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Hartree-Fock Results for Some Excited States of 0+', 0+, and Ne+f
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Hartree-Fock results are reported for some excited states of 0+', O+, and Ne+, all of which involve two in-
complete groups. The off-diagonal energy parameters included in the calculation turn out to be large in some
cases. A procedure is suggested for dealing with nondiagonal terms in the Hamiltonian.

I. INTRODUCTION

'OST of the Hartree-Fock calculations which have
- - been reported are for atoms and ions in their

ground-state configurations, with at most one incom-
plete group. ' A few have been reported in connection
with transition probabilities for excited configurations
with either one incomplete group or an incomplete
group plus an unpaired s electron. ' The present calcula-
tions deal entirely with excited configurations each
containing two incomplete groups.

The presence of incomplete groups in a configuration
results in several terms being assoicated with it. The
dependence on the term of various atomic parameters
such as the spin-orbit parameter, the Ii and 6 inte-
grals, or the transition integral, has not been fully
investigated. In a study of forbidden transitions in

P, S, Cl, and Ar, Czyzak' attributes at least part of the
improved agreement with observations to the fact that
Hartree-Fock wave functions were computed for each
term.

For some incomplete groups, and particularly when a
configuration consists of several incomplete groups
besides s electrons, an additional complication is intro-
duced in that there may be several terms of the same
type with nondiagonal matrix elements in the Hamil-
tonian connecting them. A procedure is suggested for
including them in the Hartree-Fock calculations.

The present calculations also show that when two
incomplete groups with the same angular quantum
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E. Tre8tz, ibid. 26, 240 (1949); 29, 287 (1951); E. Trefftz and
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number / are present, the oG-diagonal energy parameters
introduced in order to satisfy orthogonality condi-
tions, may be large for some terms. For example, for
2p'('P)3p 'P in Ne+, es„,s„——0.69745, whereas es„z„
= —0.42515. This is quite different from the usual case
of a single incomplete group outside closed shells where
the oB-diagonal energy parameters are small and can be
treated as a final minor perturbation on wave functions
which are nearly self-consistent. As a result, a general
Hartree-Pock procedure must take the ofI'-diagonal

energy parameters into account right from the start of a
self-consistent 6eld iteration.

Numerical Hartree-Fock calculations are reported
for a series of terms in 0+', 0+, and Ne+ which illustrate
the points mentioned earlier. These wave functions
were required for a study of model atmospheres in
8-type stars. ' In the remainder of the paper, the general
numerical procedure is first discussed, then each atom
in turn. The wave functions themselves are not in-
cluded'; instead certain atomic parameters are tabu-
lated including transition integrals.

II. NUMERICAL PROCEDURE

A procedure for solving the Hartree-Fock equations
was described in a previous paper, ' but it ignored the
oG-diagonal energy parameters which must be intro-
duced in order to satisfy the orthogonality conditions.
In ground states the orthogonality corrections are
usually quite small, but this is not true in general, and
therefore a general Hartree-Fock procedure must take
the off-diagonal energy parameters into account.

The Hartree-Fock wave function P, (r) for the zth
group of electrons with quantum numbers e;/;, is a
solution of an equation of the form

P;"(r)+ ( (2/r) $Z—I';(r)j—e,,—fl, (l,+1)/r'j) P, (r)
+(2/)X, ()=~;., 8.;;;P;()

The oG-diagonal energy parameters c,; and e,; are
related by the fact that e;;=X,;/g, , where q; is the
number of electrons in the ith group: A.;; is a Lagrange
multiplier, and therefore X,;=X;,.s If P, (r) and P;(r)

' A. 3. Underhill (to be published).
4 These are available upon request.
s C. Froese, Can. J. Phys. 41, 1895 (1963).
8 Note that the matrix (e;;) is symmetric only for configurations

in which groups of electrons with the same angular quantum
number l, all have the same number of electrons. An example is a
configuration consisting entirely of complete groups. The diago-
nalization of the e matrix as suggested by W. W. Piper, GeneraL
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are two different wave functions with l;= l, , and there-
fore assumed to be orthogonal, then the fact that each
is a solution of a diGerential equation of the form of
Eq. (1) yields the expression

