
in the processes of emission and absorption. This, to-
gether with the quantized radiation, results in a com-
plete microscopic description of the states in which the
momentum and energy of each particle and wave is
completely specified. Qfe integrate the equation of mo-
tion of the density matrix in this description to terms
quadratic in the numbers of photons and derive from
the diagonal elements of this matrix expressions for

*Brief communications of some of the results of this paper have
appeared in Bull. Am. Phys. Soc. 8, 530 (1963);9, 560 (1964).' W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).
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saturation in the amplification of each wave and for
interference between diQerent waves.

In this paper expressions are obtained solely for the
populations in the running waves; frequency locking or
other effects of mutual shifts in the frequencies of the
waves are ignored. The discussion is restricted, more-
over, to amplifying media composed of stationary atoms
or of gases in which eGects of collisions can either be
ignored or included in effective decay constants for the
atoms. Explicit expressions are given only for the case
that the effective decay constants for the two atomic
states supporting the laser oscillations are equal. The
chief new results obtained are expressions under these
conditions for the amplification of each running wave
in the presence of other running waves (Sec. 2) and
criteria for the mutual stability of pairs of running
waves in the absence of frequency locking (Sec. 3).
In Sec. 4 the eBect on the aggregate emission from the
laser of the interference between pairs of waves is dis-
cussed and an expression equivalent to one given by
Lamb' is derived for the emission in the case that a pair
of traveling waves is constrained to form a standing
wave.

2. AMPLIFICATION OF TRAVELING WAVES

Consider first, for simplicity, a single atom inter-
acting with the running waves in the laser. The atom
will normally be moving and may be in one of its excited
states. Let the numbers of photons in the traveling
waves be S~, E~, E3, Use the indices 0, l, to
represent individual states of the combined system—
moving atom plus radiation. The development of the
system in time can then be written

~hapl„/at=+ (He p ) pp„H (), —

where p is the density matrix for the system and H the
energy. In a representation in which H is diagonal in
the absence of interactions between the waves and the
atoms the off-diagonal elements of H correspond to
transitions in which the interactions cause (a) one
photon in one of the waves to be created or destroyed
and (b) the atom to be correspondingly de-excited or
excited and given an increment of momentum equal
to that absorbed or opposite to that emitted in the
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transition. The strength of such a transition can be found to be
written as

Hki = &SkB'kP" p„k ii(t) =2SkpiVkit e ~'[[(1—cosx)/x']

Here S~~ is the strength when the wave causing the
transition contains but one photon and 1VI,g is the
number of photons in the wave when the atom is de-
excited (i.e., 1Vki is the larger of the numbers of photons
in this wave in states ti and t).

To solve Eq. (1) write Hkk —H« ——hcuk& for the differ-
ence in total energies of states 0 and l and make the
substitution pki(t) =p'ki(t) exp( —uokit). The develop-
rnent of p' in time is given by the simple operator
equation xf(x,y) =

+t2 Q S„P!V if(x,o),t)

cosx—1 cosy —1 sins
+

y' — xy

where

&&&p ki/&t= g Tkikvp k, v,
kl, lt

(3)
cosx—1 1 1 cos(y —x)—1

+ -+- + (8)
xy x y (y —x)y'

Tkl, k'v(t) (1 8kk'5vi) (Hkk'5v 1 0kk'Hvl)

)(gi (saki (ak i —) i '~ (4)

Equation (3) can be solved by iteration. This gives

P'ki(t) = P ~ki, k V(tP)P'k V(o)

for the state of the system at time t in terms of its state
at time t=0, where

t

rki, k p (t,0) =Ski, k i —— ct'Tki, k. p (t')

t

dt'
h' 0

Tki, k-v (t')Tk-v, k v(t")

In Eq. (6) "+ " means terms of order (—iT/5)',
( i T/fi)4, are t—o be added with triple, quadruple,
~ ~ ~ integrations, and summations over two pairs, three
pairs, ~ ~ of indices.