00

—{(I;—V,)P;P,+X,P, X;I—', )dr, (2)

provided q, /q;. When q, =q;. and the integrand in
Eq. (2) is identica, lly zero, then the wave functions will

be orthogonal with X,,=0. Consequently, the off-

diagonal energy parameters between complete groups
can always be set equal to zero. When q, = q, , and the
integrand is not zero, the Hartree-Fock equations are
inconsistent, v and the wave functions should be de-
termined by applying the variational procedure to an
expression for the energy which does not assume
orthogonality. '

Equation (2) was used to compute the off-diagonal
energy parameters for the results reported here. Because
it assumes I'; is already orthogonal to I';, the outermost
wave function was first made orthogonal to the inner
one by the Gram-Schmidt process before X,; was com-
puted during a self-consistent field iteration.

Roothaan and Bagus' have extended. the analytic
self-consistent field calculations to configurations with
incomplete groups, but restrict their derivation to
configurations with at most one incomplete group with a
given quantum number /. Huzinaga" has suggested a
scheme with somewhat wider range of applicability.

In the previous paper, ' the differential equation,
together with its boundary cond. itions and the normali-
zation condition, w'as solved by first selecting an initial
slope and adjusting the energy to satisfy the bound, ary
conditions, then adjusting the initial slope, and repeat-
ing the process until a normalized solution was obtained.
This procedure converges well for inner wave functions
and for most ground-state configurations, but not for
excited states. On the other hand, the method described
by Dettmar and Schluter" is not nearly as efFicient for
inner wave functions, but will compute outer wave
functions even for states above the ionization potential.
The two methods complement each other very nicely.

Briefly, the solution of the di6'erential equation

y"+(f(r) 71y=a(r—), y(o) =y(")=o

is a function of l~, namely, y(r, 'A), and can be expanded

Electric Rept. No. 59-RL-2242 G7 (published by Research
Information Section, The Knolls, Schenectady, New York, 1959)
is therefore not valid in general.

7 C. Froese, Astrophys. J. (to be published).
8 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-

artd Tsoo Etectrort Systems (A-cademic Press Inc. , New York,
p. 141, 1957).

9 C. C. J. Roothaan and P. S. Bagus, in Methodsin Compltu-
itona/ I'hysics edited by B.Adler, S. Fernback, and M. Rotenberg
(Academic Press Inc. , New York, 1963), Vol. 2, p. 47.

'o S. Huzinaga, Phys. Rev. 122, 131 (1961l.
H. K. Dettmar and A. Schluter, Z. Angew. Math. Mech. 38,

220 (1958).

gy d'v) 83= pyg2lf q
g4=

Of the two values of P, the one which resulted in the
smallest change in the eigenvalue was selected provided
both resulted in a function with positive values near
the origin; otherwise the one associated with positive
values was selected. The kth estimate of the wave func-
tion was then taken to be

P"(r) = (P' '(r)+y(r, ~))/2

normalized to unity. In other words, an exact solution
to Eq. (1) for a given F,(r) and X,(r) was not obtained
during the intermediate stages of a self-consistent field
iteration, but only as the over-all process converges.

The results of the Hartree-Fock calculations are
reported in the form of tables of atomic parameters.
These include the following:

(i) diagonal energy parameters e„t,„t for outer elec-
trons,

(ii) the Hartree screening parameters defined as
o „t Z—(r.P/r), ——

(iii) F"(nl, rt'l') and G"(rtl, eV) integrals for outer
electrons,

(iv) the total Hartree-Fock energy, and
(v) the spin-orbit parameter f„t

Some remarks are in order with regard to the calcula-
tion of the spin-orbit parameter. When the con6gura-
tion includes only one incomplete group, the value of

'2The formulas for the second-order process contain several
errors.

in a Taylor's series about a point X=), provided. X

is not an eigenvalue of the homogeneous equation. Then

y (r, l )=y, (r,7~)+ (X—7I,)ys (r,X)+
where

y'"+ U(r) —7 jy'=-y'-»

y'(o)=y'( )=o, yo(r, l~)=C(r).

These equations can be solved without iteration by
computing a particular solution along with a solution of
the homogeneous equation for both outward and inward
integration and then forming a general solution in each
region such that the solutions and their derivatives
match at the common boundary point. By relating the
functions y, (r,),) with the coefficients in a Laurent
expansion which has a wider radius of convergence,
Dettmar and SchlQter derive formulas of various orders
for estimating that solution y (r,K) which is normalized. "
The first-order process was found to be adequate,
namely,

P = (—asm (ttss+ a4 (1—as) ]'t')/u4,

li =X+asP/(a4P+ as),

y(r, K) =yi(r, X)+Pys(r, 7i),
where
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TABLE I. Hartree-I'ock results for terms in 0+2, 0+, an(l Ne+.

I:tot,i(0) = —70—L: (au)
&(Ne) = —120—I' (u).

2p3p Q~
3g 3D

2p23p Q+ 2p3d O~
3P

03p
p'(2p»p)
a(2p, 3p)
G'(2p, 3p)
G2(2p, 3p)

h„(om ')
h„(cm ')

5.03504
1.35694
2.490
3.954

0.07562
0.02757
0.02906
1.7731

263.64
30,66

5.00024
1.30309
2.465
4.076

0.06978
0.02511
0.02623
1.7461

266.90
27.38

5.02033
1.33492
2,480
4.004

0.07325
0.02658
0.02791
1,7621

264.98
29.33

3.52585
0.68151
2.938
4.907
0.43107
0.04636
0.01663
0.01664
3.4410

220.80
14.74

3,52717
0.66746
2.932
4.958
0.43166
0.04426
0.01564
0.01561
3.4340

221.33
13.78

62y, 2p

&3d, 3d
O'2p

OBd

P2(2p, 3d)
G'(2p, 3d')

G'(2p, 3d)
8
h~(om ')
hg(cm ')

5.01113
1.02120
2.521
4.849

0.06536
0.04264
0.02429
1.6053

261.75
1,66

3p
2p3s Q~

lP
2p'3s O~

4p 4p
2p43s Ne+

2P 2D 2g

62y, 2p

63$, 3s
O'2p

03'
J 2(2p, 2p)
G'(2p, 3s)
E
hy(cm ')

4.94790
1.57253
2.547
3.373

0.03435
1.8802

258.38

4.92549
1.53292
2.527
3.525

0.02572
1.8604

258.93

3.44866
0.87340
2.962
4.165

' 0.42885
0.02539
3.5354

218.91

4.30182
0.99228
3.821
5.646
0.52108
0.02520
6.8672

590.64

4.31577
0.95061
3.807
5.848
0.52226
0.01690
6.8467

591.52

4.19673
0.97615
3.855
5.717
0.51756
0.02201
6.7347

587.06

4.03517
0.97846
3.913
5.707
0.51171
0.02249
6.5495

581.40

62p, 2p

63p, 3p
O'2p

O3p
~'(2p, »)
F (2p,3p)
G'(», 3p)
G2(2p, 3p)

hp(&m ')
h~(cm ')