It is not necessary to include all states in the summa-
tions in Eq. (6). In particular, if the two excited atomic
states which interact with the laser radiation decay to
noninteracting states with the single decay constant p,
this decay can be taken into account by ignoring the
latter states in performing the summations in Eq. (6),
then multiplying the expression obtained in this way for
p' by exp( —yt). Suppose this is the case and that at
time t= 0 the atom is excited and the state of the system
is l: pii(0) = 1. Write pkk, ii(t) for the probability that by
time t&0 the system will be found in state k, in which
the atom has been stimulated to emit a photon into
wave k but has not yet decayed to an inert state. Then
when the integrations are performed in Eq. (6), includ-
ing terms through T4, the probability that the atom be
in state k after an initial excitation into state l is

In the integrations leading to Eq. (7) terms of odd
order in T do not contribute; those of sixth and higher
order contribute negligibly when the laser operates close
to threshold. The leading term in Eq. (7), of second
order in T or 5, or of erst order in the number of
photons Ã, expresses the portion of the response which
is free of interference or saturation. The remaining
terms, of order S4 or Ã', determine the levels of the
oscillations in the laser and the dependence of the out-
put for each oscillation on the amplitudes and fre-
quencies of the other oscillations.

The summations on m and e run through all those
states, excluding m= k, which can be connected to states
1 and k by the interaction between the atoms and the
radiation: In states of type m the atom is de-excited and
an extra photon is present in wave m; in states of type e
the atom has been re-excited by absorbing a photon
from wave e. The term in the second summation with
m=l is a special case and corresponds to re-excitation
from state 0 back into state l by absorption of a photon
from the wave k which initially caused the atom to
de-excite. This term has the simple form

SkP1Vkif(x, x)= —2SkPEkix 4(2—2 cosx—x sinx);

it expresses saturation in the response of the atom to
radiation in wave k in the absence of other radiation.

Equations (7) a,nd (8) give the time development of
a system consisting of a single atom plus radiation. For
a laser, in which there are many atoms, the density
matrix at time t is equal to the sum of the density mat-
rices p(t —to) for the individual atoms excited at times
to. Suppose the excitation occurs preferentially into the
upper laser state of the atoms at a rate R(t) which
varies little during several natural atomic decay times
and that the resonant frequency for all of the atoms is
the same. Then, for equal decay constants, the rate at
which the photon population in wave k increases from
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stimulated emission is

(gV(&) ~(t)
=7 E(to)e ~" "'p ~~, n(t —to)dto

s,px, ((t)
2y-'R(t)

1+x'

P g„y '5 P—;V ((t)I(x,~& )/y)
X

g2

where x=xp(/y and
1+x'

3. STABILITY OF TRAVELING %AVES

In sparsely populated waves for which the gain ex-
ceeds the losses the numbers of photons can be expected
to grow toward the equilibrium values obtained by
setting Eq. (9), including the loss term for each wave,
equal to zero. Whether such an equilibrium with finite
populations in each wave will actually be reached
depends on the magnitudes of the factors I(x,y)
coupling the pairs of running waves. As a rule, if the
couplings are too strong the least disturbance from the
equilibrium values must result in some of the waves
growing larger and others growing smaller and finally
disappearing. For example, when there are just two
waves k and nz with the same polarization whose
strengths S„, of interaction with one photon are the
same, it is readily seen that Eq. (9) predicts that the
populations will tend to move away from their equi-
librium values unless the product I(x,y)I(y, x) for the
two waves is less than 4. (We have here assumed the
populations are large enough to set N ~=N =NI, „
and NI, ~=N~, where N and NI, are the average num-
bers of photons in waves m and k.) When this inequality
is satisfied, as when the frequencies x and y of the two
waves diGer considerably, the waves can be expected
once at equilibrium to coexist indefinitely.