(3P)4D

4.41069
0.72831
3.802
6.654
0.52278
0.04336
0.01581
0.01524
6.7364

593.03
28.26

(sp)4p

4.40064
0.75101
3.818
6.554
0.52146
0.04810
0.01876
0.01798
6.7474

591.57
33.79

4.42554
0.69902
3.785
6.786
0.52432
0.03753
0.01239
0.01202
6.7215

594.74
21.87

4.30068
0.73216
3.841
6.644
0.51889
0.04426
0.01644
0.01581
6.6130

589.03
29.21

4.31198
0.70696
3.829
6.750
0.51994
0.03976
0.01387
0.01337
6.6004

590.03
24.41

2p43p Ne+
('D)'P ('D)'D (3P)2D

4.42103
0.71353
3.783
6.741
0.52448
0.03848
0.01245
0.01220
6.7290

594.56
22.15

(3p)2ps

4.43914
0.70154
3.752
6.886
0.52756
0.02985
0.00612
0.00666
6.7163

597.06
10.39

(1D)2Pa

4.32652
0.70954
3.792
6.840
0.52343
0.03232
0.00750
0.00799
6.6001

592.84
12.62

(lg) 2p

4.14612
0.71874
3.887
6.709
0.51402

0.01508
0.01457
6.4200

584.15
26.26

' These represent mixed states.

t „i is that of the parameter t „i' first introduced by
Boric" for a group of equivalent electrons, and ex-
tended by Blume and Watson" to equivalent electrons
outside closed shells. The spin-orbit interactions can be
interpreted as arising from three sources:

(i) the spin-orbit interaction of an electron in the
Coulomb Geld of the nucleus,

(ii) the spin-orbit interaction of an electron in the
Coulomb 6eld of another electron, and,

(iii) the magnetic interaction of the spin moment of
one electron with the orbital moment of the other.

The interactions of type (ii) and (iii) between electrons
in an un611ed shell and a closed shell of electrons behave
like an effective one-particle spin-orbit potential.
Similarly a large part of the interactions within an
unfilled shell behaves in this manner. These interactions

"H. Horie, Progr. Theoret. Phys. (Kyoto) 10, 296 (1953).
"M. Blume and R. E. Watson, Proc. Roy. Soc. (London)

A280, 127 (1962).

are included in the definition of f„i Blume an.d Watson
have shown that for one unfilled shell outside closed
shells, the contribution from the nuclear term and the
direct matrix elements of the above two-body interac-
tions is of the form -,'n'(BU/rBr), where V is a Hartree
potential. They also give a table for determining the
contribution from exchange matrix elements in this
case. These results were generalized. to configurations of
more than one incomplete group by ignoring the
exchange-type interactions between electrons in difkr-
ent incomplete groups, and assuming that the form of
the direct matrix element was unchanged.

The atomic parameters computed from the Hartree-
Fock results are listed in Table I:Table II consists of a
list of transition integrals.

III. RESULTS FOR 0+2 AND 0+

The Hartree-Foci' calculations for 2p3s ' 'E and
2p3d'P of 0+', and those for 2p'3s4E and 2p'3p'D,
4I' of 0+ are standard in that no special problems arise.
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TABLE II. Transition lntegrals J'P; (Nl; r)rPs(rt'l'; r)dr.

O+2

TABLE III. The mixing coefBcients for 'D and 'P
states of 2p'3p Ne+.

2p3p 'P —+ 2p3s'P
2p3p'S —+ 2P3s'P

2P3(g 'P
2p3P 'D —& 2P3s 'P

2p3d 3p

—3.0441—3.0162—3.1859—2.9987—3.1473
'D
2D2

(8P)2D

0.99989—0.01459

(1D)2D

0.01459
0.99989

L total

—126.7290—126.6004

0+
2P'3s 4P ~ 2P'3P 4D

4P

2p4(8p)3s 4P ~
2p4 (8p)3p 4D

4P
4$

2p'('P)3s 'P —4 2p4('P)3p 'D
2p
'S

2p4('D)3s'D 82p4('D)3p8P
2D
2p

—3.6905—3.7022

—3.2795—3.2628—3.2937—3.4227—3.4485—3.4278—3.3207—3.3355—3.3460

The off-diagonal energy parameters must be introduced,
but these remain small compared. to the d.iagonal energy
parameters. However, the 2p3p configuration is an
example of a case where q, = q; when Eq. (2) is used to
determine X2„3„. The energies of the terms ' 'D, ''P,
and ' 'S are all of the form"

IV. RESULTS FOR NE+

Hartree-Fock wave functions were computed for all the
terms of 2p'3s and 2p43p. The latter is an example of a
configuration with two 'D and three 'P terms with non-
d.iagonal elements in the Hamiltonian connecting them.
The numerical procedure adopted, for including these
terms was similar to the method. of superposition of
configurations introduced by Hartree, Hartree, and,

Swirles. " Hartree-Fock calculations were first per'-

formed for states in a de6nite coupling scheme,
2P(458L)t3P' Por 'D. From these results, the matrix

elements of the Hamiltonian'~ were computed and the
matrix diagonalized. The eigenvectors defining the
mixing of con6gurations are given in Table III. The
mixing of states is quite small. The largest amount
occurs between the 2p'('P) 3p 'P and 2p4('D) 3p'P states.

ap'(2P, 3P)aGe(2P, 3P)]+bp'(2P, 3P)aG'(2P 3p)j
It is easy to show that the integrand of (2) is identically
zero for those terms in which the minus sign applies,
namely, '5, 'P, and 'D. In these cases the self-consistent
Hartree-Fock wave functions should be orthogonal
when the oR-diagonal parameters are set equal to zero.
The computed orthogonality integral serves as a check
on the numerical calculation: it never exceeded,
0.0000002.

+Old
New+

2pl
2P2
2p~

(8P)2P

0.99117
0.13102
0.02059

(ID)2P

—0.13054
0.99117—0.02328

('S)'P L:

—0.02346 —126.7169
0.02039 —126.6011
0.99952 —126.4198

4tRo(2P2P; 2P3P)+bR'(2P2P; 2P3P)+cR'(3P3P; 3P2P)

+«'(3p3p 3p2p).

The largest R integral is R'(2p2p; 2p3p) and its co-
eKcients are I/3, 5/3, and 9/3, respectively, for the
three states. This explains the differences of similar
magnitude.

The effect of an oR-diagonal energy parameter is
predominantly in the region of the main maximum of
the wave function appearing with the parameter in

Eq. (I). Thus the changes in magnitude of the first
maximum of the 3p wave functions can be attributed
to the changes in the off-diagonal energy parameters.
Again, the differences are approximately equal. In the
case of the 2p wave function, the off-diagonal energy
parameters affect the tail of the wave function, and in
fact introduce an extra node. The extra maximum is too
large to be attributed to numerical errors, and also is

TABLE IV. Trends related to the Lagrange multipliers.

First Second
max. max.
of 3p Amax. of 2p b,max.

The wave functions for the corresponding two mixed
states were recomputed assuming a superposition of
vector coupling states. The resulting total energy
differed from the eigenvalues determined earlier by at
most 0.001.

The results for the different 'P vector coupling states
show some interesting trends which can be related to the
off-diagonal energy parameters. Some of these are
listed in Table IV. The three parent states are 2p"5,
'D, and 'P and the off-diagonal energy parameters in-
crease in magnitude in going from one parent state to
the next. The Lagrange multipliers in this case are of
the form

"E.U. Condon and G. H. Shortley, Theory of Atomic Spectre
(Cambridge University Press, New York, 1935},p. 199 (2nd ed. ,
1951}."D. R. Hartree, W. Hartree, and B. Swirles, Phil. Trans. Roy.
Soc. London A238, 229 (1939).

'8 J. C. Slater, Qgorttlm Theory of Atomic Structttres (McGraw-
Hill Book Company, Inc. , New York, 1960), Vol. II, p. 290.

'S —0,03396

'D —0.26748

'P —0.42515

—0.23352

—0.15767
0.1632

0.1184

0.0410

0.0448
—0.00656

—0.01169

0.2042 —0.00046 —0.00610

—0.00513
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roughly proportional to the magnitude of the oB-
diagonal parameters. When these are large, the Hartree-
Fock equations can no longer be interpreted as repre-
senting an electron in a potential field.

The ionized neon configuration has already been
investigated by Garstang. ' He compared the one-
electron energies of self-consistent Hartree wave func-
tions with observed energies and found a considerable
diBerence; in each case the observed energies were
larger. He also compared the transition integrals with
those derived from the Coulomb approximation of

'8R. H. Garstang, Monthly Notices Roy. Astron. Soc. 110,
612 (1950).