4+x'+ x4+ 2xy'+y (1—x') (x+2y)I (x,y) = . (10)
(1+y') t.1+(x—y)'J

The erst term in Eq. (9) gives the growth of the wave
in the absence of interference or saturation; the term in
the second summation with e= t and I (x,y) = I(x,x) =4,
gives the saturation in the growth of the wave in the
absence of other waves; the remaining terms in the sum-
mations, containing factors I(x,y) with yWx, express
the e8ects of interference between pairs of waves. The
waves may be described fully by adding a term —p„.&Ã&

to the right side of Eq. (9) to represent the losses in
the cavity due to incoherent scattering from the atoms,
absorption of the radiation in or transmission through
the mirrors, etc. (These processes may reasonably be
assumed to be such that y, q is independent of X~.)

It is readily seen that the condition for stability is
not satisfied for waves of nearly the same frequency
propagating in the same or opposite directions through
stationary media. Thus in a stationary triangular laser
with a stationary solid amplifying medium, a standing
wave reQected around the perimeter of the triangle
should be unstable against growth of one of its con-
stituent running waves at the expense of the other. For
the standing wave to become stable the medium must
move or the triangle to which the mirrors are attached
must rotate. For the special case that the radiation is
resonant with the atoms when they are at rest, the con-
dition for coexistence of the two running waves when
the atoms are moving is that the two Doppler-shifted
frequencies of the waves as viewed by the moving atoms
satisfy the condition x'= y'& —', .

For gaseous media, which consist of atoms moving
with many diferent velocities, it is necessary to sum
the individual contributions (9) for the stimulated
emission from each atom to obtain the aggregate
emission and interference. The criteria for stability will

now, as for the moving but not for the stationary solid,
be different for pairs of waves propagating in the same
and in opposite directions. Pairs of waves of nearly
the same frequency propagating in the same direction
should still be unstable against growth of one wave at
the expense of the other. But pairs of waves propagating
in opposite directions should now normally be stable.

This latter result is a consequence of the fact that,
just as for the moving solid, the Doppler shifts experi-
enced by the moving atoms are different for the oppo-
sitely directed waves. The quantity (x—y) occurring
in Eq. (10) can, accordingly, be expected to be large,
and the contribution to I(x,y) small, for many of the
atoms in the gas. (This will be true of course even when
the frequencies of the traveling waves are nearly equal. )
Small values for I(x,y) mean greater stability.

Quantitatively, it is found, upon integrating over
velocities in Eq. (9), that the total rate of stimulated
emission into wave k when there are just two oppositely
directed waves k and m is

d&V &'&g (t)
—

251,ptVa~
=2+Ry—'Sg)2)VI, ) 1—

(~ P' i+~a '&I )

7 +&av

in the limit of a very broad Gaussian distribution of
velocities. Here 2&v, =coq~+&o ~=~q~+~k . The criterion
for stable coexistence of the pair of waves is readily
seen to be (1+co, '/y') )1. As this condition is satis6ed
for nearly all pairs of oppositely directed waves, a gas
laser might be expected normally to oscillate simul-
taneously in all waves which would oscillate by them-
selves in the absence of interference between oppositely
directed waves.
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In any real gas, of course, there is a 6nite distribution
of velocities. Equation (11) is applicable only to the
extent that the rate of excitation R=d (e,n —Ni, )/
Ckd(cue/c) at time 1, with co=angular frequency of the
radiation and v=velocity of the atoms, varies in-
appreciably over the resonances in Eq. (9) at ce», co~i,
cv A, ~, ~p, ~~~= 0. When the variation over the resonances
is taken into account, the criterion for stability is found
to become somewhat more stringent. This means that
instabilities should actually occur somewhat before
co, =0; that is, they should occur whenever the laser
is tuned so that the two waves in a pair are approxi-
mately resonant simultaneously with some fraction of
the atoms.

Our discussion in this section has, of course, con-
sistently ignored effects due to collisions except insofar
as they can be incorporated into the effective decay
constant y, so that our results can be expected to apply
strictly, if at all, only for dilute gaseous media. We
have assumed, moreover, that the coupling between the
waves occurs entirely within the amplifying medium,
not, e.g. , at mirrors or other surfaces where partial
reQections might enhance the stability of standing
vr aves.