Bates and Damgaard. " Again a significant difference
occurred when the Cou}omb approximation was based
on observed energies. It is interesting to note that the
Hartree-Fock energies agree more closely with the
observed than with the Hartree energies; in fact, a
difference of about 10% between observed and Hartree
energies is reduced to 2% with Hartree-Fock energies.
Even so, the transition integrals are about half-way
between those of the Coulomb approximation based on
observed energies, and those from the Hartree wave
functions.

' D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc. Londen
A242, 101 (1949).
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Atomic Absorption Cross Section of Lithium Vapor Between 2300 and 1150 A'

R. D. HUDSON AND V. L. CARTER

Aerospace Corporateors, E/ Segarsdo, Caleforrsea

(Received 26 October 1964)

The continuous atomic absorption cross section of lithium vapor has been measured using photoelectric
techniques from the 2s'S ~ np'P' series limit at 2300 to 1i50A. The bandwidth of the monochromator was
0.75 A and values of the cross section were obtained at 2-L intervals. The best value for the atomic absorp-
tion cross section at the series limit was &.5&+0.23 Mb. The shape of the curve near the series limit is in close
agreement with some recent theoretical predictions. There is an apparent disagreement with recent ex-
perimental results.

I. INTRODUCTION

~t ONSIDERABLE interest exists in experimentally~ obtained absorption cross sections of the alkali
metals at energies greater than that at their ionization
edge. Apart from the immediate quantitative need for
these data, comparison with the theoretically pre-
dicted absorption curves can lead to an insight into the
nature of the alkali metal wave functions themselves. '
Lithium is of particular interest because of the relatively
straightforward nature of its coniguration and the
singular absence of a predicted absorption zero mini-

mum near its ionization edge.
Theoretical estimates have been made by Stewart, '

and Burgess, and Seato', ' of the variation with wave-

length of the atomic absorption cross section of lithium
from the ionization edge at 2300 to 1800 A. Within
this wavelength range, both curves show a gradual
increase of the cross section with energy, but differ in
their absolute magnitude. Tait's recent theoretical
results4 in the dipole velocity formulation agree in
magnitude with the former works, but his dipole

' R. W. Ditchburn and V. Opik, Atomic and 31olecular Processes
(Academic Press, Inc. , New York, 1962).

'A. Stewart, Proc. Phys. Soc. (London) 67, 917 (1954).' A. Burgess and M. J. Seaton, Monthly Notices Roy. Astron.
Soc. 120, 12i (1960}.

J. H. Tait, in ProceeChngs of the Third International Conference
orI the Physics of Electronic arid Atomic Collisions (North-Holland
Publishing Company, Amsterdam, 1964), p. 586.

length formulation yields results approximately 50%
higher. Both curves indicate a slight decrease in cross
section with decreasing wavelength. The recent experi-
mental results obtained by Marr' using photographic
techniques agree in magnitude, within experimental
error, with Tait s dipole length data. This agreement is
considerably improved if Marr's results are adjusted
for more recent vapor pressure data.

Marr's results show a maximum at 1900 A which is
riot apparent in any of the theoretical curves. Thus,
although the agreement between theoretical and experi-
mental magnitudes is good, the shape of the curve of
atomic absorption cross section versus wavelength re-
mains in doubt.

This paper is an account of the determination of the
atomic absorption cross section of lithium from 2300
to 1150A in which photoelectric techniques and the
most recent vapor pressure data are employed.

II. EXPERIMENTAL APPARATUS

The basic theory and experimental arrangement
employed in this laboratory in the measurement of the
cross sections of alkali metal vapors have been discussed
previously by Hudson. ' Certain modi6cations to the
instrumentation were incorporated prior to the work on

' G. V. Marr, Proc. Phys. Soc. (London) 81, 9 (1963),
6 R. D. Hudson, Phys. Rev. 135, A1212 (,1964),