4. POWER OUTPUTS FOR STANDING AND
TRAVELING WAVES

Not only the criteria for stability but also the ratios
of the power outputs for standing and traveling waves
differ qualitatively for solid and gaseous media. The
power outputs are, of course, proportional to the
numbers of photons inside the cavity. For solids com-
prised of stationary atoms with a single resonant
frequency, these numbers may be found at equilibrium
from Eq. (9) augmented by the dissipation —y, tent.

for each wave. Suppose the dissipations are equal and
the strengths S„are equal. Consider a lone traveling
wave (Xz or 1V &0, all other N„=O) of frequency co

and, alternatively, a standing wave of the same fre-

quency composed of two such waves (E& 1V„WO, all-—
other 1V„=0). It is found from Eq. (9) that the output
is larger, by 3~, for the traveling wave than for the stand-
ing wave composed of the pair of traveling waves. This
is true independently of the frequency ~.' As indicated in
the last section, the standing wave in such a solid ampli-

fying medium is, moreover, unstable against growth of
one of the constituent travehng waves at the expense
of the other: in the absence of such constraints as highly
reQecting mirrors in a two-mirror cavity the laser oper-
ates in that mode of oscillation which gives the greater
output. The same ratio -', is obtained when Eq. (9) is

summed over atoms with different resonant frequencies.
Thus this ratio and these conclusions can be expected
to apply generally to stationary solid amplifying media
in nonmoving enclosures.

~A simple, qualitative interpretation of this e6ect has been
given by the author in Nature 201, 911 (1964).

For gaseous media, the ratio of the power outputs
for the two kinds of waves depends on the frequency
of the radiation and is usually appreciably less than 2.
According to Eq. (11), augmented by the dissipation
term, the equilibrium population in an isolated standing
wave for large Doppler broadening is

——1

2,V=y'S ' 1— 1+,(12)
2~RS' 1+ (to. /y)'

where cv, is now the difference between the frequency
of the standing radiation and the resonant frequency
of the atoms when they are not moving. The population
at equilibrium in a running wave is iV=-,y'S '(1—7y,/
2e-RS'). This is half that given by Eq. (12) for the pair
of waves when co„ is large, and equal to that for the
pair of waves when co, =0. Thus, in the limit of large
Doppler broadening, the ratio of the outputs for gaseous
media should not exceed 1 for any frequency.

It was found in the last section that in the same limit
of large Doppler broadening the standing wave in a
gas is at all frequencies as stable as either of its con-
stituent traveling waves. In a real gas, for which a
traveling wave becomes the more stable for a small

realm of frequencies about co =0, a somewhat greater
power output can be expected in this realm for the lone
traveling wave than for the standing wave, at least if

the gas is dilute and the decay constants equal.
It is interesting to observe, in closing, that Eq. (12)

predicts for a gas a possible decrease in populations, and
hence of output, as the frequency of a standing wave is
tuned through the atomic resonance. If the excitation R
of atoms with the correct speed to interact resonantly
with the radiation does not vary too rapidly near
co =0, the output is predicted there to decrease by as
much as 50%. It should decrease by exactly this much
for a single standing wave and an infinitely broad
distribution of velocities. For a finite distribution of
velocities the decrease of R with increasing co„ leads
through the first quantity in brackets in Eq. (12) to a
less conspicuous dip in output. When R in addition
varies appreciably within each resonance, the required
alterations in Eq. (11) are found to promote through
the second quantity in brackets in Eq. (12) a somewhat

deeper dip (assuming the radiation is constrained to
remain in the form of a standing wave). The net effect
is normally a dip of less than 50%. Expression (12) for
the possible decrease in output as the cavity is tuned,
through resonance with the internal frequency of the
atoms, agrees with the expression for this dip derived
directly for standing waves by Lamb. '

The author has pro6. ted from discussions with W. R.
Bennett, Jr , W. E. Lamb, . Jr., J. H. Van Vleck, A.
Szok.e, U. Pano, H. S. Boyne, Z. L. Bay, and P. L.
Bender. He wishes to thank W. G. Schweitzer, Jr. and

J. W. Cooper for reading and suggesting ways to
improve the manuscript.

' Reference 1, Eq. (96).


